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Abstract The continuous observation of the magnetic field by the SolarDynamics Observatory
(SDO)/Helioseismic and Magnetic Imager (HMI) produces numerous image sequences in time and space.
These sequences provide data support for predicting the evolution of photospheric magnetic field. Based on
the spatiotemporal long short-term memory (LSTM) network,we use the preprocessed data of photospheric
magnetic field in active regions to build a prediction model for magnetic field evolution. Because of the
elaborate learning and memory mechanism, the trained modelcan characterize the inherent relationships
contained in spatiotemporal features. The testing resultsof the prediction model indicate that (1) the
prediction pattern learned by the model can be applied to predict the evolution of new magnetic field in
the next 6 hours that have not been trained, and predicted results are roughly consistent with real observed
magnetic field evolution in terms of large-scale structure and movement speed; (2) the performance of
the model is related to the prediction time; the shorter the prediction time, the higher the accuracy of the
predicted results; (3) the performance of the model is stable not only for active regions in the north and south
but also for data in positive and negative regions. Detailedexperimental results and discussions on magnetic
flux emergence and magnetic neutral lines finally show that the proposed model could effectively predict
the large-scale and short-term evolution of the photospheric magnetic field in active regions. Moreover, our
study may provide a reference for the spatiotemporal prediction of other solar activities.

Key words: methods: data analysis — Sun: magnetic fields — spatiotemporal prediction — recurrent
neural network

1 INTRODUCTION

The ability to predict future results is a key component of
intelligent decision-making systems (Oprea et al. 2020). In
recent years, with the in-depth research and widespread
application of artificial intelligence and machine learning,
various prediction and forecasting algorithms have been
proposed. For example, many studies, such asShi et al.
(2015), Kwon & Park (2019), Wang et al. (2019), have
provided new developments and phased breakthroughs
for short-term video prediction. Due to the complicated
spatiotemporal relationships and uncertainty between

⋆ Corresponding author

video frames, video prediction is a very challenging
task. However, machine learning algorithms represented
by deep learning can dig out deterministic relationships
from a large amount of data including uncertainty. At
the same time, the spatial semantics in videos also have
a strong correlation and continuity in the transformation
and movement of the time dimension. Through the self-
supervised statistical learning on large amounts of data,
the specially designed neural network can better mine the
deterministic temporal and spatial relationships in videos,
and then realize the short-term prediction of the future
frames.
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The application of machine learning algorithms in
solar activity research mostly focuses on the predic-
tion of some solar activity parameters. For example,
Nishizuka et al.(2018) used a neural network model to
predict the probability of solar flare occurrence and the
maximum flow level.Huang et al.(2018) used a deep
learning model to automatically mine solar flare fore-
casting patterns from solar line-of-sight magnetograms.
Pala & Atici (2019) used a recurrent neural network
model to predict the number change of sunspots over
time. Dani & Sulistiani (2019) used a machine learning
model to predict the maximum amplitude of solar cycle
25. Recently, there were also studies on predicting the
distribution of sunspot butterfly diagrams (Covas et al.
2019) and the solar surface longitudinally averaged
unsigned radial component magnetic field (Covas 2020).
These studies have greatly improved our understanding for
the rules of various solar activities. However, there is no
work to predict the evolution of the photospheric magnetic
field in active regions (AR). Photospheric magnetic field is
usually generated in the solar interior, and controls most
physical processes in solar atmosphere (Wiegelmann et al.
2014). The photospheric magnetic field in active regions
often has higher field strength (Getachew 2019), which
is not only closely related to various magnetic activities
that occur in the solar atmosphere, such as sunspots, solar
wind, and coronal mass ejection, etc., but also affects
our Earth’s near-space environment, climate changes, and
daily life. Therefore, research on predicting the evolution
of the photospheric magnetic field in active regions is of
great significance.

Inspired by the success of video prediction research in
the field of computer vision, we guess that the magnetic
field evolution in active regions may also contain some
deterministic relations that can be predicted. Meanwhile,
along with the entire life cycle of sunspots, the evolution
of photospheric magnetic fields provides many continuous
image sequences in time and space, just like frames
of video. Hence, we try to build the prediction model
of magnetic field evolution using a neural network. We
construct a magnetic field evolution data set as complete
as possible and train our model with a spatiotemporal
long short-term memory (LSTM) network. Specifically,
we make some modifications to the memory in memory
(MIM) network (Wang et al. 2019) to make it suitable
for the spatiotemporal prediction of the magnetic field
evolution in active regions. After training, we test the
effect of the trained model on the whole test set and
give detailed analyses. The experimental results verify
our conjecture: the trained model could indeed mine the
complex spatiotemporal physical relationships contained
in the training set of the magnetic field evolution. Inputting
a new 12-hour magnetic field sequence, this model can

output the predicted large-scale magnetic field evolution
in the next 6 hours. This prediction ability fully shows
that our model has learned a prediction pattern from a
large number of training set, which can be applied to
predict the evolution of new magnetic field that have
not been trained. When the new 12-hour magnetic field
images are input, their spatial features are extracted by
convolution operations, and the evolutionary relationships
between them are learned by the memory network with
recurrent structure. Finally, combined with the extracted
spatiotemporal features, the learned prediction pattern
outputs the predicted results in a recurrent way. It should
be pointed out that the model is mainly used for large-
scale prediction of solar magnetic field evolution, and
the prediction is entirely kinematic prediction without
considering dynamic factors. When it comes to the studies
of the quiet Sun region, the fine structure evolution of
magnetic field, and dynamics, the results acquired may be
not reliable. We believe this is also of great significance to
the macroscopic study of the photospheric magnetic field
evolution in active regions.

The article is organized as follows. The data are
described in Section2. The network and experiment
settings are shown in Section3. The results and analysis of
predicted results for magnetic field evolution are given in
Section4. Finally, conclusions and discussions are drawn
in Section5.

2 DATA

The Helioseismic and Magnetic Imager (HMI) on board
the Solar Dynamics Observatory (SDO) provides the
accurate measurement of solar photospheric magnetic field
so far (Pesnell et al. 2012). The Space-weather HMI Active
Region Patches (SHARPs) data by HMI records images
in patches that encompass automatically tracked magnetic
concentrations for their entire lifetime with a 12-minute
cadence (Bobra et al. 2014). In this paper, we mainly
use the radial component of the vector magnetic field in
a heliographic Cylindrical Equal-Area (CEA) coordinate
system. We collate the magnetic field evolution data of
the solar active regions from 2011 to 2015. The magnetic
field images with longitudes outside±60◦ of the central
meridian are excluded to avoid the influence of projection
effects. Active regions whose evolution time is less than
24 hours are also discarded so that the obtained data can
form sequences. The numbers of active regions in the south
and the north are kept as close as possible. After these
data selection criteria, 46 active regions were obtained, of
which 26 were located in the northern hemisphere and 20
in the southern hemisphere.

When using 12 minutes as the interval of the sequence,
the change between every two frames of the magnetic
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field images is small, and the predicted results often fail
to better reflect the superiority of the model. So, we
set the time interval of magnetic field sequence to 1
hour, that is, one frame is sampled every five frames. In
order to improve the accuracy of predicted results, we
also perform the following preprocessing operations on
magnetic field data. Firstly, the discontinuous parts of
the magnetic field sequences are removed. Secondly, to
suppress the interference of noise, the part where absolute
value of magnetic field strength is lower than 300 Gauss
is removed, and the range of absolute field strength is
kept in [300,3000] Gauss. Thirdly, to increase the learning
efficiency of the model, the data range is normalized to
[–1,1], and the magnetic field images are down-sampled
using the binning method (Li et al. 2009). Fourthly, the
training set is enhanced by using the flip of positive and
negative regions, the flip of left-right, to enhance the
generalization of the model during training process. At the
end, all magnetic field images are cut into sequence of 18
consecutive frames.

Finally, the preprocessed data is randomly divided
into a training set and a testing set. The obtained training
set covers 35 active regions with 3603 magnetic field
evolution sequences, and the testing set includes 11 active
regions with 621 sequences in total. The predicted results
outputted by the model need to be de-normalized to ensure
that the data range is consistent with the real magnetic field
sequences.

3 MODEL

3.1 Network

SupposingXt ∈ Rw×h is thet-th frame in the magnetic
field sequenceX = (Xt−n, · · · , Xt−1, Xt), wherew and
h denote width and height of the image respectively. Our
goal is to predict the forthcoming magnetic field sequence
Y = (Ŷt+1, Ŷt+2, · · · , Ŷt+m). As shown in Figure1, the
spatiotemporal LSTM neural network used is composed
of one spatiotemporal LSTM module (ST-LSTM) and two
MIM module. This network comes from MIM network
(Wang et al. 2019), and we just make some modifications.
Input a continuous 12-hour magnetic field sequence, this
network outputs a predicted magnetic field evolution in
the next 6 hours. In the training process, we use the mean
square error between the 6-hour prediction results and the
real magnetic field images as the loss function. Owing
to the recurrent network structure, the trained model can
fully integrate the temporal and spatial features. As a
result, long-term and short-term spatiotemporal memories
are established, which can better guide the prediction of
the magnetic field evolution.

The evolution process of the photospheric magnetic
field in active regions includes the movement, deformation,

and emergence of the magnetic field flux patches.
A sequence may contain both deterministic changes
such as the movement of magnetic field structures and
non-deterministic changes such as the deformation and
emergence. This brings great challenges for predicting
the magnetic field evolution. However, the network we
used can deal with these problems to a certain extent.
In Figure 1, the flow of features in different directions
promotes the better integration of the temporal and spatial
features of the magnetic field sequence. Inputting the
hidden state of the previous module at the previous
moment (light green arrows in Fig.1) and the hidden
state of the current moment at the same time, the
MIM module could roughly characterize the deterministic
evolution relationships. Considering that the gate structure
of different functions in each module should input
independent distributed data, rather than input the same
distributed data. So we replace the layer normalization
(Ba et al. 2016) in the standard ST-LSTM and MIM
modules with group normalization (Wu & He 2018). In
addition, we also make some minor modifications to these
modules in detail in the process of implementation. This
not only reduces the parameter scale of the network
under the same settings, but also makes the network more
flexible without limiting the size of the input magnetic field
images.

3.2 Experimental Settings

Referencing to the official code based on TensorFlow1

and incomplete open source code2, we reimplemented a
new version of the network derived from the PyTorch
framework (Paszke et al. 2019). Our code is available
online3. Our model is trained and tested on the Windows
7 operating system. The hardware environment consists
of Intel Xeon E5-2650 CPU, NVIDIA Tesla P100 GPU
with 16G memory, 16G RAM, etc. We use Compute
Unified Device Architecture (CUDA) 10.1 and CUDA
Deep Neural Network library (cuDNN) 7.0 to implement
GPU acceleration for this model, and use Adam optimizer
(Kingma & Ba 2017) to update the parameters. The
hyperparameters are set toβ1 = 0.9, β2 = 0.999, the
learning rate is 0.001, and the batch size is 1. As well as
Wang et al.(2019), we use the guiding learning strategy
(Bengio et al. 2015) to train the model to improve its
robustness.

1 https://github.com/Yunbo426/MIM
2 https://github.com/coolsunxu/MIM_Pytorch
3 https://www.github.com/beiyan1911/

magnetic-field-predict

https://github.com/Yunbo426/MIM
https://github.com/coolsunxu/MIM_Pytorch
https://www.github.com/beiyan1911/magnetic-field-predict
https://www.github.com/beiyan1911/magnetic-field-predict
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Fig. 1 The network structure we used is shown. The ST-LSTM module and MIM module have their own memory state
(C) and a shared spatial memory state (M). These memory states could selectively memorize and store the input magnetic
field information or high-dimensional abstract middle features. The recurrent network structure realizes the horizontal
flow of the memory state of each module (blue arrows) and the zigzag flow of the shared spatial memory state M (yellow
arrows) between modules.

Table 1 Three Metric Values for Two Groups of Predicted Results

Examples Metrics T = 1 T = 2 T = 3 T = 4 T = 5 T = 6

AR 11824
SSIM 0.94 0.90 0.86 0.82 0.79 0.77
CC 0.97 0.95 0.92 0.90 0.87 0.84

RMSE 80.56 109.28 137.22 159.92 179.87 197.95

AR 12089
SSIM 0.86 0.78 0.72 0.68 0.65 0.63
CC 0.97 0.94 0.91 0.89 0.88 0.87

RMSE 117.20 158.79 187.94 211.12 220.96 227.95

T = 1,2,...,6 represents the hour length of the predicted result, and the unit of RMSE is Gauss.

4 RESULTS AND ANALYSIS

4.1 Analyses on Large Scale Structure

In order to show the consistency between predicted results
and the real observed magnetic field images, we select two
groups of predicted results from AR 11824 and AR 12089
to display. In panels(a)-(b) of Figure2, by comparing the
3rd and 4th rows of the magnetic field images, it can
be seen that the predicted results are generally consistent
with the real magnetic field images in the large-scale
magnetic field structure. Moreover, with the increase of the
prediction time (from left to right in Fig.2), the predicted
results are generally coincident with the real magnetic field
sequence in large-scale changes. Although, the predicted
results are different from the real magnetic field images in
the shape of some fine magnetic structure.

We calculate three metrics: Correlation Coefficient
(CC), Structural Similarity (SSIM), and Root Mean Square
Error (RMSE), which can quantitatively evaluate the

degree of consistency between the predicted results and the
real magnetic field images. CC can be used to evaluate the
linear correlation between the two magnetic field images
in field strength. Its value is in the range of [–1,1]. The
closer the value to –1, the stronger the negative correlation
between the two images. The closer the value to 1, the
stronger the positive correlation. SSIM is used to calculate
the structural similarity of two images. Its value is in
the range of [0,1]. The larger the value, the higher the
similarity. RMSE can evaluate the numerical difference
between two images. The greater its value, the greater the
numerical difference. The formula of SSIM is as follows:

SSIM(x, y) =
(2uxuy + c1)(2σxy + c2)

(u2
x + u2

y + c1)(σ2
x + σ2

y + c2)
, (1)

wherex andy represent two magnetic field images,ux and
uy are the averages ofx andy, σ2

x is the variance ofx, σ2
y

is the variance ofy, σxy is the covariance ofx andy, c1
andc2 are two variables to stabilize the division with the
weak denominator.
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(a) One Group of Predicted Results on AR 11824

(b) One Group of Predicted Results on AR 12089

Fig. 2 Two groups of predicted results are shown. In panels(a)-(b), rows 1 and 2 are the input 12-hour magnetic field
sequence, the third row is the real magnetic field sequence 6 hours after the input sequence, and the fourth row is the
predicted magnetic field evolution by our model for the next 6hours. For comparison, the magnetic field images are
gridded.

Table 1 shows the three metrics calculated on the
two groups of prediction results (corresponding to the two
examples in Fig.2). Figure3 shows correlation diagrams
of the two groups of examples between the predicted and
real magnetic field images. We can clearly see from Table1
and Figure3 that with the increase of prediction time,
the CC and SSIM metrics of the two examples show a
downward trend. The numerical error RMSE continues to
increase, and the dispersion of the correlation diagrams
becomes larger and larger. These changes indicate that the
accuracy of predicted results gradually decreases with the
increase of prediction time.

To better evaluate the average degree of consistency
between the predicted and the real magnetic field images,
we also calculate the three metrics on the whole testing
set. Figure4 shows the average, and the range of standard
deviation, of the three metrics. From the changes in
panels(a)-(c) of Figure4, it can be seen that as the
prediction time increases, the average CC between the
predicted results and the real magnetic field images
gradually decreases from 0.96 to 0.83. The average SSIM
gradually decreases from 0.92 to 0.76. The average error
RMSE gradually increased from 85.64 Gauss to 179.17
Gauss. The standard deviation (height of error bar in
Fig. 4) of the three metrics also gradually increased. These
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(a) One Group of Correlation Diagrams on AR 11824

(b) One Group of Correlation Diagrams on AR 12089

Fig. 3 The correlation diagrams of the two examples are shown. Except for the background field strength of 0, the
predicted and real magnetic field data do not contain the areawith the absolute field strength less than 300 Gauss. So,
there are two parts in the correlation diagrams. Thered scatter points indicate the intersection area where the absolute
field strength of the predicted and the real magnetic field images is greater than 300 Gauss. Thelight gray scatter points
indicate other areas, that is, where the structure of the predicted results is different from that of the real magnetic field.

(a) Average of CC (b) Average of SSIM (c) Average of RMSE

Fig. 4 The Average of CC, SSIM, and RMSE on the whole testing set.

Table 2 SSIM and CC of Speed Diagrams in Different Active Regions

Examples Metrics T = 1 T = 2 T = 3 T = 4 T = 5 T = 6

AR 11824

CC In X 0.95 0.92 0.86 0.92 0.90 0.91
CC In Y 0.67 0.66 0.52 0.47 0.41 0.40

SSIM In X 0.58 0.61 0.53 0.50 0.52 0.55
SSIM In Y 0.39 0.40 0.36 0.27 0.26 0.27

AR 12089

CC In X 0.88 0.90 0.74 0.78 0.72 0.82
CC In Y 0.66 0.71 0.70 0.64 0.65 0.53

SSIM In X 0.64 0.62 0.68 0.61 0.59 0.60
SSIM In Y 0.37 0.35 0.34 0.31 0.30 0.27

These two examples still correspond to the two groups of predicted results in Fig.2. X represents the
longitude direction, andY represents the latitude direction.
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(a) One Group of Speed Diagrams on AR 11824

(b) One Group of Speed Diagrams on AR 12089

Fig. 5 The movement speed diagrams corresponding to the two groupsof predicted results are displayed. In panels (a)-(b),
the first and second rows are the real and predicted movement speed diagrams in the longitude direction (X direction)
compared with the 12th input magnetic field image respectively. The 3rd and 4th rows are the real and predicted movement
speed diagrams in the latitude direction (Y direction) respectively.Red andblue patches in the speed diagrams indicate
the opposite direction of movement, and the darker the color, the greater the speed magnitude. The unit of the colorbar is
arcsec h−1.

phenomena show that the average accuracy of prediction
results on the whole testing set also gradually decreases
with the increase of prediction time. But even in the
last frame of the predicted results, the averages of CC
and SSIM values are 0.83 and 0.76, which shows that
the last frame of the predicted results are still roughly
consistent with the real magnetic field images. Therefore,
we suggested that our model could predict the large-scale
evolution of magnetic field sequence in the next 6 hours.

In Figures2 and4, the example of AR 11824 is in the
southern hemisphere, and the example of AR 12089 is in
the northern hemisphere. We compare not only these two

groups of examples but also more predicted results during
the experiment, and find that the predicted results are
relatively stable in different positions and different positive
and negative regions. Specifically, there is no difference
in predicted results between the positive regions and the
negative regions. There is also no difference in predicted
results between active regions in the north and south. These
are in line with the characteristics of the model based
on deep learning: the stability of the model performance
is related to whether the training data set is complete or
not. The more complete the training data, the better the
performance of the model on the same type of new data.
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(a) Average of SSIM in Longitude (X) (b) Average of SSIM in Latitude (Y)

(c) Average of CC in Longitude (X) (d) Average of CC in Latitude (Y)

Fig. 6 Average CC and SSIM of the speed diagrams on the whole testingset.

In the data preparation stage, we try to make the training
set cover a similar number of active regions in the north
and south. Data enhancement methods, such as positive
and negative flip, left-right flip, are also used to avoid
the influence of uneven data distribution on the prediction
results.

The accuracy of the predicted results decreases with
the increase of prediction time, which is in line with our
expectation. Because the network structure of the model
is a recurrent neural network, the output of each predicted
image needs to input the previous frame and the hidden
state. When performing prediction, the input image is the
predicted result of the previous frame, and the error of the
previous predicted result will gradually accumulate into
the subsequent predicted frame. So, with the increase in
the number of prediction frames, the cumulative error of
predicted results gradually increases.

4.2 Analyses on Movement Speed

Another important aspect in the evolution of the magnetic
field is the movement of the magnetic structure. We
also analyse the large-scale movement speed of the
photospheric magnetic field in active regions. Specifically,

we draw the movement speed diagrams about the two
groups of predicted results (corresponding to the two
examples in Fig.2) by using the optical flow method
(Farnebäck 2003). As shown in Figure5, to display the
speed of the large-scale magnetic field structure more
clearly, we only show the union area where the absolute
field strength is greater than 300 Gauss between the
real and predicted magnetic field images. Besides, we
also show the results more intuitively in the form of
animation, which can be seen online4. With the increase
of the prediction time in Figure5, we can see that
the directions and magnitudes of predicted velocity in
the longitude direction are generally consistent with the
real speed. In the latitude direction, the directions and
magnitudes of the predicted speed and the real speed are
also roughly consistent. In some small areas, the predicted
speed directions are opposite to the real speed directions,
and the speed magnitudes are also different. Meanwhile,
in both longitude and latitude directions, with the increase
of the prediction time, changes of the speed magnitudes
and directions on the predicted and real speed are very
small, which also verify that the movement of the magnetic

4 https://github.com/beiyan1911/
magnetic-field-predict/tree/main/animation

https://github.com/beiyan1911/magnetic-field-predict/tree/main/animation
https://github.com/beiyan1911/magnetic-field-predict/tree/main/animation


L. Bai et al.: Predict Evolution of Photospheric Magnetic Field 113–9

(a) One Group of Predicted Results when Magnetic Flux Emergence is Not Predicted

(b) One Group of Predicted Results When Magnetic Flux Emergence is Predicted

Fig. 7 Predicted results about magnetic flux emergence.

structure in evolution processes has good coherence and
consistency. Through above analyses, it can be concluded
that the predicted results are generally consistent with the
real magnetic field sequence in the large-scale movement
speed.

The SSIM and CC metrics of the real and predict speed
diagrams on the two examples are shown in Table2. The
average SSIM and CC change curves of the movement
speed calculated on the entire test set are shown in
Figure 6. It can be seen from Table2 and Figure6 that
the SSIM and CC of the movement speed diagrams in

the longitude direction are significantly higher than that
in the latitude direction, regardless of whether it is on a
single example or the statistical results of the whole test
set. From Figure6 we can also see that as the prediction
time increases, the CC and SSIM metrics in the longitude
and latitude directions generally show a downward trend,
which is the same as the conclusion that the accuracy of the
predicted results decreases as the prediction time increases
in Section4.1.

After carefully observing the magnetic field sequences
of the training set and testing set, we find that the evolution
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(a) One Group of Contour Diagrams on AR 11824

(b) One Group of Contour Diagrams on AR 12219

Fig. 8 The contour diagrams about tow groups of predicted results are shown. In panels(a)-(b), the first image is the
12th frame of the input sequence, the second image is the realmagnetic field image of the 6th hour (frame) after input
sequence, and the third image is the predicted magnetic fieldimage of the 6th hour.

in the longitude direction is obviously faster than that in the
latitude direction in most sequences. The speed magnitude
of the magnetic field structure in the longitude direction is
significantly larger than that in the latitude direction. There
are more cases where the positive and negative magnetic
field structures are separated in the longitude direction. In
general, the movement speed in the longitude direction is
more obvious, which can reflect the large-scale change of
the magnetic field structure movement in the evolution.
Based on these comparisons of the speed diagrams and
the average SSIM and CC of speed diagrams on the whole
testing set above, we believe that the large-scale movement
speed of the predicted results is generally consistent with
the real magnetic field images.

5 CONCLUSIONS AND DISCUSSIONS

This paper makes efforts to predict the short-term, large-
scale evolution of the photospheric magnetic fields. On
the basis of the constructed magnetic field data in active
regions, a spatiotemporal LSTM neural network is used
to build our model. Experimental results show that the
model can roughly predict the large-scale evolution of
the photospheric magnetic field in active regions in the
next 6 hours. Specifically, we can draw the following
conclusions: (1) Through the statistical learning of a large
number of magnetic field sequences covering various
evolution situations, the model learned a prediction pattern
which can be applied to predict the evolution of new
magnetic field sequences in next 6 hours. The predicted

results are generally consistent with the real magnetic
field in terms of large-scale magnetic field structure and
movement speed. On the other hand, this also verifies
that the evolution of a large number of magnetic field
sequences in time and space has a certain certainty and
regularity, which could be roughly characterized by the
used neural network model. (2) The performance of the
model is affected by the prediction time, the shorter the
prediction time, the higher the accuracy of the predicted
magnetic field evolution. (3) The performance of the model
is stable not only for active regions in the north and south
but also for data in positive and negative regions.

During the experiment, we also found some aspects
of the prediction results that might be controversial and
some limitations of the model. Our following analyses and
discussions about these parts will provide valuable ideas
and references for subsequent in-depth research.

The magnetic flux emergence is one of the important
phenomena in the evolution of AR magnetic field. We
select two groups of predicted results from AR 11855
for display: one group predicted the emerging magnetic
field block, and the other group failed to predict the
emerging magnetic field block. As shown in the red box
of Figure 7(a), the new emerging magnetic field block
appears in the 11th frame of the input sequence, and
there is no emerging magnetic field block in the predicted
results. In Figure7(b), a small emerging block of magnetic
flux appears in the 8th frame of the input sequence, and this
block continues to perform in frames 9, 10, 11 and 12 of
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(a) One Group of Predicted Results On AR 11158

(b) One Group of Predicted Results On AR 12089

Fig. 9 Two groups of predicted results with the magnetic neutral lines are shown. Thered line is the magnetic neutral line
drawn by us. The first row is the real magnetic field images, andthe second row is the corresponding predicted results. T
= 1, T = 2, T = 3 indicate that the time is 1 hour, 3 hours and 5 hours after input sequence respectively.

the input sequence. In the predicted results, this emerging
magnetic field block finally appears. We see the following
two phenomena by comparing more similar examples
about whether the emergence of new magnetic flux patches
can be predicted. When the new magnetic field structure
emerges in the 11th to 12th frames of the input sequence,
the predicted results are very likely to be unable to predict
the emerging block. When a new magnetic field structure
emerges in the 8th to 10th frame and earlier in the input
sequence, there is a high probability that the emerging
block will appear in the predicted results. Accordingly, we
can conclude that when the new magnetic field structure
emerges earlier and performs a certain performance in
the input sequence, the model could predict this emerging
block with a high probability.

The model we trained is mainly able to predict the
large-scale evolution of the photospheric magnetic field
in solar active regions. When conducting research on the
fine structure of the magnetic field based on the predicted

results, there is a big deviation. Two groups of predicted
results were selected from AR 11824 and AR 12219, and
their contour diagrams are shown in Figure8. We can see
that, compared with the 12th magnetic field images of the
input sequence, the position of the real magnetic field of
the 6th frame in the succeeding sequence has changed, and
the structure has also been deformed. In the sixth frame
of the predicted results, the large-scale displacement and
deformation are roughly consistent with the real magnetic
field image, but there are still considerable deviations
in the deformation of fine structure. The main reason is
that large-scale structure deformation and movement are
relatively easier to be characterized by the used network.
The relationships in deformations of fine structure are
more complex, and their patterns are more difficult to be
learned. We have carefully checked the predicted results of
algorithms in the field of computer vision (Kwon & Park
2019; Wang et al. 2019), and find that there is also the
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problem that the deformations of the predicted results on
fine structure is less consistent with the real video.

The magnetic neutral line is the line that separates the
opposite magnetic polarity regions (positive and negative)
in a photosphere magnetic field and is often located in the
place with a large gradient of the magnetic field images.
We pick out two groups of predicted results in which the
positive and negative regions are relatively close, and their
approximate magnetic neutral lines are drawn in Figure9.
It can be seen that the predicted magnetic neutral lines are
roughly consistent with the neutral lines of real magnetic
images in the position, length, and inclination angle. We
also compare more groups of predicted results during the
experiment and find that when the positive and negative
regions of magnetic fields are close, the drawn magnetic
neutral lines on predicted results have good consistency
with the real magnetic neutral lines. When the positive
and negative regions are far away, the drawn magnetic
neutral lines on predicted results have deviations with the
real magnetic neutral lines. Because when the positive
and negative regions of magnetic fields are close to each
other, The magnetic neutral lines can better indicate some
solar activities such as flares and filaments. So we could
conclude that the predicted results are roughly consistent
with the real magnetic field images in the large-scale
structure and evolution of magnetic neutral lines.

Like other deep learning models, our model is also
data-driven, and its performance is affected by whether
the training data is sufficient. Although the training data
we used has tried to cover as much magnetic field
evolution as possible, the amount of data is still not large
enough compared with the complicated and changeable
evolution. The physical evolution contained in the data
is still not comprehensive enough. Also, the limitation
of the computing power of the equipment and the slow
operation efficiency of the network also affects the model’s
performance. Therefore, under the current data level, the
predicted results by our model could not be applied to the
study of magnetic field on fine structures.

In conclusion, we have constructed a prediction model
based on a spatiotemporal LSTM neural network to realize
the short-term prediction of the large-scale evolution of
the photospheric magnetic field in solar active regions. In
the future, we will try to solve these above controversial
aspects and limitations, and research new magnetic field
prediction models with higher prediction accuracy and
longer prediction time.
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Farnebäck, G. 2003, in the 13th Scandinavian Conference on

Image Analysis, ed. J. Bigun & T. Gustavsson, 2749 (Berlin,

Heidelberg: Springer Berlin Heidelberg), 363
Getachew, T. 2019, Spatial-temporal Structure and Distribution

of the Solar Photospheric Magnetic Field (Oulu : Oulun

yliopisto)
Huang, X., Wang, H., Xu, L., et al. 2018, The Astrophysical

Journal, 856, 7
Kingma, D. P., & Ba, J. 2017, in International Conference on

Learning Representations (San Diego, CA: Springer)
Kwon, Y.-H., & Park, M.-G. 2019, in 2019 IEEE/CVF

Conference on Computer Vision and Pattern Recognition

(CVPR) (Long Beach, CA, USA: IEEE), 1811
Li, H., Zhang, H., Guo, X., & Hu, G. 2009, Tsinghua Science

and Technology, 14, 541
Nishizuka, N., Sugiura, K., Kubo, Y., Den, M., & Ishii, M. 2018,

ApJ, 858, 113
Oprea, S., Martinez-Gonzalez, P., Garcia-Garcia, A., et al. 2020,

arXiv: 2004.05214
Pala, Z., & Atici, R. 2019, Solar Physics, 294, 50
Paszke, A., Gross, S., Massa, F., et al. 2019, in Advances

in Neural Information Processing Systems, eds. H. Wallach,

H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, &

R. Garnett, 32 (Curran Associates, Inc.), 8026
Pesnell, W. D., Thompson, B. J., & Chamberlin, P. C. 2012, Solar

Physics, 275, 3
Shi, X., Chen, Z., Wang, H., et al. 2015, in Advances in Neural

Information Processing Systems, ed. C. Cortes, N. Lawrence,

D. Lee, M. Sugiyama, & R. Garnett, 28 (Curran Associates,

Inc.), 802
Wang, Y., Zhang, J., Zhu, H., et al. 2019, in 2019 IEEE/CVF

Conference on Computer Vision and Pattern Recognition

(CVPR), 9146
Wiegelmann, T., Thalmann, J. K., & Solanki, S. K. 2014,

Astronomy and Astrophysics Review, 22, 78
Wu, Y., & He, K. 2018, in Proceedings of the European

Conference on Computer Vision (ECCV), eds. V. Ferrari,

M. Hebert, C. Sminchisescu, & Y. Weiss, 16 (Springer)


	Introduction
	Data
	Model
	Network
	 Experimental Settings

	results and analysis
	Analyses on Large Scale Structure
	Analyses on Movement Speed

	Conclusions and Discussions

