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Abstract The continuous observation of the magnetic field by the S@lgnamics Observatory
(SDO)/Helioseismic and Magnetic Imager (HMI) produces eupns image sequences in time and space.
These sequences provide data support for predicting tHetmrmof photospheric magnetic field. Based on
the spatiotemporal long short-term memory (LSTM) netwari use the preprocessed data of photospheric
magnetic field in active regions to build a prediction mod®lihagnetic field evolution. Because of the
elaborate learning and memory mechanism, the trained noagetharacterize the inherent relationships
contained in spatiotemporal features. The testing regilihe prediction model indicate that (1) the
prediction pattern learned by the model can be applied tdigiréhe evolution of new magnetic field in
the next 6 hours that have not been trained, and predictatis@se roughly consistent with real observed
magnetic field evolution in terms of large-scale structund enovement speed; (2) the performance of
the model is related to the prediction time; the shorter tiegligtion time, the higher the accuracy of the
predicted results; (3) the performance of the model is etabt only for active regions in the north and south
but also for data in positive and negative regions. Detalguerimental results and discussions on magnetic
flux emergence and magnetic neutral lines finally show thaptioposed model could effectively predict
the large-scale and short-term evolution of the photospheagnetic field in active regions. Moreover, our
study may provide a reference for the spatiotemporal ptiediof other solar activities.

Key words: methods: data analysis — Sun: magnetic fields — spatiotemhpoediction — recurrent
neural network

1 INTRODUCTION video frames, video prediction is a very challenging
task. However, machine learning algorithms represented
The ability to predict future results is a key component ofhy deep learning can dig out deterministic relationships
intelligent decision-making systenm®frea et al. 2020In  from a large amount of data including uncertainty. At
recent years, with the in-depth research and widespreafle same time, the spatial semantics in videos also have
application of artificial intelligence and machine lea@iin 3 strong correlation and continuity in the transformation
various prediction and forecasting algorithms have beegnd movement of the time dimension. Through the self-
proposed. For example, many studies, suctShsetal.  sypervised statistical learning on large amounts of data,
(2019, Kwon & Park (2019, Wang etal.(2019, have  the specially designed neural network can better mine the
provided new developments and phased breakthrougheterministic temporal and spatial relationships in vijeo

for short-term video prediction. Due to the complicatedand then realize the short-term prediction of the future
spatiotemporal relationships and uncertainty betweefgmes.
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The application of machine learning algorithms inoutput the predicted large-scale magnetic field evolution
solar activity research mostly focuses on the predicin the next 6 hours. This prediction ability fully shows
tion of some solar activity parameters. For examplethat our model has learned a prediction pattern from a
Nishizuka et al.(2018 used a neural network model to large number of training set, which can be applied to
predict the probability of solar flare occurrence and thepredict the evolution of new magnetic field that have
maximum flow level. Huang et al.(2018 used a deep not been trained. When the new 12-hour magnetic field
learning model to automatically mine solar flare fore-images are input, their spatial features are extracted by
casting patterns from solar line-of-sight magnetogramsconvolution operations, and the evolutionary relatiopshi
Pala & Atici (2019 used a recurrent neural network between them are learned by the memory network with
model to predict the number change of sunspots overecurrent structure. Finally, combined with the extracted
time. Dani & Sulistiani (2019 used a machine learning spatiotemporal features, the learned prediction pattern
model to predict the maximum amplitude of solar cycleoutputs the predicted results in a recurrent way. It should
25. Recently, there were also studies on predicting thee pointed out that the model is mainly used for large-
distribution of sunspot butterfly diagram&dvasetal. scale prediction of solar magnetic field evolution, and
2019 and the solar surface longitudinally averagedthe prediction is entirely kinematic prediction without
unsigned radial component magnetic fieogas 2020  considering dynamic factors. When it comes to the studies
These studies have greatly improved our understanding faf the quiet Sun region, the fine structure evolution of
the rules of various solar activities. However, there is nanagnetic field, and dynamics, the results acquired may be
work to predict the evolution of the photospheric magnetiot reliable. We believe this is also of great significance to
field in active regions (AR). Photospheric magnetic field isthe macroscopic study of the photospheric magnetic field
usually generated in the solar interior, and controls mosévolution in active regions.
physical processes in solar atmosph&egelmann et al. The article is organized as follows. The data are
2014. The photospheric magnetic field in active regionsdescribed in Sectio?. The network and experiment
often has higher field strengtlGétachew 2019 which  settings are shown in Secti@nThe results and analysis of
is not only closely related to various magnetic activitiespredicted results for magnetic field evolution are given in
that occur in the solar atmosphere, such as sunspots, solgction4. Finally, conclusions and discussions are drawn
wind, and coronal mass ejection, etc., but also affectin Section5.
our Earth’s near-space environment, climate changes, and
daily life. Therefore, research on predicting the evolutio 5 pata
of the photospheric magnetic field in active regions is of
great significance. The Helioseismic and Magnetic Imager (HMI) on board

Inspired by the success of video prediction research ithe Solar Dynamics Observatory (SDO) provides the
the field of computer vision, we guess that the magneti@ccurate measurement of solar photospheric magnetic field
field evolution in active regions may also contain someso far Pesnell et al. 20)2The Space-weather HMI Active
deterministic relations that can be predicted. MeanwhileRegion Patches (SHARPs) data by HMI records images
along with the entire life cycle of sunspots, the evolutionin patches that encompass automatically tracked magnetic
of photospheric magnetic fields provides many continuousoncentrations for their entire lifetime with a 12-minute
image sequences in time and space, just like framesadence Bobraetal. 201% In this paper, we mainly
of video. Hence, we try to build the prediction model use the radial component of the vector magnetic field in
of magnetic field evolution using a neural network. Wea heliographic Cylindrical Equal-Area (CEA) coordinate
construct a magnetic field evolution data set as completgystem. We collate the magnetic field evolution data of
as possible and train our model with a spatiotemporaihe solar active regions from 2011 to 2015. The magnetic
long short-term memory (LSTM) network. Specifically, field images with longitudes outside60° of the central
we make some modifications to the memory in memorymeridian are excluded to avoid the influence of projection
(MIM) network (Wang et al. 201pto make it suitable effects. Active regions whose evolution time is less than
for the spatiotemporal prediction of the magnetic field24 hours are also discarded so that the obtained data can
evolution in active regions. After training, we test the form sequences. The numbers of active regions in the south
effect of the trained model on the whole test set andand the north are kept as close as possible. After these
give detailed analyses. The experimental results verifglata selection criteria, 46 active regions were obtaingd, o
our conjecture: the trained model could indeed mine thevhich 26 were located in the northern hemisphere and 20
complex spatiotemporal physical relationships containeéh the southern hemisphere.
in the training set of the magnetic field evolution. Inpugtin When using 12 minutes as the interval of the sequence,
a new 12-hour magnetic field sequence, this model cathe change between every two frames of the magnetic
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field images is small, and the predicted results often faiand emergence of the magnetic field flux patches.
to better reflect the superiority of the model. So, weA sequence may contain both deterministic changes
set the time interval of magnetic field sequence to Isuch as the movement of magnetic field structures and
hour, that is, one frame is sampled every five frames. Imon-deterministic changes such as the deformation and
order to improve the accuracy of predicted results, weemergence. This brings great challenges for predicting
also perform the following preprocessing operations orthe magnetic field evolution. However, the network we
magnetic field data. Firstly, the discontinuous parts ofused can deal with these problems to a certain extent.
the magnetic field sequences are removed. Secondly, ta Figure 1, the flow of features in different directions
suppress the interference of noise, the part where absolupeomotes the better integration of the temporal and spatial
value of magnetic field strength is lower than 300 Gausgeatures of the magnetic field sequence. Inputting the
is removed, and the range of absolute field strength ikidden state of the previous module at the previous
kept in [300,3000] Gauss. Thirdly, to increase the learningnoment (light green arrows in Fidl) and the hidden
efficiency of the model, the data range is normalized tcstate of the current moment at the same time, the
[-1,1], and the magnetic field images are down-sampleIM module could roughly characterize the deterministic
using the binning methodL{et al. 2009. Fourthly, the evolution relationships. Considering that the gate stmect
training set is enhanced by using the flip of positive andbf different functions in each module should input
negative regions, the flip of left-right, to enhance theindependent distributed data, rather than input the same
generalization of the model during training process. At thedistributed data. So we replace the layer normalization
end, all magnetic field images are cut into sequence of 1@a etal. 201p in the standard ST-LSTM and MIM
consecutive frames. modules with group normalization\(u & He 2018. In
Finally, the preprocessed data is randomly dividedaddition, we also make some minor modifications to these
into a training set and a testing set. The obtained trainingnodules in detail in the process of implementation. This
set covers 35 active regions with 3603 magnetic fieldhot only reduces the parameter scale of the network
evolution sequences, and the testing set includes 11 activmder the same settings, but also makes the network more
regions with 621 sequences in total. The predicted resultifexible without limiting the size of the input magnetic field
outputted by the model need to be de-normalized to ensuimages.
that the data range is consistent with the real magnetic field

sequences. . .
3.2 Experimental Settings
3 MODEL
31 Network Referencing to the official code based on TensorElow

and incomplete open source cédere reimplemented a
SupposingX; € R¥*" is thet-th frame in the magnetic new version of the network derived from the PyTorch
field sequence&’ = (X;_,, -+, X;_1, X;), wherew and framework Paszke etal. 20)9 Our code is available

h denote width and he|ght of the image respective|y_ Oupnlineg. Our model is trained and tested on the Windows
goal is to predict the forthcoming magnetic field sequencd operating system. The hardware environment consists
Y = (}A/;E+17}A/;5+27 . 7ﬁ+m)_ As shown in Figur@_, the of Intel Xeon E5-2650 CPU, NVIDIA Tesla P100 GPU
spatiotemporal LSTM neural network used is composedVith 16G memory, 16G RAM, etc. We use Compute
of one spatiotemporal LSTM module (ST-LSTM) and two Unified Device Architecture (CUDA) 10.1 and CUDA
MIM module. This network comes from MIM network Deep Neural Network library (cuDNN) 7.0 to implement
(Wang et al. 2019 and we just make some modifications. GPU acceleration for this model, and use Adam optimizer
Input a continuous 12-hour magnetic field sequence, thifkingma & Ba 201§ to update the parameters. The
network outputs a predicted magnetic field evolution inhyperparameters are set fo = 0.9, 52 = 0.999, the
the next 6 hours. In the training process, we use the medgarning rate is 0.001, and the batch size is 1. As well as
square error between the 6-hour prediction results and th&/ang et al.(2019, we use the guiding learning strategy
real magnetic field images as the loss function. OwingBengio etal. 201pto train the model to improve its
to the recurrent network structure, the trained model cafobustness.
fully integrate the temporal and spatial features. As a
result, long-term and short-term spatiotemporal memories
are establisfhe-d, which can better guide the prediction of— ht tpas/{ gi t hub. cond Yunbod26/ M M
the magnetic f'?ld evolution. . . 2 https://github. conl cool sunxu/ M M_Pyt or ch

The evolution process of the photospheric magnetic sy, ps-// www. gi t hub. cont bei yan1911/
field in active regions includes the movement, deformationpagneti c- fi el d- pr edi ct
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Fig.1 The network structure we used is shown. The ST-LSTM moduteNiM module have their own memory state
(C) and a shared spatial memory state (M). These memongstated selectively memorize and store the input magnetic
field information or high-dimensional abstract middle teas. The recurrent network structure realizes the hoté&on

flow of the memory state of each modul#(e arrows) and the zigzag flow of the shared spatial memory statgelliow
arrows) between modules.

Table 1 Three Metric Values for Two Groups of Predicted Results

Examples Metrics T=1 T=2 T=3 T=4 T=5 T=6

SSIM 0.94 0.90 0.86 0.82 0.79 0.77
AR 11824 CcC 0.97 0.95 0.92 0.90 0.87 0.84
RMSE 80.56 109.28 137.22 159.92 179.87 197.95

SSIM 0.86 0.78 0.72 0.68 0.65 0.63
AR 12089 CcC 0.97 0.94 0.91 0.89 0.88 0.87
RMSE  117.20 158.79 187.94 211.12 220.96 227.95

T=1,2,....6 represents the hour length of the predictedtremnd the unit of RMSE is Gauss.

4 RESULTS AND ANALYSIS degree of consistency between the predicted results and the
real magnetic field images. CC can be used to evaluate the
linear correlation between the two magnetic field images

In order to show the consistency between predicted resultd field strength. lts value is in the range Of, [-1.1] Thg
and the real observed magnetic field images, we select m%oser the value to_—l, the stronger the negative correlatio
groups of predicted results from AR 11824 and AR 1208 etween the tW(.)-|mages. The closer .the value to 1, the
to display. In panels(a)-(b) of Figu by comparing the stronger the pos_ltl\_/e c;orrelauon. _SSIM is used to cal_eul_at
3rd and 4th rows of the magnetic field images, it Canthe structural similarity of two images. Its valge is in
be seen that the predicted results are generally consisteﬁqle_rar_]ge of [0.1]. The larger the value, f[he h|_gher the
with the real magnetic field images in the Iarge—scales'm"a”ty' RMSE can evaluate thg numerical difference
magnetic field structure. Moreover, with the increase of thé)etwe(_an tW9 Images. The greater its value: the greater the
prediction time (from left to right in Fig2), the predicted numerical difference. The formula of SSIM is as follows:
results are generally coincident with the real magnetidfiel  SSTM(z, y) = (2usuy + €1)(200y + c2) )
sequence in large-scale changes. Although, the predicted (u + uf + c1)(0F + 05 + c2)
results are different from the real magnetic field images irwherex andy represent two magnetic field images,and
the shape of some fine magnetic structure. u, are the averages afandy, o2 is the variance of;, o7,
We calculate three metrics: Correlation Coefficientis the variance of, o, is the covariance af andy, ¢;
(CC), Structural Similarity (SSIM), and Root Mean Squareandcs are two variables to stabilize the division with the
Error (RMSE), which can quantitatively evaluate theweak denominator.

4.1 Analyses on Large Scale Structure
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(b) One Group of Predicted Results on AR 12089
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Fig.2 Two groups of predicted results are shown. In panels(a)r@ys 1 and 2 are the input 12-hour magnetic field
sequence, the third row is the real magnetic field sequenausfafter the input sequence, and the fourth row is the
predicted magnetic field evolution by our model for the nextddirs. For comparison, the magnetic field images are
gridded.

Table 1 shows the three metrics calculated on the  To better evaluate the average degree of consistency
two groups of prediction results (corresponding to the twdbetween the predicted and the real magnetic field images,
examples in Fig2). Figure3 shows correlation diagrams we also calculate the three metrics on the whole testing
of the two groups of examples between the predicted ansget. Figure4 shows the average, and the range of standard
real magnetic field images. We can clearly see from Table deviation, of the three metrics. From the changes in
and Figure3 that with the increase of prediction time, panels(a)-(c) of Figured, it can be seen that as the
the CC and SSIM metrics of the two examples show grediction time increases, the average CC between the
downward trend. The numerical error RMSE continues tqredicted results and the real magnetic field images
increase, and the dispersion of the correlation diagramgradually decreases from 0.96 to 0.83. The average SSIM
becomes larger and larger. These changes indicate that tgeadually decreases from 0.92 to 0.76. The average error
accuracy of predicted results gradually decreases with theMSE gradually increased from 85.64 Gauss to 179.17
increase of prediction time. Gauss. The standard deviation (height of error bar in

Fig. 4) of the three metrics also gradually increased. These
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Fig.3 The correlation diagrams of the two examples are shown. iixfoe the background field strength of 0, the
predicted and real magnetic field data do not contain the witsethe absolute field strength less than 300 Gauss. So,
there are two parts in the correlation diagrams. Tdtkscatter points indicate the intersection area where the absolute
field strength of the predicted and the real magnetic fieldjigsds greater than 300 Gauss. Tight gray scatter points
indicate other areas, that is, where the structure of theigteel results is different from that of the real magnetildfie
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Fig.4 The Average of CC, SSIM, and RMSE on the whole testing set.

Table 2 SSIM and CC of Speed Diagrams in Different Active Regions

Examples Metrics T=1 T=2 T=3 T=4 T=5 T=6

CCInX 0.95 0.92 0.86 0.92 0.90 0.91
CCInyY 0.67 0.66 0.52 0.47 0.41 0.40

AR11824  coMinx 058 061 053 050 052 055
SSIMINY 039 040 036 027 026 027

CCInx 088 090 074 078 072 082

AR 12080 CCINY 066 071 070 064 065 053

SSIMInX  0.64 0.62 0.68 0.61 0.59 0.60
SSIMInY  0.37 0.35 0.34 0.31 0.30 0.27

These two examples still correspond to the two groups ofigtetl results in Fig2. X represents the
longitude direction, and” represents the latitude direction.
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Fig.5 The movement speed diagrams corresponding to the two godppadicted results are displayed. In panels (a)-(b),
the first and second rows are the real and predicted movempeetisliagrams in the longitude directioki @irection)
compared with the 12th input magnetic field image respegtiV@e 3rd and 4th rows are the real and predicted movement
speed diagrams in the latitude directidn irection) respectivelyrRed andblue patches in the speed diagrams indicate
the oppo§ite direction of movement, and the darker the cthlergreater the speed magnitude. The unit of the colorbar is
arcsec h'.

phenomena show that the average accuracy of predictiagroups of examples but also more predicted results during
results on the whole testing set also gradually decreasé¢ise experiment, and find that the predicted results are
with the increase of prediction time. But even in therelatively stable in different positions and different flive

last frame of the predicted results, the averages of C@nd negative regions. Specifically, there is no difference

and SSIM values are 0.83 and 0.76, which shows than predicted results between the positive regions and the
the last frame of the predicted results are still roughlynegative regions. There is also no difference in predicted
consistent with the real magnetic field images. Thereforeresults between active regions in the north and south. These
we suggested that our model could predict the large-scalgre in line with the characteristics of the model based

evolution of magnetic field sequence in the next 6 hours. on deep learning: the stability of the model performance

is related to whether the training data set is complete or

In Figures2 and4, the example of AR 11824 is in the .
southern hemisphere, and the example of AR 12089 is iHOt' The more complete the training data, the better the

the northern hemisphere. We compare not only these twgerformance of the model on the same type of new data.
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Fig.6 Average CC and SSIM of the speed diagrams on the whole testing

In the data preparation stage, we try to make the trainingve draw the movement speed diagrams about the two
set cover a similar number of active regions in the northlgroups of predicted results (corresponding to the two
and south. Data enhancement methods, such as positiegamples in Fig.2) by using the optical flow method

and negative flip, left-right flip, are also used to avoid(Farneback 2003 As shown in Figures, to display the

the influence of uneven data distribution on the predictiorspeed of the large-scale magnetic field structure more
results. clearly, we only show the union area where the absolute
field strength is greater than 300 Gauss between the

The accuracy of the predicted results decreases wit ) o ) k
the increase of prediction time, which is in line with our €@ and predicted magnetic field images. Besides, we
&lso show the results more intuitively in the form of

expectation. Because the network structure of the modét=" =" - ) )
is a recurrent neural network, the output of each predicte@nimation, which can be seen ontind\ith the increase
image needs to input the previous frame and the hiddefif the prediction time in Figures, we can see that
state. When performing prediction, the input image is thd€ directions and magnitudes of predicted velocity in
predicted result of the previous frame, and the error of th&h€ longitude direction are generally consistent with the
previous predicted result will gradually accumulate into™®@! speed. In the latitude direction, the directions and
the subsequent predicted frame. So, with the increase fadnitudes of the predicted speed and the real speed are

the number of prediction frames, the cumulative error oft'SO roughly consistent. In some small areas, the predicted
predicted results gradually increases. speed directions are opposite to the real speed directions,

and the speed magnitudes are also different. Meanwhile,
in both longitude and latitude directions, with the increas
of the prediction time, changes of the speed magnitudes

and directions on the predicted and real speed are very

Another important aspect in the evolution of the magneticsma"' which also verify that the movement of the magnetic
field is the movement of the magnetic structure. We

also analyge the Ia_rgg—scz_;lle movement speed_ _of the 4 it bs: 1/ gi t hub. cont bei yan1911/
photospheric magnetic field in active regions. Specificallymagneti c- fi el d- predi ct/tree/ mai n/ ani mati on

4.2 Analyses on Movement Speed



https://github.com/beiyan1911/magnetic-field-predict/tree/main/animation
https://github.com/beiyan1911/magnetic-field-predict/tree/main/animation
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Fig. 7 Predicted results about magnetic flux emergence.

structure in evolution processes has good coherence atite longitude direction are significantly higher than that
consistency. Through above analyses, it can be concludéd the latitude direction, regardless of whether it is on a
that the predicted results are generally consistent with thsingle example or the statistical results of the whole test
real magnetic field sequence in the large-scale movemeset. From Figuré we can also see that as the prediction
speed. time increases, the CC and SSIM metrics in the longitude
The SSIM and CC metrics of the real and predict speed@nd latitude directions generally show a downward trend,
diagrams on the two examples are shown in T@blEhe Whichis the same as the conclusion that the accuracy of the
average SSIM and CC change curves of the movememedicted results decreases as the prediction time ireseas
speed calculated on the entire test set are shown i Sectiond.1
Figure 6. It can be seen from Tabl2 and Figure6 that After carefully observing the magnetic field sequences
the SSIM and CC of the movement speed diagrams if the training set and testing set, we find that the evolution
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Fig.8 The contour diagrams about tow groups of predicted resuvétslown. In panels(a)-(b), the first image is the
12th frame of the input sequence, the second image is thenaghetic field image of the 6th hour (frame) after input
sequence, and the third image is the predicted magnetidrinelge of the 6th hour.

in the longitude direction is obviously faster than thatiat results are generally consistent with the real magnetic
latitude direction in most sequences. The speed magnitudild in terms of large-scale magnetic field structure and
of the magnetic field structure in the longitude direction ismovement speed. On the other hand, this also verifies
significantly larger than that in the latitude directionefé  that the evolution of a large number of magnetic field
are more cases where the positive and negative magnesequences in time and space has a certain certainty and
field structures are separated in the longitude direction. Iregularity, which could be roughly characterized by the
general, the movement speed in the longitude direction issed neural network model. (2) The performance of the
more obvious, which can reflect the large-scale change ahodel is affected by the prediction time, the shorter the
the magnetic field structure movement in the evolutionprediction time, the higher the accuracy of the predicted
Based on these comparisons of the speed diagrams anthgnetic field evolution. (3) The performance of the model
the average SSIM and CC of speed diagrams on the whole stable not only for active regions in the north and south
testing set above, we believe that the large-scale movemebtit also for data in positive and negative regions.

speed of the predicted results is generally consistent with During the experiment, we also found some aspects

the real magnetic field images. of the prediction results that might be controversial and
some limitations of the model. Our following analyses and
discussions about these parts will provide valuable ideas

This paper makes efforts to predict the short-term, large@"d references for subsequent in-depth research.

scale evolution of the photospheric magnetic fields. On  The magnetic flux emergence is one of the important
the basis of the constructed magnetic field data in activehenomena in the evolution of AR magnetic field. We
regions, a spatiotemporal LSTM neural network is usedelect two groups of predicted results from AR 11855
to build our model. Experimental results show that thefor display: one group predicted the emerging magnetic
model can roughly predict the large-scale evolution offield block, and the other group failed to predict the
the photospheric magnetic field in active regions in theemerging magnetic field block. As shown in the red box
next 6 hours. Specifically, we can draw the followingof Figure 7(a), the new emerging magnetic field block
conclusions: (1) Through the statistical learning of adarg appears in the 11th frame of the input sequence, and
number of magnetic field sequences covering varioughere is no emerging magnetic field block in the predicted
evolution situations, the model learned a prediction patte results. In Figurg(b), a small emerging block of magnetic
which can be applied to predict the evolution of newflux appears inthe 8th frame of the input sequence, and this
magnetic field sequences in next 6 hours. The predicteblock continues to perform in frames 9, 10, 11 and 12 of

5 CONCLUSIONS AND DISCUSSIONS
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Fig. 9 Two groups of predicted results with the magnetic neutnaldiare shown. Thred lineis the magnetic neutral line
drawn by us. The first row is the real magnetic field images,taadecond row is the corresponding predicted results. T
=1, T=2,T=3indicate that the time is 1 hour, 3 hours and 5 faiter input sequence respectively.

the input sequence. In the predicted results, this emergingsults, there is a big deviation. Two groups of predicted
magnetic field block finally appears. We see the followingresults were selected from AR 11824 and AR 12219, and
two phenomena by comparing more similar examplesheir contour diagrams are shown in Fig@&e/Ne can see
about whether the emergence of new magnetic flux patchébat, compared with the 12th magnetic field images of the
can be predicted. When the new magnetic field structuraput sequence, the position of the real magnetic field of
emerges in the 11th to 12th frames of the input sequencéhe 6th frame in the succeeding sequence has changed, and
the predicted results are very likely to be unable to predicthe structure has also been deformed. In the sixth frame
the emerging block. When a new magnetic field structuref the predicted results, the large-scale displacement and
emerges in the 8th to 10th frame and earlier in the inputleformation are roughly consistent with the real magnetic
sequence, there is a high probability that the emerginfield image, but there are still considerable deviations
block will appear in the predicted results. Accordingly, wein the deformation of fine structure. The main reason is
can conclude that when the new magnetic field structuréhat large-scale structure deformation and movement are
emerges earlier and performs a certain performance irelatively easier to be characterized by the used network.
the input sequence, the model could predict this emerginghe relationships in deformations of fine structure are
block with a high probability. more complex, and their patterns are more difficult to be
The model we trained is mainly able to predict thelearned. We have carefully checked the predicted results of
large-scale evolution of the photospheric magnetic fieldlgorithms in the field of computer visioiyon & Park
in solar active regions. When conducting research on thé019 Wang etal. 201p and find that there is also the
fine structure of the magnetic field based on the predicted
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