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Abstract Radio frequency interference (RFI) is a serious issue in radio astronomy. This paper proposes
a U-Net network model with atrous convolution to detect RFI. Using the ability of convolutional neural
networks to extract image features of RFI, and learning RFI distribution patterns, the detection model of
the RFI is established. We use observational data containing real RFIs obtained by the Tianlai telescope to
train the model so that the model can detect RFI. Calculate the probability of a data point being RFI pixel
by pixel, and set a threshold. At the same time the dropout layer was added to avoid overfitting problems. If
the predicted probability of a data point exceeds the threshold, it is considered that there is RFI, and if the
predicted probability of a data point does not exceed the threshold, then it is considered that there is no RFI,
so that the part of the image with RFI is flagged. Experimental results show that this approach can achieve
satisfactory accuracy in the detection of radio observation images with a small amount of RFI.
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1 INTRODUCTION

In radio astronomy, radio frequency interference (RFI)
broadly refers to the influence of human communication
activities and natural interference signals that affect the
reception of weak astronomical signals by radio telescopes
(Akeret et al. 2017; Lahtinen et al. 2017). RFI restricts
the search for these weak pulse signals, and even affects
the task of searching for celestial bodies such as radio
transient sources. With the continuous development of
astronomical research and technology, the sensitivity of
radio astronomical equipment has increased, allowing
astronomical researchers to make observations on a wider
frequency range. But at the same time, with the rapid
development of human communication technology, signals
and noises generated by various human activities occupy
more and more frequency bands, and the influence
range is getting wider and wider, which has a serious
impact on astronomical observation data. Therefore, it is
very important to effectively process the complex radio
astronomical observation data and perform RFI detection.
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In the time domain, RFI can be stable, oscillating,
repetitive and/or isolated, and may have a wide time scale.
In the frequency domain, RFI may be a curved band,
wide band, narrow band, regular structure and/or irregular
structure. The mixing of time and frequency modes is
also common, such as frequency sweep signals (An et al.
2017). Figure 1 shows the wideband and narrowband
RFI shown in the LOFAR observation data (Offringa
et al. 2013). RFI may be instantaneous or long-lasting.
For instantaneous RFI, corresponding methods should be
used to separate it from the signals generated by actual
transient celestial sources (such as radio transient sources)
(An et al. 2017). In addition to this, RFI may occur in
the form of pulsed bursts (high amplitude and short time
interval), lasting a long time or very short time (Zhu
et al. 2017). In order to ensure the quality of astronomical
observation data, there are many methods for detecting
and eliminating RFI. Filtering technology is common in
the field of interference cancellation. Kocz et al. (2010)
applied spatial filtering to the actually acquired multi-beam
data. The spatial filter can use the relative arrival time of
signals on multiple sensors to identify and separate signals
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from different directions. These samples are classified by
the relevant characteristics, and then the RFI is eliminated,
which proves the effectiveness of the filtering technology.
The noise elimination methods based on nonlinear
filtering mainly include singular value decomposition
(SVD) method. SVD can map the noisy signal space
to the no-noise signal space, and perform singular value
decomposition on the signal to achieve the purpose of
suppressing noise and eliminating RFI (Fridman & Baan
2001). Methods based on linear transformation mainly
include principal component analysis (PCA), independent
component analysis (ICA), factor analysis (FA), etc. Czech
et al. (2017) performed statistical characterization of RFI
signals and studied the use of PCA and nuclear PCA
and other component analysis methods to detect RFI. In
addition, Offringa et al. (2010) uses the “SumThreshold”
method, which treats the time-frequency plane as a two-
dimensional image, and eliminate the RFI using image
processing techniques. The filtering technique depends
on the selection of the filter. The method is simple,
but the effect is poor, and the methods such as PCA
cannot deal well with the nonlinear problem, and for
massive observation data, strong data feature extraction is
a required ability to deal with the model.

The rapid development of deep learning (Deng & Yu
2014; Schmidhuber 2015; Sainath et al. 2015) technology
has brought great breakthroughs in many fields, such as
medicine (Greenspan et al. 2016), education (Greenspan
et al. 2016), finance (Heaton et al. 2016) and driverless
driving (Fayjie et al. 2018). Computer vision is an
important direction in the field of artificial intelligence. It
includes computer vision tasks such as image segmentation
(He et al. 2017; Badrinarayanan et al. 2018; Chen et al.
2017b), image classification (Xia et al. 2017; He et al.
2016; Simonyan & Zisserman 2014) and object detection
(Ren et al. 2015; Redmon et al. 2016; Liu et al. 2016).
Because deep learning can extract the deep features of
images, deep learning technology has a good effect in the
realization of these visual tasks. Although image semantic
segmentation is a hot topic in the field of computer
vision, there are few studies on semantic segmentation
combining the characteristics of data in astronomy and
specific scientific needs. The image semantic segmentation
method can classify the image at the pixel level, that
is, classify each pixel in the image, and then obtain
the boundary between different subjects in the image,
complete the segmentation process, and also get the mark
of the subject. In the task of RFI detection, RFI is often
flagged in the form of points and lines. We also hope
to get the location of RFI and get the corresponding
flag. The traditional flagging method or flagging based on
human experience is inefficient. In addition, automatic and
efficient data processing methods are needed in massive

data astronomical observations, especially for large area
sky surveys or high time resolution observations.

Based on the above analysis, in order to accurately
and comprehensively perform RFI detection on images
with a small amount of RFI, improve the efficiency and
recall rate of RFI detection, and be able to effectively learn
the characteristics of RFI images, this paper proposes an
AC-UNet model with atrous convolution to detect RFI in
the real astronomical observation data, and calculate the
probability of a pixel being RFI in the image pixel by pixel.
At the same time, the dropout layer is added to avoid over-
fitting problems, and we set a threshold to flag the part of
the image that has RFI.

Our paper is structured as follows. The principle of
atrous convolution is introduced in Section 2. In Section 3,
we describe the data and preprocessing method. In Section
4, we introduce the structure of the RFI detection model.
Section 5 discusses experimental results obtained from
the model proposed in Section 4. Finally, conclusions are
presented in Section 6.

2 ATROUS CONVOLUTION PRINCIPLE

Atrous convolution (Chen et al. 2014), also known
as dilation convolution, is born in the field of image
segmentation and can control the calculation of feature
density in fully convolutional networks. By setting the
expansion coefficient of the convolution kernel, filling the
convolution kernel with 0 (Atrous) to expand the size of the
convolution kernel, and then performing the convolution
operation on the image, the effect of increasing the
receptive field without changing the size of the output
image is achieved. The receptive field is a part of the
original input image that should correspond to a node in
the output feature map. Expanding the receptive field can
learn the original image features more comprehensively
and carefully. DeepLabV2 uses the method of Atrous
Spatial Pyramid Pooling (ASPP) (Chen et al. 2017a)
to expand the original convolution kernel into multiple-
size convolution kernels with atrous convolution to obtain
features of different sizes, and then fuses the features to
get the final prediction result. Figure 2 is an example
of the expansion of convolution kernels corresponding to
different expansion coefficients in ASPP. It can be seen that
the larger the coefficient is, the larger the gap between two
adjacent values in the convolution kernel is.

There are two implementation forms of atrous
convolution in the keras framework to expand the receptive
field. In the first form, the atrous coefficient dilation_rate is
directly set in the ordinary convolution Convolution2D
layer. In the second form, the AtrousConvolution2D
layer is used in the keras framework, and the convolution
kernel expansion coefficient is set in the parameters. Take
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Fig. 1 Dynamic RFI occupancy spectrum for low-band antennas (LBA) surveys. Color intensity represents RFI
occupancy, from 0% to 100% (Offringa et al. 2013).

Fig. 2 ASPP schematic. To classify the center pixel (orange), ASPP exploits multi-scale features by employing multiple
parallel filters with different rates. The effective field-of-views are shown in different colors (Chen et al. 2017a).

an example, for a convolution kernel filter of the size
3 × 3, the convolution kernel expansion coefficient is set
to be atrous_rate=2, and (atrous_rate-1) zeros are inserted
between two adjacent values in the original convolution
kernel. In this way, the size of the convolution kernel filter
is expanded from 3 × 3 to 5 × 5 after 3 + (3 − 1) ×
(2 − 1) = 5 operations. The expanded convolution kernel
is shown in Figure 3. The size of the convolution kernel,
filter_heights?, is calculated in Equation (1) (Chen et al.
2017a).

filter_height? = filter+

(filter − 1)× (atrous_rate− 1).
(1)

3 DATA AND PREPROCESSING

3.1 Data

In this work, we analyzed the real observation data from
the Tianlai experiment (Chen et al. 2015), a radio telescope
array dedicated to the neutral hydrogen sky survey over a
frequency range of 400 MHz to 1420 MHz. The array is
located in the Hongliuxia station, a very radio-quiet area
in Xinjiang, China (Wu et al. 2014). Currently, Tianlai,
in its Pathfinder stage, has built two types of antennas –
cylinder and dish – both working in the frequency range
700–800 MHz. The data in this work is obtained by the
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Fig. 3 Convolution kernel expansion process when the expansion coefficient is 2. Left: the original convolution kernel.
Right: the expanded convolution kernel.
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Fig. 4 Observation data of a typical baseline taken by Tianlai cylinder array. (a) The amplitude of the observation data.
(b) The corresponding RFI flag.

cylinder array. Preliminary analysis shows that the site has
suffered from a few single frequency RFIs generated by
the digital devices in the first year’s running. Later on,
the devices were upgraded to avoid RFI leakage, and data
analysis work using observation data in subsequent years
sees almost no RFI (Li et al. 2020). To better train the
model and check the RFI detection performance, we will
use the data taken in the first year as a trial.

The observation data are taken between 20:15:45 Sep.
27th and 00:18:45 Sep. 28th Beijing time (UTC+08h)
in 2016. The integration time is 4 seconds, so there
are 3645 time points. The frequency dimension has 100
frequency points, corresponding to a frequency range of
744 MHz to 756 MHz. Tianlai cylinder has 96 dual
linear polarization feeds, each producing two polarization
signals. The correlation of any two signals is the so-called
visibility. For Tianlai cylinder, the whole correlation
pairs are therefore 18 528. The visibility is actually a
complex value: its amplitude reflects the received power
level by the antenna and its phase is related to the direction
of the incoming radio signal. In the analysis of RFI
detection, we only focus on the amplitude part which

is obtained by calculating the modulus of the complex
value. Figure 4(a) shows the observation data of a typical
baseline, the larger the amplitude is, the brighter the color
is displayed in the image. Figure 4(b) is the RFI flag
corresponding to the observation data of a typical baseline.

3.2 Preprocessing

In the actual observation of the Tianlai telescope, the
instrumental effects are traced by a calibrator noise source
(CNS) which regularly emits a wideband signal. Therefore,
before inputting the network model, these CNS data are
firstly removed, and the total number of time points
which contains celestial signals is reduced to 3340. Each
correlation pair corresponds to a time-frequency two-
dimensional plane (3340×100), which we use as a picture
and input to our network model. In addition, since the
number of frequency points of the observation data in this
batch is 100, in order to facilitate calculation and observe
the data points at each time and frequency in more detail,
we divide a whole picture into several (100 × 100) data
blocks. So in the end, 200 baseline time-frequency data
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and corresponding RFI flag data were selected as training
data and test data. Among them, 4800 data blocks with a
size of (100 × 100) and RFI flags corresponding to each
data block are selected as training data to train the model,
and 1200 data blocks with a size of (100 × 100) are used
as test data.

After preparing the training data and test data,
considering the large amplitude fluctuation range, in order
to facilitate data processing and faster convergence when
the model is running, this experiment uses the Min-Max
standardized method to normalize the data and map the
amplitude to the interval [0,1]. The normalization formula
of minimum and maximum is defined as follows:

x? =
x− xmin

xmax − xmin
. (2)

Here, xmax is the maximum value in the sample
data, and xmin is the minimum. Through this calculation
formula, each x? value is in the interval [0,1].

4 MODEL ARCHITECTURE

4.1 AC-Unet Model

This section mainly introduces the AC-Unet model for RFI
detection based on the U-Net (Ronneberger et al. 2015)
network structure and a detailed description of the model
structure. U-Net is a deep convolutional neural network
with a U-shaped structure based on a fully convolutional
neural network, which can better restore the details of the
image. Including the contraction path and expansion path,
the image features are extracted through the convolution
layer, including the position information. The experiment
in this paper designs and builds a 21-layer AC-UNet model
based on the size of the input data (100×100), as shown in
Figure 5. The model includes the following layers:

The model includes 14-layer atrous convolution
layers (AC layer). In Section 2, the role of atrous
convolution is introduced. In order to expand the receptive
field, more detailed segmentation results are obtained.
In the experiment, two methods of atrous convolution
were realized, which verified the effectiveness of atrous
convolution. Except the activation function used by the last
convolutional layer is the Sigmoid function, the activation
functions used by other convolutional layers are all ReLU
functions.

The model includes two-layer maximum pooling
layers. The pooling layer in the contraction path uses the
maximum pooling method to extract the salient features
in an area. The pooling size is 2×2 and the step size
is 2, which is equivalent to 2 times downsampling, that
is, 100×100 data block dimensionality reduction twice to
25×25. The model also includes two-layer fusion layers.
Combining the features extracted by the convolutional

layer of the contraction path and the output results of the
upsampling layer corresponding to the expansion path, and
fusing the information lost in the feature extraction into the
expansion path, can make the output result more refined.
For this experimental data, U-Net can merge two pooling
results (Pool1, Pool2).

The model includes one-layer dropout layers. Make
the model have better prediction results on the test set,
and use the dropout layer in AC-UNet model to accelerate
the model convergence. The model also includes two-layer
upsampling layers. In order to obtain the output of the same
size as the original input, in the expansion path, the features
of the same size extracted by the corresponding contraction
layer are merged, up-sampling is performed twice, and the
25×25 data block is up-sampled to the original size of
100×100.

4.2 Loss Function and Algorithm

The loss function used in the experiment is the cross-
entropy loss function, the formula is as follows:

L(Y, P (Y/X)) = − logP (Y/X)

= − 1

N

N∑
i=1

M∑
j=1

yij log(pij).
(3)

Here, L is the loss function, Y is the output variable, and
X is the input variable. N is the input sample size, M is
the number of possible categories, and yij is a binary index
indicating whether category j is the real category of input
instance xi. pij is the probability that the model prediction
input instance xi belongs to category j. By minimizing the
loss function, the best model weights and bias parameters
are obtained, so that the model can more accurately predict
the probability value of RFI at each data point.

A suitable optimization algorithm can accelerate
model convergence, learn data features more accurately,
better adjust the weight and bias parameters of the neural
network, and minimize the loss function to the greatest
extent. Therefore, this paper considers that the amount
of RFI in the experimental data accounts for a relatively
low proportion of the total number of data points, so it is
relatively sparse. For relatively sparse data sets, the method
of using adaptive learning rate will be more conducive to
the accuracy of model training and prediction; moreover,
the model network is deeper and hopes to converge
faster. Therefore, in this experiment, the Adaptive Moment
Estimation (Adam) (Kingma & Ba 2014) algorithm is
selected to minimize the loss function of the AC-UNet
model. Details of the Adam algorithm are given in Table 1.
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Fig. 5 AC-UNet network structure.

Algorithm 1 Adam, a stochastic optimization algorithm; when the parameters do not converge, we use the Adam
algorithm to minimize the loss function of the AC-UNet model.
Require: α Stepsize;
Require: β1,β2 ∈ [0, 1) Exponential decay rates for the moment estimates;
Require: f (θ): Stochastic objective function with parameters θ;
Require: θ0: Initial parameter vector;
m0 ← 0 (Initialize 1st moment vector);
v0 ← 0 (Initialize 2nd moment vector);
t← 0 (Initialize timestep);
1: while θt not converged do
2: t← t+ 1
3: gt ← ∇θft(θt−1) (Get gradients w.r.t. stochastic objective at timestep t)
4: mt ← β1 ·mt−1 + (1− β1) · gt (Update biased first moment estimate)
5: vt ← β2 · vt−1 + (1− β2) · gt2 (Update biased second raw moment estimate)
6: m̂t ← mt/(1− β1t) (Compute bias-corrected first moment estimate)
7: v̂t ← vt/(1− β2t) (Compute bias-corrected second raw moment estimate)
8: θt ← θt−1 − a · m̂t/(

√
v̂t + ε) (Update parameters)

9: return θt (Resulting parameters).

5 EXPERIMENTAL ANALYSIS

This section mainly introduces the experimental results of
the AC-Unet model proposed in this paper. Figure 6 is
the given RFI flag. The yellow part indicates the location
of RFI, the corresponding flag value is “True", and the
position flag value without RFI is “False". We use the
recall rate and F1-score to measure the classification effect
on the existence and nonexistence of RFI respectively; use
the AUC value to evaluate the comprehensive classification
effect of the model, and use the confusion matrix and ROC
curve to visually display the classification effect of each
model.

In order to obtain the most suitable U-Net model
on the data set, but also to improve the efficiency of
RFI detection and various measurement indicators, this
section sets up different comparative experiments. We
practiced the two implementations of atrous convolution
introduced in Section 2, and set different coefficients
at the same time to find a more appropriate degree
of expansion of the convolution kernel. We also made

0 20 40 60 80
Frequency(points)

0

20

40

60

80

Ti
m

e(
po

in
ts

)

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 6 Data block 694 raw RFI flag.

an experimental comparison with the Full Convolutional
Network (FCN) (Long et al. 2015). The experimental
results prove that for images with fewer RFI data points,
the AC-UNet model can recall more data points with
RFI. The different methods used in the experiment are
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Table 1 The Amount of RFI in the Test Sample

No. False Number True Number

694 9668 332
518 9599 401
510 9521 479
512 9515 485
1087 9250 750

Table 2 Experimental Results of Various Models on Data
Block 694

Network Model Classification Recall Rate F1-Score AUC

U-Net
False 0.98 0.99

0.89True 0.81 0.66
avg/total 0.97 0.97

DC-UNet
dilation_rate=3

False 0.99 0.99
0.77True 0.56 0.63

avg/total 0.98 0.98

AC-UNet
atrous_rate=3

False 0.97 0.99
0.94True 0.90 0.68

avg/total 0.97 0.98

DC-UNet
dilation_rate=4

False 0.98 0.99
0.94True 0.90 0.72

avg/total 0.98 0.98

AC-UNet
atrous_rate=7

False 0.98 0.99
0.94True 0.91 0.75

avg/total 0.98 0.98

AC-FCN
False 0.98 0.99

0.87True 0.76 0.66
avg/total 0.97 0.98

described below: (1) DC-UNet dilation_rate=3: Set the
atrous coefficient to 3 in the Convolution2D layer in the
original U-Net model. (2) AC-UNet atrous_rate=3: Use the
atrous convolutional layer AtrousConvolution2D and an
expansion coefficient of 3. (3) DC-UNet dilation_rate=4:
Set the atrous coefficient to 4 in the Convolution2D layer
in the original U-Net model. (4) AC-UNet atrous_rate=7:
Use the atrous convolutional layer AtrousConvolution2D
and an expansion coefficient of 7.

We use the same training data to train each model that
is set in the experiment, and predict the same test data after
obtaining the training model. We use data blocks 694, 510,
512 with less than 500 RFI, and randomly select the results
of two other test samples 518, 1087 data blocks for display.
Similarly, in order to achieve point-by-point prediction, the
last layer of the model is a 1 ∗ 1 convolution layer, and the
activation function used is the Sigmoid function. So the
output value is the probability value of the existence of RFI
predicted for each data point. We set the threshold to 0.5,
and mark the value greater than 0.5 as “1", otherwise mark
as “0". The amount of RFI contained in the test sample is
shown in Table 1; Table 2 to Table 6 show the measurement
index values of the various network models on the five test
samples.

For the data block 694, only 332 of the 10 000 data
points have RFI, and they are concentrated around the

Table 3 Experimental Results of Various Models on Data
Block 518

Network Model Classification Recall Rate F1-Score AUC

U-Net
False 0.99 0.98

0.75True 0.52 0.57
avg/total 0.97 0.97

DC-UNet
dilation_rate=3

False 0.98 0.98
0.80True 0.62 0.60

avg/total 0.97 0.97

AC-UNet
atrous_rate=3

False 0.97 0.98
0.84True 0.71 0.59

avg/total 0.96 0.96

DC-UNet
dilation_rate=4

False 0.97 0.98
0.86True 0.77 0.60

avg/total 0.96 0.96

AC-UNet
atrous_rate=7

False 0.96 0.98
0.89True 0.81 0.60

avg/total 0.96 0.96

AC-FCN
False 0.97 0.97

0.74True 0.50 0.45
avg/total 0.95 0.95

Table 4 Experimental Results of Various Models on Data
Block 510

Network Model Classification Recall Rate F1-Score AUC

U-Net
False 0.98 0.99

0.92True 0.88 0.75
avg/total 0.97 0.97

DC-UNet
dilation_rate=3

False 0.98 0.98
0.93True 0.89 0.75

avg/total 0.97 0.97

AC-UNet
atrous_rate=3

False 0.97 0.98
0.91True 0.86 0.68

avg/total 0.96 0.96

DC-UNet
dilation_rate=4

False 0.96 0.99
0.92True 0.89 0.66

avg/total 0.96 0.96

AC-UNet
atrous_rate=7

False 0.99 0.99
0.94True 0.90 0.87

avg/total 0.99 0.99

AC-FCN
False 0.97 0.98

0.93True 0.89 0.73
avg/total 0.97 0.97

band of 40-50MHz. Figures 7 to 9 show the prediction
results of each model on the 694 data block (Fig. 6) for the
location of RFI. Figure 7(a) shows the prediction results
by our proposed model on 694 data block. Comparing the
694 data block flags shown in Figure 6, we can find that
our model predicts the main RFIs in the band of 40–50
frequency points.

First consider the case of setting the dilation_rate value
in the convolutional layer. It can be seen from the above
figure that the prediction index and image restoration
degree of the DC-UNet model when the atrous coefficient
is set to 4 are better than the case where the coefficient
is 3. The recall rates are 0.56 to 0.90, indicating that the
larger the expansion of the convolution kernel, the better
the effect.
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Fig. 7 Radio frequency interference mark. (a) Radio frequency interference mark output by the AC-UNet atrous_rate=7
model. (b) Radio frequency interference mark output by the U-Net model.
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Fig. 8 Radio frequency interference mark. (a) Radio frequency interference mark output by the DC-UNet dilation_rate=4
model. (b) Radio frequency interference mark output by the AC-UNet atrous_rate=3 model.

Table 5 Experimental Results of Various Models on Data
Block 512

Network Model Classification Recall Rate F1-Score AUC

U-Net
False 0.98 0.99

0.97True 0.96 0.83
avg/total 0.98 0.98

DC-UNet
dilation_rate=3

False 0.98 0.99
0.96True 0.93 0.84

avg/total 0.98 0.98

AC-UNet
atrous_rate=3

False 0.97 0.98
0.97True 0.96 0.74

avg/total 0.97 0.97

DC-UNet
dilation_rate=4

False 0.98 0.99
0.97True 0.95 0.79

avg/total 0.98 0.98

AC-UNet
atrous_rate=7

False 0.99 0.99
0.97True 0.96 0.86

avg/total 0.98 0.99

AC-FCN
False 0.99 0.99

0.97True 0.96 0.81
avg/total 0.98 0.98

Then observe the various indicators values of AC-
UNet atrous_rate=3 and AC-UNet atrous_rate=7. Judging

Table 6 Experimental Results of Various Models on Data
Block 1087

Network Model Classification Recall Rate F1-Score AUC

U-Net
False 0.96 0.97

0.79True 0.61 0.59
avg/total 0.94 0.94

DC-UNet
dilation_rate=3

False 0.95 0.97
0.86True 0.77 0.65

avg/total 0.94 0.94

AC-UNet
atrous_rate=3

False 0.95 0.96
0.86True 0.77 0.64

avg/total 0.93 0.94

DC-UNet
dilation_rate=4

False 0.96 0.96
0.78True 0.60 0.58

avg/total 0.93 0.94

AC-UNet
atrous_rate=7

False 0.97 0.98
0.90True 0.82 0.73

avg/total 0.95 0.96

AC-FCN
False 0.97 0.97

0.80True 0.62 0.62
avg/total 0.94 0.94

from the five test samples, the latter has a higher recall
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Fig. 9 Radio frequency interference mark. (a) Radio frequency interference mark output by the DC-UNet dilation_rate=3
model. (b) Radio frequency interference mark output by the AC-FCN model.
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Fig. 13 Confusion matrix of different models. (a ) Confusion matrix of AC-UNet model test data block 694. (b) Confusion
matrix of AC-FCN model test data block 694.
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Fig. 10 ROC curve of the classification effect of each
model on data block 694.

rate than the former. For the 694 data block (Table 2), the
recall rate was increased from 0.90 to 0.91, the F1 score
was increased from 0.68 to 0.75, and the AUC value was
increased from 0.936 to 0.944, indicating that the larger the
convolution kernel expansion, the better the effect.
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Fig. 11 ROC curve of the classification effect of each
model on data block 694 (FPR∈ [0.0, 0.5], TPR∈ [0.0,
0.9]).

Compared with DC-UNet dilation_ rate=3 and AC-
UNet atrous_rate=3, the improvement effect of DC-UNet
dilation_rate=4 in various indicators is not very obvious,
and even the recall rate on the 694 and 1087 data blocks
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Fig. 12 ROC curve of the classification effect of each
model on data block 694 (FPR∈ [0.5, 1], TPR∈ [0.0, 1.0]).

has declined. Therefore, setting the expansion coefficient
to 4 cannot effectively improve the segmentation effect.
Finally, observe the situation of DC-UNet dilation_rate=4
and AC-UNet atrous_rate=7. Judging from these five test
samples, the latter’s prediction effect is better than the
former. The same is true for the 694 data block, indicating
that the expansion coefficient increases and the prediction
result is more accurate. Experiments verify that on this data
set, the model is more suitable for implementing atrous
convolution using the AtrousConvolution2D layer with an
expansion coefficient of 7.

From the perspective of ROC curve, the classification
effect of each model in data block 694 is shown in
Figure 10. All model curves are above the 45-degree
diagonal, indicating that each model is effective and can
predict RFI in the image. The closer the ROC curve is
to the coordinate point (0, 1), the greater the AUC value
and the better the classification prediction effect for each
point. In order to observe the pros and cons of each model’s
prediction in more detail, the horizontal coordinate FPR
is divided into [0.0, 0.5] and [0.5, 1.0], and the vertical
coordinate TPR is divided into [0.0, 0.9] and [0.9, 1.0], as
shown in Figure 11 and Figure 12.

It can be seen from Figure 11 that within FPR ∈ [0.0,
0.5] and TPR ∈ [0.0, 0.9], the red curve is relatively closer
to the Y axis; it can be seen from Figure 12 that within FPR
∈ [0.5, 1.0] and TPR ∈ [0.9, 1.0], the red curve is relatively
closer to the straight line Y=1. Therefore, the area between
the red curve and the coordinate axis is the largest, and can
correspond to the indicator AUC value.

According to the introduction of the model in
Section 4, we know that our model detects the RFI in
the image pixel by pixel. Therefore, our model can also
detect the image with a large amount of RFI. Moreover,
for images with a small amount of RFI, the model can
show good performance. For a small amount of RFI, we
mainly observe the overall proportion of RFI in the image.

It also can be seen from Table 1 that the proportion of
RFI in the data blocks 694, 518, 510, and 512 used in our
experiment is less than 5%. So, we consider it to be an
image with a small amount of RFI. In addition, through
the comparison of various measurement indicators and
labeling result graphs in the experiment, it can be seen that
the AC-UNet model can detect a small amount of RFI in
the image more accurately and comprehensively than the
AC-FCN model. The amount of RFI in the data blocks 694,
518, 510, and 512 is less than 500, and in the test of these
data, for the 694 data block with only 332 RFI data points:
as shown in Table 2, the AC-UNet atrous_rate=3 model has
a higher recall rate of 0.15 than the AC-FCN model and has
higher F1 score and AUC values; Regarding the confusion
matrix, according to Figure 13, the AC-UNet and AC-
FCN models can detect 301 and 251 data points with RFI,
respectively. It shows that the method proposed in this
paper can detect RFI as comprehensively and accurately
as possible, and there are relatively few misjudgments.

For the 518 data block with only 401 RFI data points:
the recall rate of the AC-UNet model is 0.31 higher than
that of the AC-FCN, and it has a higher F1 score and AUC
value. For 510 and 512 data blocks with similar recall rates,
the model proposed in this paper has higher F1 score and
AUC values. For the 1087 data block, the amount of RFI
is relatively large, and the AC-UNet model can also get the
highest recall rate, F1 score and AUC value. In summary,
the AC-UNet model proposed in this paper can achieve a
more robust, comprehensive and accurate detection effect
on the data set.

6 CONCLUSIONS

In order to better detect radio observation images with a
small amount of RFI, this paper proposes a U-Net model
that can better restore image details: the AC-UNet model.
At the same time, the dropout layer was added to accelerate
the convergence of the model, so as to achieve the purpose
of RFI detection in the observation data of the radio
telescope. In order to observe the classification effect of
the model on the existence and nonexistence of RFI data
points, the recall rate and F1 score of the model on the
existence and nonexistence of RFI are output separately,
and use the AUC value to evaluate the comprehensive
classification effect of the model, make the ROC curve
and confusion matrix to visually display the classification
effect of different models.

Through different implementation methods of atrous
convolution and different expansion coefficient settings,
the experimental results verify that when the expansion
coefficient is 7, the AC-UNet model can play the best
effect. Simultaneously set up multiple U-Net-based models
for experimental comparison. The experimental results
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prove that the model proposed in this paper can obtain
higher recall rate, F1 score and AUC value on the test
sample, and its ROC curve is closer to the upper left
corner than other models. It shows that this model is better
for feature extraction of the original image, can restore
the original image more fully during the upsampling
process, and can detect RFI in radio observation data more
comprehensively and accurately.

The U-Net model was originally applied to the cell
segmentation problem in the biomedical field, and it can
extract many edge features in the image well. Therefore,
the AC-UNet model proposed in this paper can not only be
used to detect RFI, but also can be used to extract filaments
in radio astronomy images. By detecting the signal and
background in astronomical images, the task of detecting
signals with edge characteristics in astronomical images is
realized.
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