
RAA 2021 Vol. 21 No. 12, 310(12pp) doi: 10.1088/1674-4527/21/12/310
c© 2021 National Astronomical Observatories, CAS and IOP Publishing Ltd.

http://www.raa-journal.org http://iopscience.iop.org/raa

Research in
Astronomy and
Astrophysics

Charged stellar model with three layers

Avirt S. Lighuda1, Jefta M. Sunzu2,3, Sunil D. Maharaj3⋆ and Eunice W. Mureithi1

1 Department of Mathematics, University of Dar es Salaam, Dares Salaam, Tanzania
2 Department of Mathematics and Statistics, The University of Dodoma, Dodoma, Tanzania
3 Astrophysics Research Centre, School of Mathematics, Statistics and Computer Science, University of

KwaZulu-Natal, Durban 4000, South Africa;maharaj@ukzn.ac.za

Received 2021 July 21; accepted 2021 September 28

Abstract We establish new charged stellar models from the Einstein-Maxwell field equations for relativistic
superdense objects outfitted with three layers. The core layer is described by a linear equation of state (EoS)
describing quark matter, while the intermediate layer is described by a Bose-Einstein condensate EoS for
Bose-Einstein condensate matter and the envelope layers satisfying a quadratic EoS for the neutron fluid.
We have specified a new choice of the electric field and one of the metric potentials. It is interesting to note
that the choice of electric field in this model can be set to vanish and we can regain earlier neutral models.
Plots generated depict that the matter variables, gravitational potentials and other physical conditions are
consistent with astrophysical studies. The interior layers and exterior boundary are also matched.
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1 INTRODUCTION

Formulation of stellar models in a core-envelope setting
has become an area of interest to many researchers
in astrophysics and other related subjects. The physical
phenomena in such models are still complicated in terms
of the solutions generated. The reason is that the interior
structure of the stellar body has several layers with
distinct physical properties. It is a challenging questionfor
researchers to identify the nature of the layers possessed
by superdense stellar objects. The compact bodies with
such properties have strong magnetic and gravitational
fields. These include neutron stars, quark stars, gravastars,
pulsars, white dwarfs and quasars. It has been noted
that superdense stellar objects possess high pressures
and extreme density leading to a variety of physical
properties. It has been demonstrated that the overall masses
and densities of superdense objects are approximately
1.0 − 2.0M⊙ and 1015 g cm−3 respectively (Pant et al.
2020; Bisht et al. 2021). According toJasim et al.(2018),
extremely superdense stellar bodies may alter the s-
pacetime geometry while the radii and masses remain
between11.0 − 15.0 km and1.4 − 2.0M⊙ respectively.
A variety of mathematical approaches has been used to
solve the system of field equations to investigate the
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physical features of superdense stellar objects (Tiwari
2010; Thirukkanesk & Ragel 2014).

The concept of a stellar object with a core and
an envelope is embedded in the general theory of
relativity discovered by Albert Einstein between 1907
and 1916. The theory has been applied to describe the
structure of stellar bodies and understanding the Universe
at large (Misner et al. 1973). In addition to Einstein’s
theory, various theories of gravitation like vector-tensor
theory and scalar-tensor theory were developed with some
modifications to Einstein’s theory. These theories may be
utilized to formulate relativistic stellar models governed
by a set of differential equations (Collins 2003). Stellar
models may also be built with corrections from the Ricci
and Riemann tensors in modified gravity.

The Einstein field equations are the most basic tools
in the general theory of relativity. These equations depict
the relationship between metric potentials, pressures and
energy density in the form of differential equations
(Stephani et al. 2003). The field equations are purely
geometric. It is possible to solve the field equations if some
reasonable physical assumptions are imposed. Importantly,
the field equations are utilized to investigate different
structures, behaviors and properties of stellar spheres
relevant to astrophysical studies. They have drawn the
attention and interest of researchers to develop relativistic



310–2 A. S. Lighuda et al.: Charged Stellar Model with Three Layers

stellar models in static or non-static spherically symmetric
spacetime (Fulara & Sah 2018). A variety of mathematical
approaches has been used to solve the system of field
equations to investigate the physical features of superdense
stellar objects (Tiwari 2010).

The electric field introduced in the Einstein-Maxwell
field equations has to capture the reality of physical
properties that charged stellar objects in the Universe
should possess. Stellar spheres should loose electric
charge in time to become uncharged. A realistic physical
model for charged spheres should therefore have a
vanishing electric field in some limit. The presence of
an electric field in a stellar object creates repulsion
with the pressure gradient to prevent gravitational col-
lapse. This phenomenon makes the object stable and
works against collapse (Jasim et al. 2018). The effect
of electric field on the critical mass, stability and
redshift in single-layered models has been described in
Dev & Gleiser (2002); Ivanov (2002); Chaisi & Maharaj
(2005); Chaisi & Maharaj(2006); Sunzu et al.(2014). The
effect of the electric field on physical properties in two
layered models has been discussed in the work developed
by Mafa Takisa & Maharaj(2016). It is important to
generate a three layer model with an electric field present
for a better understanding of the model.

The importance of pressure anisotropy has been
demonstrated in different stellar models. According to
Malaver(2018), the presence of pressure anisotropy in the
interior of the stellar object may be due to the existence of a
solid core, a particular phase transition and electric charge.
The detailed analysis of pressure anisotropy has also been
highlighted in the studies performed byBower & Liang
(1974); Bijalwan (2011); Cosenza et al.(1981); Sokolov
(1980); Usov (2004); Komathiraj & Maharaj (2007);
Ivanov(2010); Maharaj et al.(2014); Maurya et al.(2018)
andSunzu et al.(2019).

Models with two layers describing a core layer and
the corresponding envelope layer for superdense stellar
objects have been formulated. This has been illustrated
by Sharma & Mukherjee(2002) who formulated a core-
envelope model with an inner layer containing quark
matter and the envelope layer which is less compact.
The model which describes a parabolic density profile,
developed inNegi et al. (1990), indicates the continuity
of all variables at the interface between the core and
the envelope. The approach developed byThomas et al.
(2005) describes a superdense matter configuration which
is characterized by an isotropic fluid for the core and an
anisotropic fluid at the envelope layer. Other models with
two layers include the works ofMafa Takisa & Maharaj
(2016); Mafa Takisa et al. (2019); Pant et al. (2019);
Gedela et al.(2019); Hansraj et al.(2016); Paul & Tikekar

(2005) andTikekar & Jotania(2009). It is also important
to consider the physics of a three-layered model with both
electric field and anisotropy present.

Models with three interior layers are rarely found in
general relativity. The recent models studied byBisht et al.
(2021) andPant et al.(2020) indicate that a sublayer exists
between the core-envelope boundary. The models analyzed
the physical properties and features of a neutron star as a
dense stellar object. However, the models generated were
uncharged with the core obeying a linear equation of state
(EoS), and intermediate and envelope layers satisfying a
quadratic EoS. In the present model, we include the electric
field which is missing inBisht et al.(2021) andPant et al.
(2020).

The motivation of this paper is to generate a new stellar
model comprising three regions. We apply a separate EoS
in each region depending on the nature of the material
it contains. It is reasonable to have a stellar model that
incorporates three interior layers with distinct EoSs. The
core layer is described by a linear EoS sufficient to describe
quark matter, and the intermediate and envelope layers
both satisfy different quadratic EoSs. In our model, we
choose one of the gravitational potentials and the electric
fields. We generate a new anisotropic charged model
containing three regions which generalizes the neutral
models developed byBisht et al. (2021) and Pant et al.
(2020).

2 BASIC MODEL EQUATIONS

We describe the interior with a static spherically symmetric
spacetime with metric given in Schwarzschild coordinates
(xj) = (t, r, θ, φ) as

ds2 = − e2ν(r)dt2 + e2λ(r)dr2

+ r2(dθ2 + sin2 θdφ2) ,
(1)

where ν(r) and λ(r) define the metric potentials. The
exterior line element is given by the Reissner-Nordstrom
spacetime as

ds2 = −

(

1−
2M

r
+

Q2

r2

)

dt2

+

(

1−
2M

r
+

Q2

r2

)−1

dr2

+ r2(dθ2 + sin2 θdφ2) ,

(2)

whereQ stands for the total charge andM represents the
total mass of the sphere. For charged stellar objects, the
energy momentum tensor is written as

Tij =diag

(

−ρ−
1

2
E2, pr −

1

2
E2, pt +

1

2
E2,

pt +
1

2
E2

)

,

(3)
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where ρ defines the energy density,E is the electric
field, andpr and pt are radial and tangential pressures
respectively. SettingG = c = 1, the system of field
equations becomes

8πρ+
1

2
E2 =

1

r2
(1 − e−2λ) +

2λ′

r
e−2λ , (4a)

8πpr −
1

2
E2 = −

1

r2
(1 − e−2λ) +

2ν′

r
e−2λ , (4b)

8πpt +
1

2
E2 = e−2λ

(

ν′′ + ν′
2

− ν′λ′ +
ν′

r
−

λ′

r

)

(4c)

+
2λ′

r
e−2λ ,

σ =
1

r2
e−λ(r2E)′ , (4d)

where primes(′) represent derivatives with respect to
radial coordinate(r).

We introduce the transformation variables from
Durgapal & Bannerji(1983) given by

x = r2, Z(x) = e−2λ, e2ν = A2y2(x). (5)

Using Equation (5), the system (4) becomes

8πρ =
1− Z

x
− 2

dZ

dx
−

1

2
E2 , (6a)

8πpr = −
1

x
(1− Z) + 4Z

1

y

dy

dx
+

1

2
E2 , (6b)

8πpt = 4xZ
1

y

d2y

dx2
+

(

4Z + 2x
dZ

dx

)

1

y

dy

dx

+
dZ

dx
−

1

2
E2 , (6c)

∆ = 8πpt − 8πpr

= 4xZ
1

y

d2y

dx2
+

(

4xZ + 2x
dZ

dx
− 4Z

)

1

y

dy

dx

+
dZ

dx
+

1

x
(1 − Z)− E2 , (6d)

σ = 2

(

x
dE

dx
+ E

)

√

Z

x
. (6e)

The system (6) has eight unknown variables. To find
a solution of the system (6), we need to specify any two
parameters so as to find expressions for the others. In our
model we choose to specify metric potentialZ and electric
field intensityE2. We apply the metric potentialZ used
in the study ofPant et al.(2020). This is expressed in the
form

Z(x) = e−2λ = 1− hx+ gx2, (7)

whereh and g are arbitrary real constants. The metric
functionZ in Equation (7) is real, continuous and regular
at the center which allow an extensive range of values ofh

andg. It is in acceptable condition to avoid the singularity
at the center and within the stellar sphere. It is possible to

solve the system (6) once the electric field is specified. The
particular choice of electric field is specified in the form

E2 = mxZ = mx(1 − hx+ gx2), m ≥ 0 , (8)

wherem stands for an arbitrary real constant. The choice
of E2 given in Equation (8) vanishes at the center (x =

0) of the stellar object, but remains real and continuous
throughout the interior points of the stellar body. It is
physically reasonable and, thus, consistent for the study
of the charged stellar models. Substitutingm = 0 in
Equation (8), we regain an uncharged model inPant et al.
(2020).

3 LAYERS OF THE STELLAR OBJECT

We have three interior regions, namely: the core (η), the
intermediate (ι) and the envelope (ǫ) as follows:
Core layer (Region 1);0 ≤ r ≤ Rη,
Intermediate layer (Region 2);Rη ≤ r ≤ Rι and
Envelope layer (Region 3);Rι ≤ r ≤ Rǫ.
For the classified boundaries, line element (1) becomes

ds2|1 = −e2νηdt2 + e2ληdr2 + r2(dθ2 + sin2 θdφ2),(9a)

ds2|2 = −e2νιdt2 + e2λιdr2 + r2(dθ2 + sin2 θdφ2),(9b)

ds2|3 = −e2νǫdt2 + e2λǫdr2 + r2(dθ2 + sin2 θdφ2),(9c)

in the three regions.

3.1 The Core

We represent the core layer to be quark matter satisfying
the linear EoS in the form

prη = αρη − β, (10)

whereα and β are arbitrary real constants. Combining
Equations (6a) and (10) yields

prη = α

(

1− Z

8πx
−

1

4π

dZ

dx
−

1

16π
E2

)

− β. (11)

Equating Equation (6b) and Equation (11) gives

1

y

dy

dx
=(α+ 1)

(

1− Z

4xZ

)

−
α

2Z

dZ

dx

−
E2(α− 1)

8Z
−

2πβ

Z
.

(12)

Substituting Equation (7) and Equation (8) into
Equation (12) yields

1

y

dy

dx
= [h(2−mx2(α− 1)− 6α)mx(α − 1)

× gx(−2 +mx2(α− 1) + 10α) + 16πβ]

× [8x(h− gx)− 8]−1 .

(13)
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Integrating Equation (13) gives

y = exp

[

1

16

[

−mx2(α− 1) + 4(h(α− 1))

− 16πβ arctan(2gx− h)(
√

4g − h)
]

×
[

√

4g − h2
]−1

+
1

16

(

2(1− 5α) log(1− hx+ gx2)
)

×
(

√

4g − h2
)−1

+ k0

]

.

(14)
Putting Equations (7), (8), (13) and (14) into the

system (6), we obtain

e2λη = [1− hx+ gx2]−1 , (15a)

e2νη = A2[exp(Q0(x))]
2 , (15b)

rhoη = [h(6 +mx2 − x(m+ g(10 +mx2)))]

×[16π]−1 , (15c)

prη = α[h(6 +mx2 − x(m+ g(10 +mx2)))]

×[16π]−1 − β , (15d)

ptη = Q1(x) +Q2(x) +Q3(x) +Q4(x)

+Q5(x) +Q6(x) , (15e)

∆η = ptη − prη , (15f)

ση = 2(mx(1 − hx+ gx2) +
1

2
(3 + [hx− 2]

×[1− hx+ gx2]−1))

×
√

[1− hx+ gx2]x−1 , (15g)

E2
η = mx(1− hx+ gx2) , (15h)

where for simplicity, we have set

Q0(x) =
1

16

[

−mx2(α− 1) + 4(h(α− 1))

−16πβ arctan(2gx− h)(
√

4g − h)
]

×
[

√

4g − h2
]−1

+
1

16
(2(1− 5α)

× log(1− hx+ gx2))
(

√

4g − h2
)−1

+ k0 ,

Q1(x) = [h2x(−m2x4(α− 1)2

−4mx2(4 + 3(3α− 4)))− 64(gx− 2πβ)]

×[128π(x(h− gx)− 1)]−1 ,

Q2(x) = [2h(16− 24α+ x(mx(12 +mx2(α− 1)2

−26α+ 6α2)))][128π(x(h− gx)− 1)]−1 ,

Q3(x) = [2hgx2(40 +m2x4(α− 1)2 − 92α

+60α2 + 2mx2(9 + α(8α− 21)))]

×[128π(x(h− gx)− 1)]−1 ,

Q4(x) = [32hxπ(−4 +mx2(α− 1) + 6α)β

+64gπx2(1 − 5α)β − 256π2β2x]

×[128π(x(h− gx)− 1)]−1 ,

Q5(x) = [x(−m2x2(1 + gx2)2(α− 1)2

+4g(40α+ gx2(−13 + 5(6− 5α)α)))]

×[128π(x(h− gx)− 1)]−1 ,

Q6(x) = 4mx(1 + gx2)(2 − 4α

+x(gx(5 + α(5α− 12)) + 8π(α− 1)β)) ,

andk0 stands for a constant of integration. The total mass
of the stellar object for the core is expressed in the form

Mη(r) = 4π

∫

r2ρηdr, r2 = x

= [x3(h(6 +mx2)− x(m+ g(10 +mx2)))]

×[96π]−1 . (16)

3.2 The Intermediate Region

We consider the middle layer to be less dense than
the core. A modified Bose-Einstein condensate EoS is
seen to satisfy the intermediate layer characterized by
Bose-Einstein condensate matter to describe the physical
features of the dense stellar object. Thus we describe this
region by the equation

prι = µρ2ι − a , (17)

whereµ and a are arbitrary real constants. Substituting
Equation (6a) into Equation (17) we have

prι = µ

(

1− Z

8πx
−

1

4π

dZ

dx
−

1

16π
E2

)2

− a . (18)

From Equation (6b) and Equation (18) we get

1

y

dy

dx
=
2πµ

Z

(

1− Z

8πx
−

1

4π

dZ

dx
−

1

16π
E2

)2

−
2π

Z

(

z − 1

8xπ
+

1

16π
E2 + a

)

.

(19)

Putting Equation (7) and Equation (8) into Equation (19)
we obtain

1

y

dy

dx
= [−16π(16aπ + h(2−mx2) + x(m− 2g + gmx2))

+ (h(6 +mx2)− x(m+ g(10 +mx2)))2µ]

× [128π(1− hx+ gx2)]−1 .

(20)
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Integrating Equation (20) gives

y =exp

[

[100gxµ+
1

3
m(20g +m)x3µ−

1

4
hm2x4µ

+
1

5
gm2x5µ− 2mx2(4π + 3hµ)

+ 2(8π − 5hµ) log(1− hx+ gx2)][128π]−1

+
[

4(−8hπ − 128aπ2 − 50gµ+ 13h2µ)

× arctan

(

[2gx− h]
[

√

4g − h2
]−1

)]

×
[

128π
√

4g − h2
]−1

+ k2

]

.

(21)
Substituting Equations (7), (8), (20) and (21) into the

system (6) provides the matter variables

e2λι = [1− hx+ gx2]−1 , (22a)

e2νι = A2y2(x) = A2[exp(τ0(x))]
2 , (22b)

ρι = [h(6 +mx2 − x(m+ g(10 +mx2)))]

×[16π]−1 , (22c)

prι = µ
(

[h(6 +mx2 − x(m+ g(10 +mx2)))]

×[16π]−1
)2

− a , (22d)

ptι = τ1(x) + τ2(x) + τ3(x) + τ4(x) + τ5(x) , (22e)

∆ι = ptι − prι , (22f)

σι = 2
(

mx(1− hx+ gx2) +
1

2

(

3 + [hx− 2]

×[1− hx+ gx2]−1
)

)

√

[1− hx+ gx2]x−1, (22g)

E2
ι = mx(1− hx+ gx2) , (22h)

where for simplicity we have set

τ0(x) = [100gxµ+
1

3
m(20g +m)x3µ−

1

4
hm2x4µ

+
1

5
gm2x5µ− 2mx2(4π + 3hµ) + 2(8π − 5hµ)

× log(1 − hx+ gx2)][128π]−1

+
[

4(−8hπ − 128aπ2 − 50gµ+ 13h2µ)

× arctan

(

[2gx− h]
[

√

4g − h2
]−1

)

]

×
[

128π
√

4g − h2
]−1

+ k2 ,

τ1(x) = [−4096(h− 2gx)− 2048mx(1− hx+ gx2)]

×[32768π]−1 + [(h(6 +mx2)

−x(m+ g(10 +mx2)))2µ]

×[32768π3(1− hx+ gx2)]−1 ,

τ2(x) = [32π(4− 6hx+ 8gx2)(−16π(16aπ

+h(2−mx2) + x(m− 2g + gmx2)))]

×[32768π3(1− hx+ gx2)]−1 ,

τ3(x) = [x(−16π(16aπ + h(2−mx2)

+x(gmx2 +m− 2g)) + (h(6 +mx2)

−x(m+ g(10 +mx2)))2µ)2]

×[32768π3(1 − hx+ gx2)]−1 ,

τ4(x) = [x(h− 2gx)(−16π(16aπ + h(2−mx2)

+x(gmx2 +m− 2g))) + (h(6 +mx2))]

×[32768π3(1− hx+ gx2)]−1

−[x(m+ g(10 +mx2))2][256π2(1− hx+ gx2)]−1 ,

τ5(x) = [2x(m− 2hmx+ g(10 + 3mx2))

×(−h(6 +mx2) + x(m + g(10 +mx2)))µ][32768π3]−1

+[x(−16π(m− 2hmx+ g(3mx2 − 2)))][32768π3]−1 .

The total mass of the stellar object in the intermediate layer
is expressed as

Mι(r) = 4π

∫

r2ριdr, r2 = x

Mι = [x3(h(6 +mx2)− x(m+ g(10 +mx2)))]

×[96π]−1 . (23)

3.3 The Envelope

With consideration of the density profile, the extended
envelope region may have less dense material than the
core and the intermediate layers. We consider a general
quadratic EoS to be convenient to describe the outermost
layer influenced by neutron fluid and Coulomb liquids. The
quadratic EoS is taken to describe the envelope region so
as to ensure the radially addressed pressure in the outer
layer is less compact than the pressure in the inner layer
and the intermediate layer [Mafa Takisa et al.(2019)]. This
is written in the form

prǫ = bρ2ǫ + dρǫ − f , (24)

where b, d and f are arbitrary real constants. From
Equation (6a) and Equation (24) we have

prǫ = b

(

1− Z

8πx
−

1

4π

dZ

dx
−

1

16π
E2

)2

+d

(

1− Z

8πx
−

1

4π

dZ

dx
−

1

16π
E2

)

− f. (25)

Equating Equations (6b) and (25) yields

1

y

dy

dx
=

2πb

Z

(

1− Z

8πx
−

1

4π

dZ

dx
−

1

16π
E2

)2

+
2πd

Z

(

1− Z

8πx
−

1

4π

dZ

dx
−

1

16π
E2

)

−
2π

Z

(

f +
Z − 1

8πx
+

1

16π
E2

)

. (26)
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Putting Equation (7) and Equation (8) into Equation (26),
the differential equation becomes

1

y

dy

dx
= [16fπ + (2g + 10dg +m+ dm)x + (1 + d)gmx3

−h(2 + 6d+mx2 + dmx2)]× [8(x(h− gx)− 1)]−1

−[b(h(6 +mx2)− x(10g +m+ gmx2))2]

×[128π(x(h− gx)− 1)]−1 . (27)

Integrating Equation (27) yields

y = exp
[

[100bgx− 2m(3bh+ 4π + 4πd)x2

+
1

3
bm(20g +m)x3 −

1

4
bhm2x4 +

1

5
bgm2x5

+2(5bh+ 8π + 40πd) log(1− hx+ gx2)][128π]−1

+
[

4(13bh2 − 50bg + 8hπ + 8dhπ − 128fπ2)

× arctan

(

[2gx− h]
[

√

4g − h2
]−1

)

]

×
[

128π
√

4g − h2
]−1

× [128π]−1 + k3

]

. (28)

Then the matter variables for the envelope layer become

e2λǫ = [1− hx+ gx2]−1 , (29)

e2νǫ = A2y2(x) = A2[exp(G0(x))]
2 , (30)

ρǫ = [h(6+mx2−x(m+g(10+mx2)))][16π]−1 , (31)

prǫ = b
(

[h(6 +mx2 − x(m+ g(10 +mx2)))][16π]−1
)2

+ d
(

[h(6 +mx2 − x(m+ g(10 +mx2)))]

×[16π]−1
)

− f ,

(32)
ptǫ =G1(x) +G2(x) +G3(x) +G4(x) −G5(x)

+G6(x) +G7(x) +G8(x)−G9(x) ,
(33)

∆ǫ = ptǫ − prǫ , (34)

σǫ =2
(

mx(1− hx+ gx2) +
1

2
(3 + [hx− 2]

× [1 − hx +gx2]−1
)

)

√

[1− hx+ gx2]x−1 ,

(35)
E2

ǫ = mx(1− hx+ gx2) , (36)

where for simplicity we have set

G0(x) = [100bgx− 2m(3bh+ 4π + 4πd)x2

+
1

3
bm(20g +m)x3 −

1

4
bhm2x4 +

1

5
bgm2x5

+2(5bh+ 8π + 40πd) log(1− hx+ gx2)][128π]−1

+[4(13bh2 − 50bg + 8hπ + 8dhπ − 128fπ2)

× arctan

(

[2gx− h]
[

√

4g − h2
]−1

)

]

×
[

128π
√

4g − h2
]−1

[128π]−1 + k3 ,

G1(x) = [−4096π2(h− 2gx)− 2048mπ2

×x(1 − hx+ gx2)][3276π3]−1 ,

G2(x) = [32π(4− 6hx+ 8gx2)(16π(16fπ

+(2g + 10dg +m+ dm)x + (1 + d)gmx3))]

×[32768π3(x(h− gx)− 1)]−1 ,

G3(x) = [−h(2 + 6d+mx2 + dmx2)

−b(h(6 +mx2)− x(10g +m+ gmx2))2]

×[32768π3(x(h− gx)− 1)]−1 ,

G4(x) = [x(1 − hx+ gx2)(16π(2(h(h+ 3dh− 8fπ)

−(2g + 10dg +m+ dm)x))2)]

×[32768π3(x(h− gx)− 1)2]−1 ,

G5(x) = [x(1 − hx+ gx2)(1 + d)hmx2(1 + d)gmx2

+b(h(6 +mx2)− x(10g +m+ gmx2))2]

×[32768π3(x(h− gx)− 1)2]−1 ,

G6(x) = [128πx(1− hx+ gx2)(2gx− h)

×(16π(16fπ + (2g + 10dg +m+ dm)x))]

×[32768π3(x(h− gx)− 1)2]−1 ,

G7(x) = [128πx(1− hx+ gx2)(1 + d)gmx3

−h(2 + 6d+mx2 + dmx2)− b(h(6 +mx2)

−x(10g +m+ gmx2))2]

×[32768π3(x(h− gx)− 1)2]−1 ,

G8(x) = [128πx(1− hx+ gx2)(16π(2(5 + 5d)g

+3(1 + d)gmx2 + (1 + d)m(1 − 2hx)))]

×[32768π3(x(h− gx)− 1)]−1 ,

G9(x) = [128πx(1− hx+ gx2)(2b(m− 2hmx

+g(10 + 3mx2))(h(6 +mx2)

+x(m+ g(10 +mx2))))]

×[32768π3(x(h− gx)− 1)]−1 .

The total mass of the stellar sphere for the envelope layer
is written in the form

Mǫ(r) = 4π

∫

r2ρǫdr, r2 = x ,

Mǫ = [x3(h(6 +mx2)− x(m+ g(10 +mx2)))]

×[96π]−1 . (37)
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4 BOUNDARY CONDITIONS

Here we match the radial pressure, gravitational potentials
and electric field at the interfaces as follows:
Junction conditions at the core-intermediate boundary.
This is expressed by

e−2λη(Rη) = e−2λι(Rη), (38a)

e2νη(Rη) = e2νι(Rη), (38b)

prη(Rη) = prι(Rη), (38c)

E2
η(Rη) = E2

ι (Rη). (38d)

Junction conditions at the intermediate-envelope interface.
This is written as

e−2λι(Rι) = e−2λǫ(Rι) , (39a)

e2νι(Rι) = e2νǫ(Rι) , (39b)

prι(Rι) = prǫ(Rι) , (39c)

E2
ι (Rι) = E2

ǫ (Rι) . (39d)

Junction conditions at the envelope-surface boundary.
The interior and exterior line elements (1) and (2) should
match smoothly at the surfacer = Rǫ. Therefore

e2λǫ(Rǫ) =

(

1−
2M

Rǫ

+
Q2

R2
ǫ

)−1

, (40a)

e2νǫ(Rǫ) =

(

1−
2M

Rǫ

+
Q2

R2
ǫ

)

, (40b)

prǫ(Rǫ) = 0 , (40c)

E2
ǫ (Rǫ) =

Q2

R4
ǫ

. (40d)

They yield

(

1− hR2
ǫ + gR2n

ǫ

)

=

(

1 +
2Po(x)

Rǫ

+
m(1− hRǫ + gR2

ǫ)

R3
ǫ

)−1

, (41a)

A2[exp(G0(x))]
2 =

(

1 +
2Po(x)

Rǫ

+
m(1− hRǫ + gR2

ǫ)

R3
ǫ

)

, (41b)

0 = b(P1(x))
2 + d

(

[h(6 +mx2 − x(m

+g(10 +mx2)))][16π]−1
)

− f, (41c)

E2 =
Q2

R4
ǫ

= mRǫ(1− hRǫ + gR2
ǫ ) , (41d)

where for simplicity we have set

Po(x) = [x3(h(6 +mx2)− x(m+ g(10 +mx2)))]

×[96π]−1 + k1 ,

P1(x) =
(

[h(6 +mx2 − x(m+ g(10 + mx2)))]

×[16π]−1
)

.

We observe from system (41) that there are a sufficient
number of free parameters in four equations. This indicates
that the matching conditions are easily satisfied. In system
(41) above, it is complicated to solve the value ofRǫ

analytically. However the value ofRǫ can be obtained
geometrically from the plots, especially at the vanishing
point of radial pressure which is clearly shown to be
Rǫ = 9.96 km. The same choice of electric fieldE2 is
applied for all three layers. From systems (38) and (39) we
observe that at the core-intermediate junction atRη and at
the intermediate-envelope junction atRι, the electric field
exhibits continuity throughout the interior of the stellar
sphere.

5 PHYSICAL CONDITIONS

For a well behaved physical model, the matter variables
and other physical quantities have to satisfy the following
conditions.

(i) The energy density, radial and tangential pressures
should be regular, finite and continuous, and greater
than or equal to zero.

(ii) The metric potentialse2λ and e2ν should be greater
than or equal to zero.

(iii) The radial sound speed should be less than the speed
of light so as to obey the causality condition. These
conditions in each layer are written as

νη = A, (42a)

νι = [(h(6 +mx2)− x(m+ g(10 +mx2)))µ]

×[8π]−1, (42b)

νǫ = [(8πd+ bh(6 +mx2)− bx(m

+g(10 +mx2)))][8π]−1. (42c)

(iv) The model should satisfy the energy conditions:
strong energy condition (SEC), weak energy condition
(WEC) or null energy condition (NEC). i.e. SEC:
ρ − pr − 2pt ≥ 0, WEC:ρ − 3pt ≥ 0, ρ − 3pr ≥ 0,
NEC:ρ− pr ≥ 0, ρ− pt ≥ 0.

(v) In general relativity, stability of the stellar sphere

should satisfy the conditionΓ =
ρ+ pr

pr

dpr

dρ
≥

4

3
.

This condition for each region becomes

Γη = [(α(−h(6 +mx2)(1 + α) + x(m+ g(10 +mx2))

×(1 + α) + 16πβ))][−h((6 +mx2)α

+x(m+ g(10 +mx2))α+ 16πβ)]−1 , (43)

Γι = [B1(x)(−a+ (B2(x)(16π + h(6 +mx2)µ

−x(m+ g(10 +mx2)))) + 8π(−a+ ((h(6 +mx2)

−x(10g +m+ gmx2))2µ)))][256π2]−1 , (44)
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Γǫ = [B3(x)(b(h(6 +mx2)− x(10g +m+ gmx2))2

+ 16π(−B5(x)))][(2048π
2(−πf +

1

16
d(h(6 +mx2)

− x(m+ g(10 +mx2))) +B4(x)))]
−1 ,

(45)
where

B1(x) = ((h(6 +mx2)− x(m+ g(10 +mx2))))µ,

B2(x) = (h(6 +mx2)− x(10g +m+ gmx2)),

B3(x) = ((8πd+ bh(6 +mx2)

−bx(m+ g(10 +mx2))) ,

B4(x) = [(b(h(6 +mx2)− x(m

+g(10 +mx2)))2)][256π]−1 ,

B5(x) = 16πf + (1 + d)h(6 +mx2)

−(1 + d)x(10g +m+ gmx2)),

B6(x) = (32π(4− 6hx+ 8gx2)(−16π(16πa

+h(2−mx2) + x(−2g +m+ gmx2))

+(h(6 +mx2)− x(m + g(10 +mx2)))2µ)).

(vi) The surface redshift for the relativistic stellar objects
has been discussed by many authors in the past
(Baraco & Hamity(2002)). Bohmer & Harko(2006)
showed that for an imperfect fluid the value of the
redshift should not exceed 5. The value of the surface
redshift was later extended in the treatment byIvanov
(2002) who suggested the maximum value bezs ≤

5.211 for an anisotropic relativistic stellar object. The
surface redshift is calculated using the form

zs =
1

√

1−
2M(r)

r

− 1 , (46)

whereM stands for the total mass of the stellar object.
In our study we obtain

zs =
1

√

1 +
x5/2(−h(6 +mx2) + x(m+ g(10 +mx2)))

48π
−1. (47)

(vii) A thorough analysis of the mass radius ratio for a
relativistic stellar object is described inJasim et al.
(2021). It has been noted that the compactification
factor for the relativistic object is categorized into

different classes: (i) normal star:
M(r)

r
∼ 10−5,

(ii) white dwarf:
M(r)

r
∼ 10−3, (iii) neutron star:

10−1 <
M(r)

r
<

1

4
, (iv) ultra-dense compact star:

1

4
<

M(r)

r
<

1

2
and (v) black hole:

M(r)

r
=

1

2
. The
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Fig. 1 Energy density versus radial distance.
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Fig. 2 Radial pressure versus radial distance.

compactification factor is obtained in the form

µ(r) =
2M(r)

r
. (48)

In our treatment we get

µ(x) =
x5/2(−h(6 +mx2) + x(m+ g(10 +mx2)))

48π
. (49)

6 RESULTS

We discuss the physical features of the matter variables and
other quantities which were generated by using thePython
programming language. The plots generated include
energy density (Fig.1), radial pressure (Fig.2), tangential
pressure (Fig.3), gravitational potentials (Figs.4 and5),
mass (Fig.6), energy conditions (Figs.7, 8, 9 and10), the
measure of anisotropy (Fig.11), adiabatic index (Fig.12),
radial sound speed (Fig.13), charge density (Fig.14),
electric field (Fig.15), mass radius ratio (Fig.16) and
surface redshift (Fig.17). We generate graphs utilizing
the following specified values of the constants:a =

±1.187 × 10−5, b = 319.2, d = 0.7283, f = ±1.547 ×
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Fig. 3 Tangential pressure versus radial distance.

0 2 4 6 8 10

r (km)

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

P
o
te
n
ti
a
l 
(e

2
λ
) 

e2λη

e2λι

e2λǫ
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Fig. 5 Gravitational potential versus radial distance.

10−5, g = ±1.5× 10−5, h = ±0.004587, ko = 0.5, k1 =

0.0342, k2 = 0.2, k3 = 0.2,m = ±7.15 × 10−5, A =

0.1, α = 0.19897, β = 4.9166×10−5 andµ = ±481.124.
All graphs are plotted versus radial distance in the specified
domain of radius as perPant et al.(2020).
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Fig. 8 Energy condition versus radial distance.

In our model, Figures1 and 2 affirm that the
energy density and radial pressure are continuous
functions, have their maximum at the center, and
monotonically decrease towards the surface. We also
observe that these trends are similar to the findings
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in Pant et al. (2020), Bisht et al. (2021), Maharaj et al.
(2014), Pant et al. (2019), Gedela et al. (2019) and
Sunzu & Danford (2017). It is clearly shown that
the radial pressure vanishes at the surface (Rǫ =

9.96 km). Figure 3 indicates that tangential pres-
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Fig. 12 Adiabatic index versus radial distance.
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Fig. 14 Charge density versus radial distance.

sure is an increasing function towards the surface.
This physical behavior is also found in the models
by Thirukkanesk & Ragel(2014), Maharaj & Mafa Takisa
(2013) andNgubelanga & Maharaj(2015). Figures4 and
5 demonstrate that metric potentials are continuously
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Fig. 17 Surface redshift (zs) versus radial distance.

increasing functions. Figure6 indicates that the mass is
a monotonically increasing function with the increase of
radial distance. The energy conditions in Figures7, 8, 9
and 10 are decreasing functions that are positive. These
physical features are also found in the works byPant et al.

(2020), Maurya et al. (2018) and Maurya & Govender
(2017). The measure of anisotropy is an increasing
function with a discontinuous point between the inter-
mediate layer and the envelope layer (Fig.11). This
demonstrates that tangential pressure is greater than radial
pressure. A similar profile is also obtained byPant et al.
(2020), Thirukkanesk & Ragel(2014), Bhar et al.(2017),
Ngubelanga et al.(2015) andMurad(2016). In Figure12,
the stability condition is found to satisfy the criteria

within the stellar interior

(

Γ ≥
4

3

)

. This shows a gradual

increase inΓ towards the surface. In our treatment, we
obtained the minimum adiabatic indexΓ = 1.9769,
affirming that the object is stable from gravitational
collapse. We can also see a similar physical feature in
the treatments byPant et al.(2020), Bisht et al. (2021),
Jasim et al.(2018) andBhar et al.(2017). Figure13shows
that the speed of sound is less than the speed of light.
It is found to be in the range (0.25523 ≤ ν ≤

0.69613). Similar physical features are also found by
Pant et al.(2020), Pant et al.(2019), Gedela et al.(2019),
Maharaj & Mafa Takisa(2013), Bhar et al.(2017), Murad
(2016) andMaharaj & Mafa Takisa(2012). We observe in
Figures14 and 15 that charge density and electric field
are monotonically increasing functions. From Figure16,
we observe that the trend of mass radius ratio is an
increasing function, and reaches its maximum value
µ(x) = 0.3933 which satisfies the condition for an ultra-
dense compact star. The same physical profile is also
observed in the treatments ofPant et al.(2020), Bisht et al.
(2021) and Jasim et al.(2018). In Figure17 we observe
that the surface redshift is continuous and monotonically
increasing in nature with radial coordinate (r), attaining a
maximum value atzs = 1.05188 which is physical and in
an acceptable range. The physical analysis demonstrates
that the presence of charge continues to yield a physically
reasonable model of a three-layer stellar object.

7 CONCLUSIONS

In this paper we formulated a new class of exact solutions
for superdense stellar spheres comprising three interior
layers. In our model we used the Einstein-Maxwell field
equations incorporating different EoSs. The core region
obeys a linear EoS, the intermediate layer has a quadratic
EoS (with no linear term) and the envelope layer is
outfitted with a general quadratic EoS. In our model we
made a specific choice for the electric field and one for
the gravitational potentials. Our model contains the electric
field which is absent inPant et al.(2020) andBisht et al.
(2021). Setting electric field to zero(E = 0), we regain
the anisotropic uncharged model developed byPant et al.
(2020), and other earlier models in the core-envelope
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setting. The plots generated indicate that the gravitational
potentials, matter variables and other physical quantities
are well behaved and compatible with astrophysical
studies. In this case, they are regular, continuous and
free from singularity throughout the interior of the stellar
objects. The physical analysis demonstrates that our model
is well behaved. The results obtained in this paper are
significant and allow us to describe the physical structures,
features and properties of charged anisotropic superdense
stellar objects with three layers. In future work, other
results can be generated by considering different forms of
gravitational potential, EoSs and electric field.
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