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Abstract We establish new charged stellar models from the Einsteaniié|l field equations for relativistic
superdense objects outfitted with three layers. The coez laylescribed by a linear equation of state (EoS)
describing quark matter, while the intermediate layer iscdbed by a Bose-Einstein condensate EoS for
Bose-Einstein condensate matter and the envelope layistyisey a quadratic EoS for the neutron fluid.
We have specified a new choice of the electric field and onesofirtbtric potentials. It is interesting to note
that the choice of electric field in this model can be set tdslaand we can regain earlier neutral models.
Plots generated depict that the matter variables, gravitat potentials and other physical conditions are
consistent with astrophysical studies. The interior layard exterior boundary are also matched.
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1 INTRODUCTION physical features of superdense stellar objedisvdri

201Q Thirukkanesk & Ragel 2004
Formulation of stellar models in a core-envelope setting

has become an area of interest to many researchers The concept of a stellar object with a core and

in astrophysics and other related subjects. The physicé’lnI gnvelgpe is e?ieddTg n Fhe Qe”bera' theory of
phenomena in such models are still complicated in termiSativity discovered by Albert Einstein between 1907

of the solutions generated. The reason is that the interiof?’nCI 1916. The theory_ has been applled_to descrlk_)e the
structure of the stellar body has several layers Wi,[hstructure of stellar bodies and understanding the Universe

distinct physical properties. It is a challenging quesfimm at large M_lsner et al.. 1978 In f’idq't'on_ to Einstein’s
researchers to identify the nature of the layers possessélaeory’ various theories of gravitation like vector_-temso
by superdense stellar objects. The compact bodies witWeOTY an_d scalar-?ensqr’theory were developeq with some
such properties have strong magnetic and gravitationép_o_d'ﬂcat'ons to Elnstelns_t_he_ory. These theories may be
fields. These include neutron stars, quark stars, gra'eastalut'l'zed to formulate_relatmst!c stellgr models govedne
pulsars, white dwarfs and quasars. It has been notelaiy a set of differential _equ§t|on£()ll|r_15 2003. Stellar. )
that superdense stellar objects possess high pressumgdel_s may also be b_U|It Wlt.h_ correctl_ons from the Ricci
and extreme density leading to a variety of physicaland Riemann tensors in modified gravity.

properties. It has been demonstrated that the overall masse The Einstein field equations are the most basic tools
and densities of superdense objects are approximately the general theory of relativity. These equations depict
1.0 — 2.0 M and 105 gecm—2 respectively Pantetal. the relationship between metric potentials, pressures and
202Q Bisht et al. 202} According toJasim et al(2018, energy density in the form of differential equations
extremely superdense stellar bodies may alter the gStephanietal. 2003 The field equations are purely
pacetime geometry while the radii and masses remaigeometric. It is possible to solve the field equations if some
betweenl1.0 — 15.0 km and1.4 — 2.0 M, respectively. reasonable physical assumptions are imposed. Importantly
A variety of mathematical approaches has been used the field equations are utilized to investigate different
solve the system of field equations to investigate thestructures, behaviors and properties of stellar spheres
relevant to astrophysical studies. They have drawn the
* Corresponding author attention and interest of researchers to develop relttvis
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stellar models in static or non-static spherically symioetr (2005 and Tikekar & Jotania(2009. It is also important
spacetimeRulara & Sah 2018 A variety of mathematical to consider the physics of a three-layered model with both
approaches has been used to solve the system of fieddectric field and anisotropy present.

equations to investigate the physical features of supselen ~ Models with three interior layers are rarely found in
stellar objectsTiwari 2010. general relativity. The recent models studiedBight et al.

The electric field introduced in the Einstein-Maxwell (2023 andPant et al(202() indicate that a sublayer exists
field equations has to capture the reality of physicapetweenthe core-envelope boundary. The models analyzed
properties that charged stellar objects in the Universéhe physical properties and features of a neutron star as a
should possess. Stellar spheres should loose electfflense stellar object. However, the models generated were
charge in time to become uncharged. A realistic physicayncharged with the core obeying a linear equation of state
model for charged spheres should therefore have €0S), and intermediate and envelope layers satisfying a
vanishing electric field in some limit. The presence ofduadratic EoS. Inthe presentmodel, we include the electric
an electric field in a stellar object creates repulsiorfield which is missing irBisht et al.(2021) andPant et al.
with the pressure gradient to prevent gravitational col{2020.
lapse. This phenomenon makes the object stable and The motivation of this paper is to generate a new stellar
works against collapseJésim etal. 2018 The effect model comprising three regions. We apply a separate EoS
of electric field on the critical mass, stability and in €ach region depending on the nature of the material
redshift in single-layered models has been described it contains. It is reasonable to have a stellar model that
Dev & Gleiser (2002; Ivanov (2002; Chaisi & Maharaj incorporates three interior layers with distinct EoSs. The
(2009; Chaisi & Maharaf2006); Sunzu et al(2014. The ~ core layer is described by a linear EoS sufficient to describe
effect of the electric field on physical properties in two duark matter, and the intermediate and envelope layers
layered models has been discussed in the work develop&@th satisfy different quadratic EoSs. In our model, we
by Mafa Takisa & Maharaj(2016. It is important to choose one of the gravitational potentials and the electric

generate a three layer model with an electric field preserftelds. We generate a new anisotropic charged model
for a better understanding of the model. containing three regions which generalizes the neutral

The importance of pressure anisotropy has beeﬁnOdeIS developed bisht et al. (2027 and Pant et al.

demonstrated in different stellar models. According t0(2020.
Malaver(2018, the presence of pressure anisotropy in the:2 BASIC MODEL EQUATIONS

interior of the stellar object may be due to the existence of a

solid core, a particular phase transition and electricgdar \We describe the interior with a static spherically symnoetri
The detailed analysis of pressure anisotropy has also begpacetime with metric given in Schwarzschild coordinates
highlighted in the studies performed Bower & Liang (z7) = (t,r,0,0) as

(1974; Bijalwan (2011); Cosenza et al(1981); Sokolov - () 12 L 2A(r) 1.2
(1980; Usov (2004; Komathiraj & Maharaj (200%; ds” = — ™ dt" + " dr
lvanov(2010; Maharaj et al(2014; Maurya et al(2019 + r2(d6? + sin® 0d¢?)

andSunzu et al(2019. where v(r) and A(r) define the metric potentials. The
Models with two layers describing a core layer andexterior line element is given by the Reissner-Nordstrom

the corresponding envelope layer for superdense stell@pacetime as

objects have been formulated. This has been illustrated

1)

by Sharma & Mukherje€2002 who formulated a core- ds? = — (1 _ M + Q_Q) dt?

envelope model with an inner layer containing quark r r?

matter and the envelope layer which is less compact. N (1 oM . Q_z)—ldrg (2
The model which describes a parabolic density profile, r r2

developed inNegi et al. (1990, indicates the continuity + 1%(d6? + sin® 0d¢?)

of all variables at the interface between the core and
the envelope. The approach developedThpomas et al. where() stands for the total charge afid represents the
(2009 describes a superdense matter configuration Whicho'[al mass of tTe si)here. _For S{?arged stellar objects, the
is characterized by an isotropic fluid for the core and ary "€'dy momentum tensoris written as
anisotropic fluid at the envelope layer. Other models with . 1 5 1 5 1 5

. . . T;; =diag| —p — = E*, p, — =E~, —FE~,
two layers include the works dflafa Takisa & Maharaj / 9{=r 2 br—y pet 2
(2016; Mafa Takisa et al. (2019; Pantetal. (2019;

3
1 2
Gedela et al(2019; Hansraj et al(2016; Paul & Tikekar Pe §E ) ’
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where p defines the energy densityy is the electric  solve the systenB) once the electric field is specified. The
field, andp, andp, are radial and tangential pressuresparticular choice of electric field is specified in the form
respectively. Settings = ¢ = 1, the system of field

equations becomes E?= mzZ=ma(l —hz+ga?), m>0, (8)
1, 1 Cony 2N oy wherem stands for an arbitrary real constant. The choice
Sp o+ §E - r_2(1 —e )+ e (4a)  of g2 given in Equation §) vanishes at the center. (=
1., 1 oy 2V 5y 0) of the stellar object, but remains real and continuous
8Ty — §E - _T_Q(l —eT )+ - ¢ (4b) throughout the interior points of the stellar body. It is

1E2 o, 2 ,ovX 4 physically reasonable and, thus, consistent for the study
Smpet GBS = e\ W =N+ — = J(3) ot the charged stellar models. Substituting = 0 in

+2X o, Equation 8), we regain an uncharged modelPant et al.
e, (2029.
1 —X(,.2 /
o= e (rE), (4d) 3 | AYERSOF THE STELLAR OBJECT
where primes(/) represent derivatives with respect 1o \we have three interior regions, namely: the corg the
radial coordinatér). intermediate ) and the envelope) as follows:
We introduce the transformation variables fromcore |ayer (Region 1)) < r < R,
Durgapal & Bannerj(1983 given by Intermediate layer (Region 2R, < < R, and

z=12 Z@)=e?, =A%) (5) Envelope Iayg_r (Region 3):{L < r < R..
For the classified boundaries, line elemehti{ecomes

Using Equation?®), the system4) becomes
9= 9 y D ds®|y = —e®ndt? + e dr? + r2(df* + sin® 0d¢?),(9a)

8mp = -z z‘fl—z - % E?, (6a)  ds’[z = —e®dt? + e*Mdr? + r?(d6? + sin® 0dp?),(9Db)
x X
s Y-z 4azi @ I oy T A P A0 e sin 047 (00
mpr = ——(1 = —— + b7,
z , ydr 2 in the three regions.
1d%y ( dZ> 1dy
8mpr =4wZ——— + 42 + 22— | ——
P y da? Yz ) ydz 3.1 TheCore
z 1 _,
+@ - §E ’ (6¢)  We represent the core layer to be quark matter satisfying
A = 8mp; — 87p, the linear EoS in the form
1d? 1d
:4xZ§d—;§ + <4xZ+2:173—Z 42) ;% pr, = apy — B, (10)
X
az 5 6d where o and 3 are arbitrary real constants. Combining
+@ + 5(1 - Z)-E, (6a) Equations §a) and (L0) yields
dE z 1-2z 1dz 1
o = J?—JrE) —. (68) . = (______EQ)_ ) 11
< dx v Pry =4 8Tx 4w dx 167 b (1)

The system &) has eight unknown variables. To find Equating Equationfb) and Equation1) gives
a solution of the systent), we need to specify any two

parameters so as to find expressions for the others. In our 1@ =(a+1) (1 — Z) _ ﬁ%

model we choose to specify metric potenttahnd electric ydz daZ 27 dx (12)

field intensity E2. We apply the metric potentia used B E?(a—1) 27

in the study ofPant et al(2020Q. This is expressed in the 87 Z

form Substituting Equation 7) and Equation &) into
Z(z)= e =1-ha+ ga?, ) Equation (2) yields

where h and g are arbitrary real constants. The metric 1dy =[h(2 — ma®(a — 1) — 6a)ma(a — 1)

function Z in Equation 7) is real, continuous and regular y dz

at the center which allow an extensive range of valugs of x ga(=2+ma®(a — 1) 4+ 10a) + 1674

andy. It is in acceptable condition to avoid the singularity x [8z(h — gx) — 8] 7',
at the center and within the stellar sphere. It is possible to (13)
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Integrating Equation1(3) gives

Y = exp [% [ —ma?(a—1) +4(h(a—1))

— 167S arctan(2gx — h)(\/élg——h)} x [m} B

1
+ 76 (2(1 = 5a) log(1 — ha + gz*))

< (Vig—h?) "t 4 ko} .
(14)
Putting Equations ®), (8), (13) and (L4) into the
system 6), we obtain

e =1 —ha + gzt (15a)
e = A?[exp(Qo(x))]?, (15b)
rho, = [h(6 +ma* — z(m + g(10 + ma?)))]

x[167]) 71, (15¢)
pr, = a[h(6 +maz* — x(m + g(10 + ma?)))]

x[167] ™t — B, (15d)
pt, = Q1(z) + Q2(x) + Q3(x) + Qa(x)

+Qs5(z) + Qs (), (15e)
Ay =pi, = Pr, (151)
oy = 2(mz(1 — hz + gz°) + %(3 + [ha — 2]

x[1 — hz + g2?]™1))

x+/[1 — hx + gz?]z—1, (159)
E?? =ma(l — hx + gz?), (15h)

where for simplicity, we have set

Qol) =

—167 B arctan(2gz — h)(\/4g — h)]
X {\/49 - hﬂ 4 1—16(2(1 ~ 5a)
x log(1 — hx + gz?)) (\/49 - h2)_1 + ko,

[—ma®(a—1) +4(h(a — 1))

Q1(z) = [R2z(—m*z* (o — 1)?
—4maz*(4 + 3(3a — 4))) — 64(gx — 273)]
x[1287(x(h — gz) — 1)] 7!,

Q2(z) = [2h(16 — 24a + x(mz(12 + ma?(a — 1)?
—260 + 602)))|[1287(x(h — gz) — 1)] 71,

Qs(x) = [2hgz”(40 + m*z* (e — 1) — 920
+600” + 2ma*(9 + a(8a — 21)))]
x[1287(x(h — gz) — 1)] 7,
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Q4(z) = [32hxm(—4 + ma?(a — 1) + 6a)8
+64gm2*(1 — 5a)B — 25672 %]
x[1287(z(h — gz) — 1)] 7,

Qs(z) = [x(—m?2*(1 + g2*)*(a — 1)?
+4g(40a + g (—13 + 5(6 — 5a)a)))]
x[1287(x(h — gz) — 1)] 7",

Qo(z) = dma(1 + g2?)(2 — 4a
+z(gz(5 + a(ba — 12)) + 87(a — 1)),

andk, stands for a constant of integration. The total mass
of the stellar object for the core is expressed in the form

47r/7’2pnd7’, =z
= [2?(h(6 +ma®) — x(m + g(10 + ma?)))]
x[967] 1. (16)

My (r) =

3.2 Thelntermediate Region

We consider the middle layer to be less dense than
the core. A modified Bose-Einstein condensate EoS is
seen to satisfy the intermediate layer characterized by
Bose-Einstein condensate matter to describe the physical
features of the dense stellar object. Thus we describe this
region by the equation
pr, = pp; —a, (17)

where i, and a are arbitrary real constants. Substituting
Equation 68 into Equation {7) we have

1-Z 1dz 1
pro= il g~

2
—FE?) —a. (18
8mx Am dzr 167 > “ (18)

From Equation@b) and Equation18) we get

ldy 27r_u<1—z 1dz 1

2
= il )
ydx Z ST 47 dx 167 ) (19)

2r (2 —1 1
- — —FE?+a).
Z<8$7T+167T )

Putting Equationq) and Equationg) into Equation 19)
we obtain
1dy 2 2
T [-167(16am + h(2 — mz”) + xz(m — 2g + gmzx~))
Yy ax

+ (h(6 + ma®) — x(m + g(10 + ma?)))*p]

x [1287(1 — hx + g2?)] 7.
(20)



A. S Lighuda et al.: Charged Stellar Model with Three Layers

Integrating Equation20) gives
1 1
Yy =exp [[100g1:,u + gm(QOg +m)azdp — th2x4u

1
+ gng:psu — 2ma® (47 + 3hp)
+ 2(87 — 5hp) log(1 — ha + gx?)][1287] ~*

+ [4(—8hm — 128an® — 509 + 13h° 1)
X arctan ([291: — h) [\/4g - hQ} 1)}
x {12877\/49 - hﬂ Ty kg] .
(21)

Substituting Equationsry, (8), (20) and @1) into the
system 6) provides the matter variables

e =[1 — ha + g2 71, (22a)
e = A%y?(z) = A%[exp(mo(2)))?, (22b)
p. = [h(6 +ma? — x(m + g(10 + ma?)))]

x[167] 7", (22c)
pr, = 1 ([R(6 + ma? — z(m + g(10 + ma?)))]

x[167]71)% —a, (22d)
pr, = 11(@) + 72(2) + 713(2) + Ta(2) + 75(2),  (22€)
A, =pt, —pr,, (22f)

1
o, = Q(mx(l — hx + ga®) + 5(3—1— [ha — 2]

x[1 — hx + ng]fl)) V1 = hx + ga2]z—1, (22g)
E? = mz(1 — ha + g2?), (22h)

where for simplicity we have set
1 1
To(z) = [100gzp + gm(QOg +m)ady — th2$4ﬂ

1
+ggm2x5u — 2ma? (4m + 3hp) + 2(87 — Shp)
x log(1 — ha + ga?)][1287] !
+ [4(—8h7r — 128an® — 50gu + 13h4)

X arctan ([ng — h] [\/m} _1) ]
X [1287“/49—7}12}71 + ks,

71 (2) = [~4096(h — 2gx) — 2048mx(1 — ha + gx?)]
x[327687] ' + [(h(6 + ma?)
—x(m + g(10 +maz?)))? ]
x[3276873(1 — ha + ga®)] ™,

mo(z) = [327(4 — 6ha + 8gz?)(—167(16an
+h(2 = ma?) +x(m — 29 + gma?)))]
x[3276873(1 — ha + ga?)] ™,
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m3(z) = [x(—167(16aT + h(2 — ma?)
+a(gma® +m — 29)) + (h(6 + ma?)
—a(m + g(10 + ma?)))*u)?
x[3276873(1 — ha + gx*)] !,

m41(z) = [x(h — 2gx)(—167(16am + h(2 — mz?)
+a(gma® +m — 29))) + (h(6 +ma?))]
x[3276873(1 — ha + gz?)] !
—[z(m + g(10 + ma?))?][2567%(1 — ha + gz*)] 7!,

75(z) = [22(m — 2hmx + g(10 + 3ma?))
X (—h(6 +mz?) + z(m + g(10 + ma?)))u][327687%])
+[x(—=167(m — 2hma + g(3ma* — 2)))][327687°] .

The total mass of the stellar object in the intermediaterlaye
is expressed as

47T/r2pbdr, r?=x

[2%(h(6 +ma?) — z(m + g(10 + ma?)))]
x[967] 1. (23)

ML(T)

M,

3.3 TheEnvelope

With consideration of the density profile, the extended
envelope region may have less dense material than the
core and the intermediate layers. We consider a general
quadratic EoS to be convenient to describe the outermost
layer influenced by neutron fluid and Coulomb liquids. The
guadratic EoS is taken to describe the envelope region so
as to ensure the radially addressed pressure in the outer
layer is less compact than the pressure in the inner layer
and the intermediate layaviafa Takisa et al(2019]. This
is written in the form

DPr. = bpf +dpe — f, (24)

where b,d and f are arbitrary real constants. From
Equation 63 and EquationZ4) we have

2
pomb(LZ L2 L)
Y8

Smx dmdx 16
1-7Z 1d7 1
+d = = FE?2)—f (25
( 8mx 4w dx 16w ) ] (@)
Equating Equationssp) and @5) yields
1@:ﬁ%vﬂ_ig_;yf
y dx Z mx A dr 167
2nd (1—-Z 1 dZ 1
4 2ra e Lo
Z ( T 47 dx 167TE )

2w Z —1 1
_Z7 4~ E2?. 26
Z (f * T - 167 > (26)
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Putting Equation®) and Equation&) into Equation 26),
the differential equation becomes
Ldy
ydx
—h(2 4 6d + max? + dma?)] x [8(x(h — gz) — 1)] 7!
—[b(h(6 + maz?) — 2(10g +m + gma?))?
x[1287(z(h — gz) — 1)] 7 . (27)

= [16f7 + (29 + 10dg + m + dm)z + (1 + d)gma*

Integrating EquationZ7) yields

Y = exp [[IOObg:c — 2m(3bh + 47 + 4md)x?
+%bm(20g +m)a® — ibhm%ﬁ4 + %bngxE’
+2(5bh + 87 + 407d) log(1 — ha + gz*)][1287] "
+ [4(13bh2 — 50bg + 8hr + 8dhm — 128f72)

X arctan <[2gx — h] [\/49 - hQ} _1> }
x [128m/4g f h?] T [asH 4 kg} . (28)

Then the matter variables for the envelope layer become
e =1 — ha + gz*] 71, (29)
¢ = A% (x) = Aexp(Go(@))?,  (30)
pe = [R(6+ma? —2z(m+g(10+maz?)))][167] "1, (31)

pr. =b (A6 +ma® — x(m + g(10 +ma?)))|[167] )
+d ([h(6 + mz* — z(m + g(10 + ma?)))]

x[167] ) — f,
(32)
pr. = G1(x) + Ga(z) + Gs(x) + G4(x) — Gs(x) (33)
+ Gﬁ(l‘) + G7(.T) + Gg(l‘) — Gg(l‘) s
Ac =pi, — Pr. s (34)

1
Oc :2(mz(1 — hx + ga?) + 3 (3+ [ha — 2]

x [I — ha +g2*]7") )\/[1 — hx + ga?|a—1,
(35)
E? = ma(1 — ha + ga?), (36)
where for simplicity we have set
Go(z) = [100bgx — 2m(3bh + 47 + 4nd)x?
1 1 1
+§bm(2()g +m)z® — thm2z4 + gbgm2z5
+2(5bh + 87 + 407d) log(1 — ha + ga?)][1287] ¢
+[4(13bh?* — 50bg + 8hr + 8dhm — 128 f72)

X arctan ([anc — h) [\/49 - hQ} 1)]
X [1287“/@} T 28] 4 ks,

Gi(x) = [~40967°(h — 2gx) — 2048m7>
xx(1 — hx + g2?)][32767%) 1,

Go(z) = [327(4 — 6hx + 8g2*) (167 (16 f 7
+(2g + 10dg + m + dm)x + (1 4 d)gma?®))]
x[3276873 (x(h — gx) — 1)] 7",

Gs(x) = [~h(2 + 6d + ma® + dma?)
—b(h(6 + ma®) — (10 + m + gma?))?]
x [327687° (z(h — gz) — 1)] 7",

Gi(z) = [x(1 — ha + g2?)(167(2(h(h + 3dh — 8f7)
—(2g + 10dg + m + dm)z))?)]
x[3276873(x(h — gx) — 1)?]71,

Gs(2) = [z(1 — ha + g2®)(1 + d)hma?*(1 + d)gma?
+b(h(6 +ma?) — 2(10g + m + gma?))?]
x[327687%(x(h — gx) — 1)1,

Go(x) = [1287z(1 — ha + gz*)(2gz — h)
x (167(16 f7 + (29 + 10dg + m + dm)x))]
x[327687° (2(h — gz) — 1),

Gr(z) = [1287z(1 — ha + g2?)(1 + d)gma®
—h(2 + 6d + max? + dmz?) — b(h(6 + ma?)
—z(10g + m + gma?))?]

x[327687% (x(h — gx) — 1)%]71,

Gs(r) = [1287z(1 — hz + gx?)(167(2(5 + 5d)g
+3(1 + d)gma® + (1 + d)m(1 — 2hx)))]
x[327687%(x(h — gz) — 1)] 71,

Go(x) = [1287z(1 — ha + gx?)(2b(m — 2hmax
+9(10 + 3mz?)) (h(6 + ma?)
+a(m + g(10 + ma?))))]
x[3276873(x(h — gx) — 1)] 7.

The total mass of the stellar sphere for the envelope layer
is written in the form

M.(r) = 47r/7’2p€d7", r?=ux,

M, = [2*(h(6 + mz?) — z(m + g(10 + ma?)))]
x[967] 1. (37)
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4 BOUNDARY CONDITIONS We observe from systemd{) that there are a sufficient

) o _ number of free parameters in four equations. This indicates
Here we match the radial pressure, gravitational potentiaky, 5 the matching conditions are easily satisfied. In system

and electric field at the interfaces as follows: (41) above, it is complicated to solve the value Bf
Junction conditions at the core-intermediate boundary. analyticallyi However the value oR. can be obtained
This is expressed by geometrically from the plots, especially at the vanishing
e (R,)) = e (R,), (38a) Point of radial pressure which is clearly shown to be
2(Ry) = e (R,) (38b) R. = 9.96 km. The same choice of electric field? is
ne o applied for all three layers. From systerB8)and (39) we

pr, (By) = pr,(Ry), (38¢)  observe that at the core-intermediate junctio®aiand at

E}(R,) = EZ(Ry). (38d) the intermediate-envelope junctionzat, the electric field
Junction conditionsat the intermediate-envelopeinterface. exhibits continuity throughout the interior of the stellar
I . sphere.
This is written as
e ?(R,) = e 2<(R,), (39a) 5 PHYSICAL CONDITIONS
2v, . 2v.

e (R,) = e (R.), (390)  For a well behaved physical model, the matter variables
pr, (R,) = pr.(R,), (39¢c)  and other physical quantities have to satisfy the following
E?(R,) = E*(R)). (39d)  conditions.

Junction conditions at the envel ope-surface boundary. (i) The energy density, radial and tangential pressures
The interior and exterior line elements) @nd @) should should be regular, finite and continuous, and greater
match smoothly at the surface= R.. Therefore than or equal to zero.
o —1 (i) The metric potentials:>* and e?” should be greater
o2\ (R.) = (1 _ ﬂ + Q_Q) 7 (40a) than or gqual to zero.
Re R (iii) The radial sound speed should be less than the speed
2w, B 2M Q_2 of light so as to obey the causality condition. These
e (Re) (1 R, + R2)’ (40b) conditions in each layer are written as

- (Re) = 0, 40c

pr.(Re) e (40c) vy = A, (42a)

FE2(R.) = i (40d) v, = [(h(6 +mz?) — z(m + g(10 + ma?)))u]

Thevvield ‘ x [87]7, (42b)
ey yie
vy ve = [(87d + bh(6 + mz?) — bx(m
(1—hR? 4+ gR™) = (1 + 2P§(x) +9(10 + ma?)))][87] 7. (42¢)
‘ - iv) The model should satisfy the energy conditions:
1 —hR. +gR?)\ ' )
+ m( 7 +gl) ) ,  (41a) strong energy condition (SEC), weak energy condition
op € (WEC) or null energy condition (NEC). i.e. SEC:
A?lexp(Go(x)))? = (1 + 2bo(2) p—pr—2pt > 0, WEC:p —3p; > 0, p—3p, >0,
R NEC:p —pr > 0,p—p; > 0.
m(1 — hR. + gR?) (v) In general relativity, stability of the stellar sphere
+ B , (41b) o+ pr dp 4
, , e should satisfy the conditioll = —Td—T > 3
= — p’l' p
0="b(P1(2))" +d ([h(6 +ma —a(m This condition for each region becomes
+9(10 + ma?)))][167]) 1) — f, (41c)
, 0 ) Iy = [(a(=h(6+mz*)(1 + a) + z(m + g(10 + ma?))
Ee = R_g :mRe(l—hRengRE), (41d) ><(1+oz)+167rﬂ))][—h((6+mx2)a
2 -1
where for simplicity we have set +a(m + g(10 + ma”))a + 1675)] (43)
Py(z) = [2°(h(6 +ma?) — z(m + g(10 + ma?)))]
x[967] "t + Ky , I, = [Bi(z)(—a + (By(z)(167 + h(6 + ma®)u
Pi(z) = ([h(6 4+ ma® — z(m + g(10 + mz?)))] —z(m + g(10 + ma?)))) + 87 (—a + ((h(6 + maz?)

x[167] 1) . —2(10g +m + gma?))*u)))][2567%] 1, (44)
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F€ - [Bg(:l?)(b(h,(ﬁ + m:z:2) — x(lOg +m + gmz2))2 0.0055 —
1 0050l - ”z |
167 Bl [0S~ + e d A6 ma?) =
0.0045}
A
45 |
where é0.0035—
Bi(xz) = ((h(6 + mz2) —x(m + g(10 + m$2))))u, go.oomf
BQ(m) = (h(6 + ml’Q) —2(10g +m + gme)), 0.0025}
Bz (x) = ((8md + bh(6 + mm2) 0.0020f
,bx(m+g(10+mgg2))) ) 0.0015 . . . . N
B4($) = [(b(h(ﬁ + m$2) — x(m  (km)
+9(10 + ma?)))?)][2567] ", Fig.1 Energy density versus radial distance.

Bs(x) = 167 f + (1 + d)h(6 + ma?)
—(1 4 d)z(10g + m + gmz?)), 0.010 : : : :
Bo(z) = (327 (4 — 6ha + 8ga2)(—167(16ma )
+h(2 — max?) + z(—2g + m + gma?))
+(h(6 +ma?) —z(m + g(10 +ma?)))* ).

—
0.0081

— . 1

o
=}
S
>

(vi) The surface redshift for the relativistic stellar otie
has been discussed by many authors in the pas
(Baraco & Hamity (2002). Bohmer & Harko (2006
showed that for an imperfect fluid the value of the 0.002|
redshift should not exceed 5. The value of the surface

Radial pressure (MeVfm~)
o
o
o
=

redshift was later extended in the treatmentignov 0.000, . . . . N
(2002 who suggested the maximum value he < 7 (km)
5.211 for an anisotropic relativistic stellar object. The .2 dial dial di
surface redshift is calculated using the form Fig.2 Radial pressure versus radial distance.
1 compactification factor is obtained in the form
Zs — T() — 1 , (46)
r 2M(r)
1-— =1/
. p(r) — (48)
whereM stands for the total mass of the stellar object. ~ In our treatment we get

In our study we obtain

. ) = EME ) £ n 900 £ D) 4
\/1 2°2(=h(6 + maz?) + z(m + g(10 + ma?)))

+ 48
1. (47)

zs =

6 RESULTS

(vii) A thorough analysis of the mass radius ratio for aotherquan_tities which were generated by USi”EﬁW’?n
relativistic stellar object is described ifasim etal. Programming language. The plots generated include
(2021). It has been noted that the compactification€N€rgy density (Figl), radial pressure (Fig), tangential

factor for the relativistic object is categorized into Pressure (Fig3), gravitational potentials (Figgl ands),
) mass (Fig6), energy conditions (Figg, 8, 9 and10), the

diff lasses: (i | stail) 073

ifferent classes: (i) normal star. PR 07 measure of anisotropy (Fid1), adiabatic index (Figl2),

(i) white dwarf: M (r) ~ 10-3, (iii) neutron star: radial sound speed (Fidl3), charge density (Figl4),
T

) electric field (Fig.15), mass radius ratio (Figl6) and
1071 < < -, (iv) ultra-dense compact star: surface redshift (Figl7). We generate graphs utilizing
1 M(r) 4 ) 1 the following specified values of the constants: =

1 M(r
1< <3 and (v) black holeiT =5-The  +1.187 % 107%,b = 319.2,d = 0.7283, f = +£1.547 x

M(r)

We discuss the physical features of the matter variables and
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Fig.3 Tangential pressure versus radial distance. Fig.6 Mass versus radial distance.
1.45 T T T T 0.0050
)
1400 O o2\
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1.30f ZE‘
% 108 £ 00035
E 1.20p éo.ooso—
1.15} g
W 0.0025}
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Fig.4 Gravitational potential versus radial distance. Fig. 7 Energy condition versus radial distance.
1.2 r r r r 0.0040
—_ ™ — p=3p,
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Lo — e 0.0035}
0.8- L“TE\
< i:‘ 0.0030}
EO.G— %
E 20.0025—
0.4} e
0.0020+
0.2t
0.0 0.0015 - - L -
0 2 0 2 4 6 8 10
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Fig.5 Gravitational potential versus radial distance. Fig.8 Energy condition versus radial distance.
107°,g = £1.5 x 107° h = £0.004587, k, = 0.5, k; = In our model, Figuresl and 2 affirm that the
0.0342,ky = 0.2,ks = 0.2,m = £7.15 x 107°,A = energy density and radial pressure are continuous

0.1, = 0.19897, 3 = 4.9166 x 10~° andu = +£481.124.  functions, have their maximum at the center, and
All graphs are plotted versus radial distance in the spekcifiemonotonically decrease towards the surface. We also
domain of radius as pétant et al(2020. observe that these trends are similar to the findings
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Fig.9 Energy condition versus radial distance. Fig. 12 Adiabatic index versus radial distance.
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Fig. 10 Energy condition versus radial distance. Fig. 13 Radial speed versus radial distance.
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Fig.11 Measure of anisotropy versus radial distance. Fig. 14 Charge density versus radial distance.

in Pantetal.(2020, Bishtetal. (2021, Maharajetal. sure is an increasing function towards the surface.
(2019, Pantetal. (2019, Gedelaetal. (2019 and This physical behavior is also found in the models
Sunzu & Danford (2017. It is clearly shown that by Thirukkanesk & Rage(2014, Maharaj & Mafa Takisa
the radial pressure vanishes at the surfaég (= (2013 andNgubelanga & Mahargj2015. Figures4 and
9.96 km). Figure 3 indicates that tangential pres- 5 demonstrate that metric potentials are continuously
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Fig.15 Electric field versus radial distance.
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Fig. 17 Surface redshift4;) versus radial distance.

(2020, Mauryaetal. (201§ and Maurya & Govender
(2017. The measure of anisotropy is an increasing
function with a discontinuous point between the inter-
mediate layer and the envelope layer (Fidl). This
demonstrates that tangential pressure is greater thaal radi
pressure. A similar profile is also obtained Bgnt et al.
(2020, Thirukkanesk & Rage{2014, Bhar et al.(2017,
Ngubelanga et a[2015 andMurad(2016. In Figure12,

the stability condition is found to satisfy the criteria

. . . 4 .
within the stellar interiorf " > 3) This shows a gradual

increase inl" towards the surface. In our treatment, we
obtained the minimum adiabatic inddx = 1.9769,
affirming that the object is stable from gravitational
collapse. We can also see a similar physical feature in
the treatments byrant et al.(2020, Bisht et al. (2021),
Jasim et al(2018 andBhar et al(2017. Figurel3 shows
that the speed of sound is less than the speed of light.
It is found to be in the range0@25523 < v <
0.69613). Similar physical features are also found by
Pant et al (2020, Pant et al(2019, Gedela et al(2019,
Maharaj & Mafa Takisg2013, Bhar et al.(2017, Murad
(2016 andMaharaj & Mafa Takisg2012. We observe in
Figures14 and 15 that charge density and electric field
are monotonically increasing functions. From Figl@

we observe that the trend of mass radius ratio is an
increasing function, and reaches its maximum value
w(z) = 0.3933 which satisfies the condition for an ultra-
dense compact star. The same physical profile is also
observed in the treatmentsiBént et al(2020, Bisht et al.
(2020 andJasim et al(2018. In Figure17 we observe
that the surface redshift is continuous and monotonically
increasing in nature with radial coordinatg,(attaining a
maximum value at, = 1.05188 which is physical and in

an acceptable range. The physical analysis demonstrates
that the presence of charge continues to yield a physically
reasonable model of a three-layer stellar object.

7 CONCLUSIONS

In this paper we formulated a new class of exact solutions
for superdense stellar spheres comprising three interior
layers. In our model we used the Einstein-Maxwell field
equations incorporating different EoSs. The core region
obeys a linear EoS, the intermediate layer has a quadratic
EoS (with no linear term) and the envelope layer is
outfitted with a general quadratic EoS. In our model we
made a specific choice for the electric field and one for

increasing functions. Figuré indicates that the mass is the gravitational potentials. Our model contains the elect
a monotonically increasing function with the increase offield which is absent ifPant et al(2020 andBisht et al.

radial distance. The energy conditions in Figures, 9

(202)). Setting electric field to zer@E' = 0), we regain

and 10 are decreasing functions that are positive. Thesg¢he anisotropic uncharged model developedPayt et al.

physical features are also found in the worksHant et al.

(2020, and other earlier models in the core-envelope
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setting. The plots generated indicate that the gravitation Jasim, M. K., Maurya, S. K., Ray, S., Shee, D., Deb, D., &
potentials, matter variables and other physical quastitie Rahaman, F., 2021, Results in Physics, 20, 103648

are well behaved and compatible with astrophysicalkomathiraj, K., & Maharaj, S. D. 2007, International Jouraa
studies. In this case, they are regular, continuous and Modern Physics D, 16, 1803

free from singularity throughout the interior of the stella Mafa Takisa, P., & Maharaj, S. D. 2016, Ap&SS, 361, 262
objects. The physical analysis demonstrates that our modéfafa Takisa, P., Maharaj, S. D., & Mulangu, C. 2019, Pramana,
is well behaved. The results obtained in this paper are 92,40

significant and allow us to describe the physical structuresMaharaj, S. D., & Mafa Takisa, P. 2012, General Relativityl an
features and properties of charged anisotropic superdenseCravitation, 44, 1419
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