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Abstract We investigate the relationship between cosmic curvature and model of dark energy (hereafter
DE) with recent Type Ia supernovae (hereafter SNe Ia) data, i.e., the Pantheon sample including 1048
SNe Ia with0.01 < z < 2.3. We obtain measurements of the dimensionless spatial curvature density
today, i.e.,Ωk0 = −0.062+0.189

−0.169,−0.004+0.228
−0.134, 0.127

+0.280
−0.276 and0.422+0.213

−0.338 at 68% confidence level (CL),
respectively, in the scenarios ofΛCDM, φCDM (i.e., scalar field DE),ωCDM andω0ωaCDM models. In
the scenario ofΛCDM model, a closed universe is preferred by the Pantheon sample, which is consistent
with that from the Planck CMB spectra. However, the uncertainty ofΩk0 from the Pantheon SNe sample is
about 8 times larger than that from the Planck data, so the former one supports a closed universe at a much
lower CL than that from the latter one. An open unverse is supported by the Pantheon sample at∼32% and
∼78% CLs, respectively, in theωCDM andω0ωaCDM models. Among these models, theφCDM model is
the one which supports the flat universe most strongly. It shows thatΩk0 is significantly dependent on the
adopted model of DE, and there is a negative correlation betweenΩk0 and the equation of state of DE.
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1 INTRODUCTION

As a kind of “standard candles” in the universe, Type
Ia supernovae (SNe Ia) supplied the first straightforward
evidence for an accelerating universe and for the exis-
tence of unknown “dark energy” (DE) driving this accel-
eration in 1998. At that time, the sample size was not
big, i.e., 50 SNe Ia fromRiess et al.(1998), and 42 ones
from Perlmutter et al.(1999). The population of SNe Ia
discovered has been growing rapidly over the last two
decades. The popular samples include the “gold” 2004
(157 data;Riess et al. 2004) and “gold” 2007 (182 data;
Riess et al. 2007) samples, the Supernova Legacy Survey
(SNLS) 1-year (115 data;Astier et al. 2006) and 3-year
(252 data;Guy et al. 2010) samples, the “Equation of
State: SupErNovae trace Cosmic Expansion” (ESSENCE)
supernova survey sample (60 data;Miknaitis et al. 2007;
Wood-Vasey et al. 2007; Davis et al. 2007), the Supernova
Cosmology Project (SCP) Union (307 data;Kowalski et al.
2008), Union2 (557 data;Amanullah et al. 2010) and
Union2.1 (580 data;Suzuki et al. 2012) compilations,
the Constitution set (397 data;Hicken et al. 2009), the

“Joint Light-curve Analysis” (JLA) compilation (740 da-
ta; Betoule et al. 2014) and the latest “Pantheon” sample
(1048 data;Scolnic et al. 2018). Besides the dramatic in-
crease in the population of SNe Ia, the techniques for mea-
suring light curve parameters are also continually being
improved to reduce systematic uncertainties (Riess et al.
1996; Perlmutter et al. 1997; Tonry et al. 2003; Wang et al.
2003, 2006; Guy et al. 2005, 2007; Conley et al. 2008).
At present, the most popular techniques mainly include
the SALT/SALT2 (Guy et al. 2005, 2007) and SiFTO
(Conley et al. 2008) models which fit the light curves of
supernovae by employing a spectral template.

The Cosmic Microwave Background (CMB) as
one of the standard cosmological probes has re-
vealed strong evidence (i.e. at more than 99% con-
fidence level, CL) for a closed universe in the non-
flat ΛCDM model, by using the near-term Planck
CMB spectra (Planck Collaboration et al. 2018, 2019;
Di Valentino et al. 2020). The observational constraints
on cosmic curvature are widely studied with differen-
t probes (Gong et al. 2008; Liao et al. 2017; Wang et al.
2017; Denissenya et al. 2018; Cao et al. 2019; Liao 2019;
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Qi et al. 2019; Wei & Melia 2020; Zhou & Li 2020). In
this work, we intend to explore what type of cosmic curva-
ture another standard cosmological probe, i.e., SNe Ia, may
support. In our analysis, the SNe Ia dataset adopted is the
Pantheon sample including 1048 data with0.01 < z < 2.3

(Scolnic et al. 2018). We also focus on investigating the
relationship between cosmic curvature and the DE mod-
el. In practice, four cosmological models with differen-
t kinds of equation of state (EoS) for DE are taken into
account. They are theΛCDM model with the cosmolog-
ical constant owning an EoSω = −1 (Peebles 1984),
theφCDM model with the scalar field DE implementing
a time-varying EoS−1 < ω < 0 (Peebles & Ratra 1988),
theωCDM model with the phenomenological DE featur-
ing an EoSω = Constant (Ratra 1991), and theω0ωaCDM
model with the dynamical DE having a parameterized EoS
ω(z) = ω0 + ωa

z
1+z proposed inChevallier & Polarski

(2001) andLinder (2003).
The paper is organized as follows: in Section2, we

present the cosmological models under consideration, and
demonstrate the methodology of using the SNe Ia data to
put constraints on the model parameters. In Section3, we
carry out observational constraints on the effective energy
density of the cosmic curvatureΩk0, and other parameters
in the considered cosmological models, and then mainly
analyze the relationships betweenΩk0 and the EoS of DE.
The main conclusions and discussions are summarized in
the last section.

2 METHODOLOGY AND DARK ENERGY
MODELS

To put constraints on the cosmological parameters with the
SNe Ia sample, one first needs to have the Friedmann e-
quations for the cosmological models under consideration.
According to the scope of this paper, cosmic curvature, pa-
rameterized through the effective energy density parameter
Ωk0, is taken to be a free parameter, rather than zero.

Among the various types of cosmological models, the
most economical one may be theΛCDM model (Peebles
1984), in which the accelerating expansion of the universe
is powered by the DE component modeled as Einstein’s
cosmological constant,Λ, with an EoS parameterω =

pΛ/ρΛ = −1, wherepΛ andρΛ are the fluid pressure and
energy density respectively. The Friedmann equation of the
ΛCDM model is

E2(z; p) = Ωm0(1 + z)3 +ΩΛ +Ωk0(1 + z)2, (1)

whereE(z) = H(z)/H0 is the reduced Hubble parameter
defined with the Hubble parameterH(z) and the Hubble
constantH0 = H(z = 0). The model parameters are
p = (Ωm0,Ωk0), whereΩm0 is the matter density param-
eter,Ωk0 is the effective energy density parameter of the

curvature andΩΛ = 1− Ωm0 − Ωk0 is the energy density
parameter ofΛ. In this paper, we utilize the subscript0 to
denote the present-day value of a quantity.

In the φCDM model, DE is treated as the scalar
field φ with a potential-energy densityV (φ) decreas-
ing gradually inφ, in which the DE density decreas-
es slowly in time. For the scalar field DE, several kind-
s of V (φ) can satisfy the requirement of the late-time
accelerating expansion of the universe (Samushia 2009).
We consider the scalar field DE with a potential-energy
density V (φ) = 1

2κm
2
pφ

−α, wheremp = 1/
√
G is

the Planck mass andG is the Newtonian constant of
gravitation, andα and κ are constants which should be
greater than or equal to zero (Ratra & Peebles 1988). The
φCDM model under consideration has been extensively s-
tudied (Samushia et al. 2010; Chen & Ratra 2011, 2012;
Mania & Ratra 2012; Chen & Xu 2016; Chen et al. 2015,
2016, 2017; Farooq et al. 2017; Ryan et al. 2019). It can
reduce to theΛCDM model in the case of takingα = 0.
The Friedmann equation of this model is

H2(z; p) =
8π

3m2
p

(ρm + ρφ)−
k

a2
, (2)

where the Hubble parameter is defined asH(z) = ȧ/a,
a(t) is the cosmic scale factor anḋa = da/dt. The DE
energy density is

ρφ =
m2

p

16π
(
1

2
φ̇2 + V (φ)). (3)

The EoS is

ω =
1
2 φ̇

2 − V (φ)
1
2 φ̇

2 + V (φ)
. (4)

One can figure out that this EoS satisfies−1 < ω < 1. The
motion equation forφ can be expressed as

φ̈+ 3
ȧ

a
φ̇+

∂V (φ)

∂φ
= 0. (5)

The Hubble parameterH(z) can be computed numerically
with Equations (2) and (5), as well as the initial condition-
s described in Peebles & Ratra (1988). According to the
usual convention, the effective energy density of the spatial
curvaturek is defined asΩk(a) ≡ −k/(a2H(z)2), so its
present-day value isΩk0 = Ωk(z = 0) = −k/(a20H

2
0 ).

In the φCDM model, the model parameters arep =

(Ωm0,Ωk0, α).
In the ωCDM model, the EoS of DE is regarded as

ω = Constant. It reduces to theΛCDM model in the case
of takingω = −1. One can obtain the Friedmann equation

E2(z; p) =Ωm0(1 + z)3 + (1− Ωm0 − Ωk0)

(1 + z)3(1+ω) +Ωk0(1 + z)2,
(6)

where the model parameters arep = (Ωm0,Ωk0, ω).
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Theω0ωaCDM model can be deemed as an extension
of theΛCDM andωCDM models, in which the DE is mod-
eled as a dynamical component with the EoS parameter-
ized asω = ω0 + ωaz/(1 + z). It reduces to theΛCDM
model in the case of takingω0 = −1 andωa = 0, and to
theωCDM model in the case of takingω0 = Constant and
ωa = 0. Obviously,ωa is a key parameter to denote the
dynamic level of the DE. The Friedmann equation of the
ω0ωaCDM model satisfies

E2(z; p) =Ωm0(1 + z)3 +Ωde0(1 + z)3(1+w0+wa)

e−
3waz

1+z +Ωk0(1 + z)2,
(7)

where the present-day value of the DE density isΩde0 =

1− Ωm0 − Ωk0.
To constrain the cosmological parameters with the

SNe Ia data, one should first figure out the corresponding
observable and its theoretical (predicted) value. The ob-
servable given in the “Pantheon” data set is the corrected
magnitudemcor (see Table A17 of Scolnic et al. 2018), i.e.,

mcor ≡ mB +K = µ+M, (8)

whereµ is the distance modulus,mB is the apparentB-
band magnitude andM is the absoluteB-band magni-
tude of a fiducial SN Ia. According to equation (3) in
Scolnic et al.(2018), we can get the correction termK =

αx1 − βc + ∆M + ∆B which includes the correction-
s related to four different sources (for more details, see
Scolnic et al. 2018). According to the definition of the dis-
tance modulus, one has

µ = 5 log(dL) + 25, (9)

wheredL is the luminosity distance in Mpc. The observ-
ableY obs = µ+M displayed in Equation (8) should cor-
respond to the theoretical (predicted) value

Y th = 5 log(dL) + 25 +M

= 5 log[(1 + z)D(z)] + Y0, (10)

where the constant termY0 is written asY0 = M +

5log(
cH−1

0

Mpc ) + 25, and the normalized comoving distance
D(z) is defined by,

dL(z) =
c(1 + z)

H0
D(z), (11)

wherec is the speed of light. The normalized comoving
distanceD(z) can be expressed as

D(z) =



































1
√

−Ωk0

sin

(

√

−Ωk0

∫

z

0

dz̃

E(z̃)

)

if Ωk0 < 0,

∫

z

0

dz̃

E(z̃)
if Ωk0 = 0,

1
√

Ωk0

sinh

(

√

Ωk0

∫

z

0

dz̃

E(z̃)

)

if Ωk0 > 0.

(12)

The likelihood of the Pantheon sample is given by

L ∝ e−χ2/2. (13)

χ2 is constructed as

χ2 = ∆
−→
Y

T
C−1∆

−→
Y , (14)

where the residual vector for the SNe Ia data in the
Pantheon sample is∆

−→
Y i = [Y obs

i − Y th(zi;Y0, p)]. The
covariance matrixC of the sample includes the contribu-
tions from both the statistical and systematic errors. The
nuisance parameter, i.e., the constant termY0, is marginal-
ized over with the analytical methodology presented in
Giostri et al.(2012). The posterior probability distributions
of model parameters are obtained with an affine–invariant
Markov chain Monte Carlo (MCMC) ensemble sampler
(emcee;Foreman-Mackey et al. 2013), where the likeli-
hood can be worked out with Equations (13) and (14). We
assume a flat prior for each parameter over a range of in-
terest. In the framework of each cosmological model, the
number of walkers is set as the number of model parame-
ters times 40, and the number of steps is 3000.

3 ANALYSIS AND RESULTS

In the frameworks of the cosmological models under con-
sideration, the observational constraints from the Pantheon
sample are presented in Table1, including the mean val-
ues and 68% confidence limits on the parameters. In the
ΛCDM model, a closed universe is preferred with a mean
valueΩk0 = −0.062, but at a non-high CL (∼ 25% CL)
because of a high uncertainty. The result is consistent with
that fromWang(2018), in which the non-flatΛCDM mod-
el is constrained with the Pantheon sample via the MCMC
code CosmoMC (Lewis 2013). In the φCDM model, it
prefers a flat universe withΩk0 = −0.004+0.228

−0.134 at 68%
CL. An open universe is preferred in both theωCDM and
ω0ωaCDM models, according toΩk0 = 0.127+0.280

−0.276 and
0.422+0.213

−0.338 at 68% CL, respectively. It turns out that the
bound onΩk0 is significantly dependent on the adopted DE
model. Further, we employ Bayesian Information Criterion
(BIC) to do the model comparison. BIC (Schwarz 1978) is
defined as

BIC = −2 lnLmax + k lnN, (15)

where Lmax is the maximum likelihood (i.e.,
−2 lnLmax = χ2

min under the Gaussian assumption),k

is the number of model parameters andN is the size of
the sample used in the analysis. BIC is widely utilized in
a cosmological context (see e.g.Liddle 2004; Biesiada
2007; Li et al. 2013; Birrer et al. 2019; Chen et al. 2019).
The favored model should be the one with a minimum BIC
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Table 1 Observational constraints on the parameters of interest from the Pantheon SNe sample. The mean values with
68% confidence limits are displayed.

Model Parameters χ2
min/d.o.f BIC

ΛCDM Ωk0 = −0.062+0.189

−0.169
Ωm0 = 0.323+0.069

−0.075
... ... 1026.7/1048 1040.6

φCDM Ωk0 = −0.004+0.228

−0.134
Ωm0 = 0.215+0.060

−0.082
α = 0.679+1.168

−0.505
... 1026.5/1048 1047.4

ωCDM Ωk0 = 0.127+0.280

−0.276
Ωm0 = 0.288+0.076

−0.078
ω = −1.236+0.346

−0.722
... 1026.4/1048 1047.3

ω0ωaCDM Ωk0 = 0.422+0.213

−0.338
Ωm0 = 0.219+0.134

−0.129
ω0 = −1.784+0.770

−1.291
ωa = −0.110+6.116

−5.289
1025.6/1048 1054.4

Fig. 1 Contours in the(Ωm0,Ωk0) plane refer to the 2D marginalized distributions at 68% and 95% CLs, constrained
with the Pantheon sample in the scenarios ofΛCDM, φCDM, ωCDM andω0ωaCDM models.

Fig. 2 The contours correspond to the 2D probability distributions at 68% and 95% CL for parameters of
interest.
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value. The BIC values for theΛCDM, φCDM, ωCDM and
ω0ωaCDM models are 1040.6, 1047.4, 1047.3 and 1054.4,
respectively. So, theΛCDM model is the one which fits
the Pantheon SNe sample best.

To study the correlation betweenΩk0 andΩm0, we
display the two-dimensional (2D) probability distributions
in the (Ωm0,Ωk0) plane for all the cosmological models
under consideration in Figure1. One can find a negative
correlation betweenΩk0 andΩm0 in theΛCDM, ωCDM
andω0ωaCDM scenarios. However, there is not an appar-
ent correlation between them in theφCDM scenario. Then,
we turn to study the relations betweenΩk0 and other pa-
rameters besidesΩm0 in Figure2. We find a negative cor-
relation betweenΩk0 and the DE EoS in theωCDM model
from the upper-left panel of Figure2. The upper-right pan-
el of Figure2 demonstrates that there is not an obvious cor-
relation betweenΩk0 andα in theφCDM scenario. From
the lower panels of Figure2, we find a negative correlation
betweenΩk0 andω0, but no obvious correlation between
Ωk0 andωa is discovered in theω0ωaCDM model.

In theΛCDM scenario, the mean valueΩk0 = −0.062

constrained from the Pantheon SNe sample is close to
but a bit smaller than the one withΩk0 = −0.044

from the Planck CMB spectra (Planck Collaboration et al.
2018). Nevertheless, the uncertainty ofΩk0 from the
Pantheon sample is about 8 times larger than that from
the Planck data, hence the former supports a closed u-
niverse at a much lower CL (at∼ 25% CL) than that
from the latter (at∼ 99% CL). Moreover, as discussed
in Di Valentino (2020), when jointing the Planck CMB
along with the baryon acoustic oscillations (BAO) da-
ta, Ωk0 increases toΩk0 = 0.0008+0.0038

−0.0037 at 95%
CL (Planck Collaboration et al. 2018; Di Valentino et al.
2020). It turns out that the limit onΩk0 changes signifi-
cantly with the data sets adopted.

4 CONCLUSIONS

By considering four different kinds of DE models, we have
studied the relation between the energy density of spatial
curvatureΩk0 and the DE model with the recent SNe Ia
data, i.e., the Pantheon sample. It turns out that the bound
on Ωk0 is dependent notably on the adopted DE model,
and a negative correlation exists betweenΩk0 and the DE
EoS. Briefly speaking, a closed universe is preferred in the
ΛCDM model; a flat universe is heavily supported in the
φCDM model; an open universe is favored in theωCDM
andω0ωaCDM models.

In the scenario of theΛCDM model, the limits onΩk0

at 68% areΩk0 = −0.062+0.189
−0.169 from the Pantheon sam-

ple, andΩk0 = −0.044+0.018
−0.015 from the Planck CMB spec-

tra (Planck Collaboration et al. 2019). Both the Pantheon
SNe sample and the Planck CMB spectral data support a

closed universe. Nevertheless, the uncertainty inΩk0 from
the former one is much larger than that from the latter one,
thus the former one supports a closed universe at a much
lower CL (at∼ 25% CL) than that from the latter one
(at ∼ 99% CL). In addition, when combining the Planck
CMB with the BAO data, the value ofΩk0 changes to
Ωk0 = 0.0008+0.0038

−0.0037 at 95% CL, which is in good agree-
ment with a flat universe. It reflects the sample dependence
of the limit onΩk0. Consequently, in view of the noticeable
model-dependence and sample-dependence of the limit on
Ωk0, one should modestly apply the assumption of a flat
universe.
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