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Abstract Radio frequency interference (RFI) is an important challenge in radio astronomy. RFI comes from
various sources and increasingly impacts astronomical observation as telescopes become more sensitive. In
this study, we propose a fast and effective method for removing RFI in pulsar data. We use pseudo-inverse
learning to train a single hidden layer auto-encoder (AE). We demonstrate that the AE can quickly learn the
RFI signatures and then remove them from fast-sampled spectra, leaving real pulsar signals. This method
has the advantage over traditional threshold-based filter method in that it does not completely remove con-
taminated channels, which could also contain useful astronomical information.
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1 INTRODUCTION

The impact of radio frequency interference (RFI) in radio
astronomy is becoming more significant as human activity
flourishes and radio telescopes become more sensitive. As
one of the most sensitive single-dish radio telescopes, the
Five-hundred-meter Aperture Spherical radio Telescope
(FAST) is particularly susceptible to RFI, which comes
from many different sources, such as terrestrial signals,
cellphone stations, airplanes, and radar (Fridman & Baan
2001). Man-made RFI usually exists in a narrow stationary
frequency range or in the form of short impulsive signals.
Sometimes, satellites will generate RFI that changes over
time due to Doppler shifting. Impulsive time-domain RFI
can be identified by taking running-statistics on the signal
time series.

Many techniques have been proposed to excise
RFI from astronomical data, such as reference anten-
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nas for RFI signal subtraction (Barnbaum & Bradley
1998; Briggs et al. 2000; Finger et al. 2018), spatial filter-
ing techniques (Leshem et al. 2000; Ellingson & Hampson
2002; Smolders & Hampson 2002; Boonstra et al. 2002;
Kocz et al. 2010; Keane et al. 2018), threshold-based
signal filter method (Baan et al. 2004; Offringa et al.
2010; Nita & Gary 2010; Peck & Fenech 2013), machine-
learning or deep-learning methods (Burd et al. 2018;
Czech et al. 2018; Yang et al. 2020). Eatough et al.(2009)
introduced a zero-DM filter that utilized a signature of
wide-band impulsive RFI and removed them effectively in
pulsar data.Pen et al.(2009) proposed the singular value
decomposition (SVD) RFI mitigation method. An RFI sig-
nal is usually stronger than an astronomical signal. As a
result, the largest SVD eigen values and vectors often rep-
resent RFI and the persistent structure in the data, such as
the bandpass. By setting these eigenvalues to zero when re-
constructing the data, we can possibly remove strong RFIs
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and bandpass. A recent review byAn et al. (2017) intro-
duced all kinds of RFI mitigation strategies.

The FAST (Nan et al. 2011) is currently being com-
missioned (Jiang et al. 2019) and the 19-beams receiv-
er has been installed (Li et al. 2018). Searching for new
pulsars is one of the main scientific objectives of FAST,
at present, it has discovered dozens of new pulsars
(Qian et al. 2019; Zhang et al. 2019).

The FAST pulsar data includes two significant compo-
nents: (1) the bandpass of the data; and (2) RFI, both wide-
band and narrow-band. These two components are always
or frequently reoccurring in the data. Conversely, real pul-
sar signals are often weaker than RFI and uncommon in
the data. RFI excision is very important for pulsar search.
However, there are two problems in the traditional meth-
ods of RFI mitigation, one is the low efficiency and the
other is incomplete pulsar signal. When using threshold-
based method to mitigate RFI, the pulsar signal will be in-
fluenced. Therefore, we could use machine learning tech-
niques to model the signature of bandpass and RFI from
a large segment of data, and then apply these models to fit
and reconstruct data. Because these models are constructed
from common reoccurring signatures, they could potential-
ly catch and clean common RFI. Following these ideas, we
experimented to remove RFI from pulsar data using the un-
supervised machine learning method (i.e. pseudo-inverse
learning auto-encoder). Our method is in theory similar to
the SVD method. We use auto-encoder to learn the primary
components of data. Because the most significant compo-
nents of the raw data are the spectral bandpass and RFI, the
recomposed data mainly contains these signals. When we
subtract the recomposed data from the raw input data, we
leave what is uncommon, (i.e., astronomical signals).

Our proposed method has two advantages: (1) the in-
fluence of pulsar signal is reduced by adjusting the num-
ber of neurons in the hidden layer and regularization pa-
rameter; and (2) by training the auto-encoder with pseudo-
inverse learning, the algorithm can run efficiently.

The rest of this paper is organized as follows. In
Section 2, we introduce pseudo-inverse learning auto-
encoder (PILAE), and we then use the method to remove
RFI. In Section3, the ultra-wide-band data of FAST is pro-
cessed through PILAE, and the experiment results are an-
alyzed. Our discussion and conclusions are described in
Section4.

2 METHOD

In this section, we introduce pseudo-inverse learning auto-
encoder (PILAE). We then describe the procedure of miti-
gation RFI by using PILAE according to the characteristic
of data.

2.1 Pseudo-inverse Learning Auto-encoder

Pseudo-inverse learning (PIL) was proposed by
Guo & Lyu (2001) and Guo & Lyu (2004). Wang et al.
(2017) used pseudo-inverse learning for training s-
tacked auto-encoder to classify astronomical spectrum
and recover defective spectra. The training speed of
this method is fast because there is only feed-forward
propagation in PILAE. Because of the heavy burden
of FAST data storage, it is particularly important to
propose rapid computational method to eliminate RFI.
Therefore, we have made some improvements to the
traditional PILAE method. It can rapidly remove RFI
while retaining the celestial signal. The training set is
X = [x1,x2, · · · ,xN ] ⊆ R

N×n, theith vector can be de-
scribed as:xi = [x1, x2, · · · , xn]

T ⊆ R
n×1. X ⊆ R

N×n

is a column vector. So, the steps of pseudo inverse learning
to train the auto-encoder can be concluded as follows:
Step 1: the number of hidden layer neurons setting. The
rank of the input matrix is used to decide the number of
hidden layer neurons. A singular value decomposition is
applied to the input matrix:

X = UΣV
T , (1)

where matricesU ⊆ R
N×N andVT ⊆ R

r×r are orthog-
onal matrices,Σ ⊆ R

N×r is a diagonal matrix. The diag-
onal elements are the eigenvalues of the input matrixX.
The number of non-zero elements is the rankr of theΣ

matrix:

r = rank(X) = the number of nonzero(Σ). (2)

The number of hidden layer neuronsp is set to be less than
the dimensionn of the input matrix for learning the fea-
tures of the training data. It also can avoid identity map-
ping and complex calculation of high dimensions. If the
number of hidden layer neurons is too small, then this will
lead to large reconstruction errors and the original data fea-
ture missing. The parameterp is related to the rank of the
input matrixr and the dimension of the input matrixn. At
the same time, we should be aware of the feature learning
of the original data and the model reconstruction error. So,
the value ofp is set to be between the number of samples
and the rank:

p = r + α(n− r), α ∈ (0, 1], (3)

where the parameterα is an empirical parameter to set the
number of hidden neurons. If the auto-encoder input ma-
trix is full rank, then the rankr of the input matrix is equal
to the dimensionn of the input data. We then utilize the di-
mension reduction to set the value of the number of hidden
layer neuronsp (β is empirical parameter) to

p = βr, β ∈ (0, 1]. (4)
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When removing RFI, we can set the number of hidden lay-
er elements based on experimental experience, which can
improve the efficiency of the algorithm without calculating
the rank of the input matrix.

Step 2: encoder weight initialization (We). Utilizing
random value (zero median and unit variance) to initialize
the encoder weight. Therefore, the input matrix can map
n dimension data top dimension through encoder weight,
and the output of the hidden layer is

H = XWe. (5)

Step 3: decoder weight calculation (Wd). The loss
function of the auto-encoder is

E =
1

2
‖HWd −X‖2, (6)

where symbolWd is the decoder weight of the auto-
encoder. To avoid overfitting,L2 norm is added to the loss
function, which thus can be written as

E =
1

2
‖HWd −X‖2 +

λ

2
‖Wd‖

2. (7)

λ is the regularization parameter, which can reduce the
influence on the celestial signal when removing the RFI.
Taking the derivative of Equation (7) and the equation can
be expressed as

(HWd −X)HT + λWd = 0. (8)

Therefore, the decoder weight can be expressed as

Wd = (HT
H+ λI)−1

H
T
X. (9)

Step 4: the raw data reconstruction. After this calcula-
tion, we can obtain the reconstruction data.H is the output
of the hidden layer, andWd is the decoder weight.O is the
recomposed data, which mainly contain the spectral band-
pass and radio interference signals as

O = HWd. (10)

2.2 PILAE-based RFI Mitigation

We utilize one basic auto-encoder (AE) to mitigate the RFI.
The network contains an input layer, a hidden layer, and an
output layer. Although the input data and output data tend
to be consistent in AE, there are still reconstruction errors
because of data dimensionality reduction through the hid-
den layer. In general, the radio interference signal is much
stronger than the pulsar signal in the data. Therefore, the
output layer mainly outputs RFI and bandpass signals. We
trained the model by pseudo-inverse learning. The model
can run efficiently because it does not need back propaga-
tion. Our algorithm contains the following four steps (the
algorithm flow chart is shown in Fig.1):

Start 

Normalizing the input data 

Calculating the encoder weights 

Compute the input and output of 

the hidden layer 

Reconstruct cleaned data 

End 

Fig. 1 The algorithm flow chart of PILAE RFI removal.

Step 1: normalizing the input data. The input data is
a two-dimensional matrix (4096× 4096), where each row
represents different time data of the same frequency band,
and each column represents different frequency data of the
same time band. We normalize the input data value to be-
tween 0 and 1.

Step 2: calculating the encoder weights. We randomly
initialize the encoder weight, and the weight value satisfies
the Gaussian distribution with a mean value 0 and variance
1. In the traditional PIL algorithm, the pseudo-inverse of
the input matrix is used as the weight of the encoder. We
randomly initialize the weight of encoder to extract ran-
dom features from input data, which can also be regarded
as adding noise to data and improve the efficiency of RFI
mitigation.

Step 3: compute the input and output of the hidden lay-
er. The input of the hidden layer is calculated through the
input matrix and the weight of the encoder (Eq. (5)), and
computed the output of the hidden layer using activation
function (sigmoid function).

Step 4: reconstruct cleaned data. At first, we calculate
the weight of the decoder according to Equation (9). Then,
according to Equation (10), we can obtain the output ma-
trix (O), which is the reconstruction of the input data. The
recomposed data mainly contains RFI data. Thus, we use
Equation (11) to remove RFI from raw data as

R = X−O, (11)

whereR is the cleaned data after bandpass and RFI has
been removed,X is the original data.
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3 EXPERIMENTS AND RESULTS

In this section, we present how the PILAE model is trained,
and we experiment with the model’s performance and ro-
bustness.

3.1 Experiment Data

We use FAST ultra-wide-band (UWB) receiver data to test
the validity of the model. The FAST ultra-wide-band re-
ceiver was installed on FAST from 2016 to 2018 for testing
purposes. During that time, it was used for pulsar search-
es in drifting and tracking mode and discovered dozen-
s of new pulsars. The UWB receiver operates in 270–
1800 MHz frequency range with an effective system tem-
perature in the range of 60–120K. We use it to sample
spectrum in 200µs intervals. In each interval, we collect
two spectra, one with 4096 channels in 0–1 GHz frequen-
cy range, one with 4096 channels in 1–2 GHz frequen-
cy range. Not all frequency channels in the data contain
useful astronomical data, but some of them are occasion-
ally contaminated by broad-band time-domain RFI and
narrow-band frequency-domain RFI, which reduced their
effectiveness in detecting weak pulsars. In this experiment,
we use four 0–1 GHz FAST UWB pulsar data for testing.
The four pulsar data contain real pulsars, which we use
to demonstrate how the PILAE method removes bandpass
and narrow-band RFI without subtracting the pulsar signal.
The pulsars are J2112+4059, J2113+4644, J0659+1414
and J2006+4101. Pulsar J2112+4059, J0659+1414 and
J2006+4101 have strong interference signals, while pulsar
J2113+4644 has strong pulsar signals and weak interfer-
ence signals.

3.2 PILAE Hyper Parameter Tuning

We select the data of pulsar J2112+4059 to optimize the
hyper parameters of our model, and use the S/N of the s-
ingle pulse to evaluate the performance. The J2112+4059
original data are shown in Figure2. The horizontal axis
is time and the vertical axis is frequency. The pulsar sig-
nal is hard to visualize in Figure2, because of the ex-
istence of strong RFI and varying signal baseline (band-
pass). Especially in the low-frequency part, pulsar signal
due to the raising baseline. To show the pulsar signal after
RFI removal, we apply PILAE to the data in Figure2, we
use 400 neurons in the hidden layer, andλ = 0.1 regular-
ization. After RFI mitigation, the pulsar signal is clearly
visible in Figure3. The pulsar signal in Figure3 is dis-
persed by interstellar medium, causing low-frequency sig-
nals to arrive later than higher-frequency signals. We can
remove this dispersion effect through an operation called
de-dispersion. We can fold the de-dispersed data by using

Fig. 2 The original frequency versus time pulsar data,
down-sampled to 4096× 4096. There are strong narrow-
band RFI and a pulsar’s signal in the data.

Fig. 3 The data in Fig.2 cleaned with PILAE, showing
pulsar signal without strong RFI.

the period of the pulsar and summed all the frequencies
into a folded pulse profile, and we then calculate the S/N
of the profile1. This S/N is an good indicator of the signal
strength and we used it to evaluate our model in subsequent
analysis.

To optimize the hyper parameters of our model, we
perform two experiments to 1. we experiment different lev-
els of regularization with a fixed-number of hidden layer
neurons; and 2. we changed the number of neurons in the
hidden layer and find the setting that maximize the result-
ing pulsar S/N.

In the first experiment, we use J2112+4059 pulsar data
to test and optimize for the regularization parametersλ.

1 Refer to formula 7.1 of handbook of pulsar astronomy, the authors
are D. R. Lorimer & M. Kramer.
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Fig. 4 The number of neurons in the hidden layer and the
S/N of four pulsars relation curve.

We set the number of hidden layer neurons to 20, and grid
searchedλ between 0 and 1. The resulting S/N of the pulsar
is listed in Table1. The experimental results show that the
different values ofλ have very limited impact to the S/N.
Therefore, we choose a medium value of 0.5 forλ in our
future experiments.

In the second experiment, we use pulsar J2112+4059,
J2113+4644, J0659+1414, and J2006+4101 to fine tune
the number of neurons in the hidden layer. We setλ =

0.5, and experimented with a range of numbers between
2 and 400 for the hidden-layer neurons, and calculate
the resulting S/Ns after RFI mitigation. Figure4 shows
that for strong pulsars like J2112+4059, J2113+4644,
J0659+1414, the optimal number of neurons is possi-
bly around 20. The S/N of relatively weak pulsars like
J2006+4101 seems to increase slowly with number of neu-
rons. According to this experiment, we choose to use 20
neurons in the hidden layer for later experiments.

3.3 PILAE Model Performance and Robustness

In this section, we use UWB FAST data to test and com-
pare the performance of PILAE and SVD models. We de-
termine the PILAE hyper parameters through the afore-
mentioned experiments and set the number of the hid-
den layer neurons to 20, andλ to 0.5, and use this mod-
el to remove RFI from pulsars J2112+4059, J2113+4644,
J0659+1414, and J2006+4101. For the SVD method, we
optimize for the best rank of eigenvectors to remove as
RFI based on the resulting S/N, and choose 2 of the largest
SVD eigenvectors and flagged them as RFI. We present
the S/Ns of the pulsar signals before and after apply-
ing PILAE and SVD to the data of pulsars J2112+4059,
J2113+4644, J0659+1414 and J2006+4101 (Table2). For
PSR J2113+4644, J0659+1414, both models end up im-

prove the S/N of the pulsars. But for PSR J2112+4059, be-
cause of the presence of a strong pulsar signal, both PILAE
and SVD models seem to have absorbed a small portion
of the pulsar signals into its reconstructed RFI and pro-
duce reduced S/N. For all four pulsars, the RFI mitigation
results of the PILAE method are better than or equal to
those of the SVD method. For PSR J2006+4101, we can
increase the number of hidden layer neurons in the PIALE
method. When the number of hidden layer neurons is set
to 200, the S/N of PSR J2006+4101 can reach 25 after RFI
removal. We show the pulse profiles and the frequency-
phase plot of the four pulsars before and after RFI removal
in Figures5, 6, 7 and8. The pulse profiles of the strong
pulsars J2112+4059 and J2113+4644 show some degree
of baseline distortion after RFI treatments, which suggest-
s that PILAE and SVD methods may affect the off pulse
profile baseline. The frequency-phase plots of these pul-
sars show that most of the bright narrow-band RFI features
in the original data are no longer visible after the RFI miti-
gation. However, some weaker narrow-band RFI remain-
s. These remaining RFIs seem to be varying in a short
time scale. This suggests that PILAE and SVD-based RFI
mitigation methods are best for removing persistent RFIs;
while the fast-varying RFIs need to be treated with other
techniques.

We compared the results of RFI cleaning from the t-
wo models and also evaluated the running time of the two
methods. FAST pulsar data is a two-dimensional matrix
4096× 262144. Our method takes a short computing time,
it takes∼0.1 s to remove the RFI from a single set of pul-
sar data (4096×4096 2D data) using a 24–core computer.
A fits data process cost about∼6 s. SVD method2 will take
about 16 s to finish processing 4096×4096 2D data, it takes
∼17 min to process one fits data. The PILAE method ex-
hibits a faster performance than that exhibited by the SVD
method.

Finally, we test whether the randomly initialized
PILAE model converges and is robust. The weight of the
encoder is randomly initialized to satisfy the Gaussian dis-
tribution with mean value 0 and variance 1, the number
of hidden layer neurons is set to 20, and the regulariza-
tion λ is set to 0.5. After removing RFI from J2112+4059
pulsar data, the S/N can be calculated. We perform 10 in-
dependent experiments and obtain the mean and standard
deviation of the S/N is62.7(±0.7). In comparison, we use
the bootstrap method to estimate the nature random fluc-
tuation in S/N due to sampling. We select one dataset and
randomly selected half of its channels to calculate the S/N.
The resulting S/N is58.7(±1.1) in 10 independent experi-
ments. The experimental results show that the error caused
by random initialization of the encoder weight is compa-

2 The method used numpy.linalg.svd function.
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Table 1 The Relation between Regularization Parameters and S/N

λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S/N 63 64 63 63 63 63 63 62 62 63

Table 2 PILAE and SVD RFI Mitigation Results

Pulsar Name Original S/N PILAE S/N SVD S/N

J2112+4059 89 63 62
J2113+4644 98 105 98
J0659+1414 82 114 103
J2006+4101 23 22 22

Fig. 5 The pulse profile and the folded frequency-phase plot of PSR J2112+4059 before and after RFI mitigation process-
es. The left panels show the original data. The middle panelsshow the result of the PILAE method. The right panels show
the result of the SVD method.

Fig. 6 The pulse profile and the folded frequency-phase plot of J2113+4644 presented in the same order as in Fig.5.
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Fig. 7 The pulse profile and the folded frequency-phase plot of J0659+1414 presented in the same order as in Fig.5.

Fig. 8 The pulse profile and the folded frequency-phase plot of J2006+4101 presented in the same order as in Fig.5.

rable to the nature fluctuation of S/N itself and does not
cause substantial extra divergence, indicating that the per-
formance of the PILAE model is robust against random
initialization.

4 DISCUSSION AND CONCLUSIONS

In this paper, we introduce a new RFI mitigation algo-
rithm – PILAE. This algorithm can remove both persis-
tent narrow-band RFI and the bandpass from pulsar data.
Traditional threshold-based filter method often complete-
ly removes all data in bad channels or contaminated spec-
tral samples, causes the pulsar signals in those channel-
s and samples to be lost. We demonstrate in Section3

Table 2 that PILAE could cleanly remove both types of
RFI yet retain majority of the pulsar signals. This is a
highly desirable feature for pulsar searching as well as for
a slew of other exploratory scientific objectives (Li et al.
2019) including radio exoplanets, gravitational wave, and
so on. We also demonstrate that our method is slightly
better than the state-of-the-art SVD-based RFI removal
technique in recovering pulsar signals (Table2), as well
as taking less computing cycles to complete (Sect.3.3).
Although better than threshold-based method in principle,
the PILAE method and the SVD method share the same
caveat that they sometimes still remove a small potion of
the pulsar signal, especially when the pulsar is substan-
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tially stronger than the RFIs. In these cases (for example
for PSR J2122+4059), the PILAE and SVD methods still
could clearly enhance the visibility of the signal to eyes,
and they are unlikely to hinder the detection of the pulsar
signal because they are already very strong. However, it is
not advised to use these methods to precisely measure the
pulse profiles and polarizations because they could intro-
duce small distortion to the baseline.

At present, FAST produces over two hundred terabytes
of data per day. During one night of drift-scan, the tele-
scope produces around 10 000 fits files in pulsar search
project. Therefore, we need an efficient way to process da-
ta in order to keep up with the data stream. The training
of PIL is easier than other deep-learning methods because
the training process does not require back-propagation. It
takes∼6 s to process one fits data using a 24–core comput-
er without considering I/O time. We can process∼ 14 000

fits data per day using this method. Therefore, this method
can be implemented efficiently and it can meet the require-
ments of real-time processing of FAST data.

We could use this method to quickly clean the data
and then process the results by eye or other searching tech-
niques to determine whether or not they contain pulsar sig-
nals. In the future, machine learning methods can be used
to identify these images directly, which will greatly im-
prove the efficiency of the pulsar search.

In this work, we find the optimal hyper parameters
through grid search. In future work, the hyper parameters
could be determined automatically through the method of
auto machine leaning (Yao et al. 2018).
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