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Abstract Radio frequency interference (RFI) is an important chajéeim radio astronomy. RFI comes from
various sources and increasingly impacts astronomicarghton as telescopes become more sensitive. In
this study, we propose a fast and effective method for rentgpRiFI in pulsar data. We use pseudo-inverse
learning to train a single hidden layer auto-encoder (AE.d&monstrate that the AE can quickly learn the
RFI signatures and then remove them from fast-sampledrspéeaving real pulsar signals. This method
has the advantage over traditional threshold-based filthod in that it does not completely remove con-
taminated channels, which could also contain useful astmical information.

Key words: pulsars: general — methods: numerical — methods: data sisaly

1 INTRODUCTION nas for RFI signal subtractionBarnbaum & Bradley
1998 Briggs et al. 2000Finger et al. 2018 spatial filter-
The impact of radio frequency interference (RFI) in radioing techniquesl(eshem et al. 200Ellingson & Hampson
astronomy is becoming more significant as human activit)gooz Smolders & Hampson 200Boonstra et al. 2002
flourishes and radio telescopes become more sensitive. A&cz et al. 2010 Keane etal. 2018 threshold-based
one of the most sensitive single-dish radio telescopes, th§ignal filter method Baan etal. 2004 Offringa et al.
Five-hundred-meter Aperture Spherical radio Telescopgom Nita & Gary 2010 Peck & Fenech 20)3machine-
(FAST) is particularly susceptible to RFI, which COMES|aarming or deep-learning methodBufd etal. 2018
from many different sources, such as terrestrial signalsgzech et al. 2018vang et al. 202 Eatough et al(2009
cellphone stations, airplanes, and radanidman & Baan  jniroduced a zero-DM filter that utilized a signature of
200]). Man-made RFI usually exists in a narrow stationaryige-pand impulsive RFI and removed them effectively in
frequency range or in the form of short impulsive signals.pulsar dataPen et al(2009 proposed the singular value
Sometimes, satellites will generate RFI that changes OVefecomposition (SVD) RFI mitigation method. An RFI sig-
time due to Doppler shifting. Impulsive time-domain RFl 5| js ysually stronger than an astronomical signal. As a
can be identified by taking running-statistics on the Signa}esult, the largest SVD eigen values and vectors often rep-
time series. resent RFI and the persistent structure in the data, such as
Many techniques have been proposed 0 exCiSgne pandpass. By setting these eigenvalues to zero when re-
RFI from astronomical data, such as reference antenspnstructing the data, we can possibly remove strong RFIs
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and bandpass. A recent review By et al. (2017 intro- 2.1 Pseudo-inverse L earning Auto-encoder
duced all kinds of RFI mitigation strategies.

The FAST (Nan et al. 201}Lis currently being com-
missioned Jiang et al. 201Pand the 19-beams receiv-
er has been installediet al. 201§. Searching for new

Pseudo-inverse learning (PIL) was proposed by
Guo & Lyu (2000) and Guo & Lyu (2004. Wang et al.
(2017 used pseudo-inverse learning for training s-

pulsars is one of the main scientific objectives of FAST,taCkeOI auto-encoder to classify astronomical spectrum

at present, it has discovered dozens of new pulsart nd reiﬁvzr_de;fein\t/)e spectrtz?]. Thg trallmr;g j[;eed (:j
(Qian et al. 2019Zhang et al. 2019 is method is fast because there is only feed-forwar

The FAST pulsar data includes two significant compo—g;oﬁig.irt'o dnati: SPt(I)I;:Ee. I?te ?guszrti?:fultz?rle r;;avét:#trdtin
nents: (1) the bandpass of the data; and (2) RFI, both wide- ge, P y 1mp

propose rapid computational method to eliminate RFI.
band and narrow-band. These two components are alwa)ﬁ] )
o erefore, we have made some improvements to the
or frequently reoccurring in the data. Conversely, reat pul

. traditional PILAE method. It can rapidly remove RFI
sar signals are often weaker than RFI and uncommon in

o . while retaining the celestial signal. The training set is
the data. RFI excision is very important for pulsar search Nx .
. o = [x1,X2, -+ ,xn] € RY*", theith vector can be de-
However, there are two problems in the traditional meth-__ . T 1 N x
o . - scribed asx; = [z1,x9, - ,z,]" C R X C RY*™
ods of RFI mitigation, one is the low efficiency and the. . .
. ) . is a column vector. So, the steps of pseudo inverse learning
other is incomplete pulsar signal. When using threshold- . ;
. ; . . to train the auto-encoder can be concluded as follows:
based method to mitigate RFI, the pulsar signal will be in- . . .
. . Step 1: the number of hidden layer neurons setting. The
fluenced. Therefore, we could use machine learning tech- . o .
) . rank of the input matrix is used to decide the number of
nigues to model the signature of bandpass and RFI from. . e
jdden layer neurons. A singular value decomposition is
a large segment of data, and then apply these models to fit lied to the input matrix:
and reconstruct data. Because these models are construc?@d) P
from common reoccurring signatures, they could potential- X =UxVT, (1)
ly catch and clean common RFI. Following these ideas, we h . NXN and VT e h
experimented to remove RFI from pulsar data using the un/nere matricedJ € R andV™ ¢ R""" are orthog

i NX7 j i i i20-
supervised machine learning method (i.e. pseudo-inveré%nal matricesy. C R is a diagonal matrix. The diag

learning auto-encoder). Our method is in theory similar toonal elements are the eigenvalues of the input mafiix

the SVD method. We use auto-encoderto learn the primar-yrhe _number of non-zero elements is the ranid the 3
components of data. Because the most significant compg-]at”X:

nents of the raw data are the spectral bandpass and RFI, the . — rankX) = the number of nonzef&).  (2)
recomposed data mainly contains these signals. When we

subtract the recomposed data from the raw input data, wEhe number of hidden layer neuronss set to be less than

leave what is uncommon, (i.e., astronomical signals). the dimensiom of the input matrix for learning the fea-

Our proposed method has two advantages: (1) the ir{_u_res of the training data. I.t also cfan a\{oid idgntity map-
fluence of pulsar signal is reduced by adjusting the numP'N9 and co-mplex calculation Of, high dimensions. I_f thg
ber of neurons in the hidden layer and regularization paljumber of hidden layer neurons is too small, then this will

rameter; and (2) by training the auto-encoder with pseudd?ad to large reconstruction errors and the original data fe
inverse learning, the algorithm can run efficiently. ture missing. The parametgiis related to the rank of the

: . . input matrixr and the dimension of the input matnix At
The rest of this paper is organized as follows. In . .
the same time, we should be aware of the feature learning

Section 2, we introduce pseudo-inverse learning auto- . .
P g of the original data and the model reconstruction error. So,

encoder (PILAE), and we then use the method to removsh val o {10 be between the number of saml
RFI. In SectiorB, the ultra-wide-band data of FAST is pro- anedtﬁ:facr)]Ik)'sse 0 be between Ihe humber of samples

cessed through PILAE, and the experiment results are an-
alyzed. Our discussion and conclusions are described in p=r+an—r)ac(01], (3)

Sectiond. _ o
where the parameteris an empirical parameter to set the
number of hidden neurons. If the auto-encoder input ma-
2 METHOD trix is full rank, then the rank of the input matrix is equal
. . . . . to the dimensiom of the input data. We then utilize the di-
In this section, we introduce pseudo-inverse Iearnlng""‘lUtomension reduction to set the value of the number of hidden
encoder (PILAE). We then describe the procedure of miti-Iayer neurons (3 is empirical parameter) to
gation RFI by using PILAE according to the characteristic

of data. p=pr,pe(0,1]. 4)
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When removing RFI, we can set the number of hidden lay-
er elements based on experimental experience, which can
improve the efficiency of the algorithm without calculating \

Start

the rank of the input matrix.
Step 2: encoder weight initializatio®X(..). Utilizing Normalizing the input data
random value (zero median and unit variance) to initialize \l/
the encoder weight. Therefore, the input matrix can map
n dimension data tp dimension through encoder weight, Calculating the encoder weights
and the output of the hidden layer is \l/
H=XW.. (5) Compute the input and output of
the hidden layer
Step 3: decoder weight calculatio®;). The loss \l/
function of the auto-encoder is
1 Reconstruct cleaned data
E = | HW, - X%, (6)

¥

End

where symbolW, is the decoder weight of the auto-
encoder. To avoid overfittind;», norm is added to the loss
function, which thus can be written as

Fig.1 The algorithm flow chart of PILAE RFI removal.

1 A
E= §HHWd*X||2+§||WdH2- (7)
Step 1: normalizing the input data. The input data is
A is the regularization parameter, which can reduce the two-dimensional matrix4096 x 4096), where each row
influence on the celestial signal when removing the RFlrepresents different time data of the same frequency band,
Taking the derivative of Equatiorf and the equation can and each column represents different frequency data of the

be expressed as same time band. We normalize the input data value to be-
(HW, — X)HT + AW, = 0. (8) tween O and 1. . -
Step 2: calculating the encoder weights. We randomly
Therefore, the decoder weight can be expressed as initialize the encoder weight, and the weight value sassfie
- R the Gaussian distribution with a mean value 0 and variance
Wa=HH+A)"H X. (®)  1.In the traditional PIL algorithm, the pseudo-inverse of

Step 4: the raw data reconstruction. After this calcula—the input matrix is used as the weight of the encoder. We

tion, we can obtain the reconstruction ddis the output randomly initialize the weight of encoder to extract ran-
of the hidden layer, anWV, is the decoder weigh® is the dom features from input data, which can also be regarded

recomposed data, which mainly contain the spectral band®® adding noise to data and improve the efficiency of RF

pass and radio interference signals as mitigation.
Step 3: compute the input and output of the hidden lay-
O =HW,. (10)  er. The input of the hidden layer is calculated through the
input matrix and the weight of the encoder (E§))( and
2.2 PILAE-based RFI Mitigation computed the output of the hidden layer using activation

. . . function (sigmoid function).
We utilize one basic auto-encoder (AE) to mitigate the RFI. )
Step 4: reconstruct cleaned data. At first, we calculate

The network contains an input layer, a hidden layer, and al . . .
output layer. Although the input data and output data tené]’]e weight of the decoder according to Equatign Then,

to be consistent in AE, there are still reconstruction esrroraccordIng to Equatiord(), we can obtain the output ma-

because of data dimensionality reduction through the hi rix (), which is the reconstruction of the input data. The

den layer. In general, the radio interference signal is mucﬁecomposed data mainly contains RFI data. Thus, we use

stronger than the pulsar signal in the data. Therefore, thléquatlon (1) to remove RFI from raw data as

output layer mainly outputs RFI and bandpass signals. We

trained the model by pseudo-inverse learning. The model R=X-0, (11)

can run efficiently because it does not need back propaga-

tion. Our algorithm contains the following four steps (thewhereR is the cleaned data after bandpass and RFI has
algorithm flow chart is shown in Fid): been removedX is the original data.



114-4 H. -F. Wang et al.: RFI Mitigation Using PILAE

650

3 EXPERIMENTSAND RESULTS

In this section, we present how the PILAE model is trained
and we experiment with the model’s performance and ro &5,
bustness.

3.1 Experiment Data

We use FAST ultra-wide-band (UWB) receiver data to tes
the validity of the model. The FAST ultra-wide-band re-
ceiver was installed on FAST from 2016 to 2018 for testing
purposes. During that time, it was used for pulsar searct
es in drifting and tracking mode and discovered dozen |

s of new pulsars. The UWB receiver operates in 270- 250 = - -~ r -
1800 MHz frequency range with an effective system tem: t(s)

in th f 60—120K. W i le. - .
perature in the range of 60-120 € use it to samp (?:|g.2 The original frequency versus time pulsar data,

spectrum in 20@s intervals. In each interval, we collect down-sampled to 4096 4096. There are strong narrow-
two spectra, one with 4096 channels in 0-1 GHz frequenpand REI and a pulsar’s signal in the data.

cy range, one with 4096 channels in 1-2 GHz frequen-

cy range. Not all frequency channels in the data contait  ¢so
useful astronomical data, but some of them are occasior
ally contaminated by broad-band time-domain RFI anc
narrow-band frequency-domain RFI, which reduced thei
effectiveness in detecting weak pulsars. In this expertmen
we use four 0—1 GHz FAST UWB pulsar data for testing.
The four pulsar data contain real pulsars, which we usi<
to demonstrate how the PILAE method removes bandpas 2
and narrow-band RFI without subtracting the pulsar signal QS;
The pulsars are J2112+4059, J2113+4644, J0659+14:=
and J2006+4101. Pulsar J2112+4059, J0659+1414 ar 330
J2006+4101 have strong interference signals, while pulse

J2113+4644 has strong pulsar signals and weak interfe

ence signals. 2508

frequency (MHz)

550

y (MHz)

450

30

t(s)

3.2 PILAE Hyper Parameter Tuning Fig.3 The data in Fig2 cleaned with PILAE, showing

o pulsar signal without strong RFI.
We select the data of pulsar J2112+4059 to optimize the

hyper parameters of our model, and use the S/N of the Qe period of the pulsar and summed all the frequencies

ingle pulse to evaluate the performance. The J2112+40 Into a folded pulse profile, and we then calculate the S/N

original data are shown in Figu The horizontal axis of the profilé. This S/N is an good indicator of the signal

is time and the vertical axis is frequency. The pulsar sig- . .
. . AR strength and we used it to evaluate our model in subsequent
nal is hard to visualize in Figurg, because of the ex-

. . . . analysis.
istence of strong RFI and varying signal baseline (band- To optimize the hyper parameters of our model, we

ass). Especially in the low-frequency part, pulsar signal . : .
pass) peciafly . q yp pus 9 erform two experiments to 1. we experiment different lev-
due to the raising baseline. To show the pulsar signal after

RF1 emove, e apy ILAE (0 the deta n w1 5102100 W  eumber o den ey
use 400 neurons in the hidden layer, ane- 0.1 regular- ' ) 9

ization. After RFI mitigation, the pulsar signal is clearly hidden layer and find the setting that maximize the result-

o . I . ing pulsar S/N.
visible in Figure3. The pulsar signal in Figur8 is dis- ) .
9 pu’ gna g . In the first experiment, we use J2112+4059 pulsar data
persed by interstellar medium, causing low-frequency sig-

nals to arrive later than higher-frequency signals. We cartlo test and optimize for the regularization parameters

remo_ve th|§ dispersion effect through an operation Ca"_ed 1 Refer to formula 7.1 of handbook of pulsar astronomy, théa@ust
de-dispersion. We can fold the de-dispersed data by usinge D. R. Lorimer & M. Kramer.




H. -F. Wang et al.: RFI Mitigation Using PILAE 114-5

120

‘ ‘ prove the S/N of the pulsars. But for PSR J2112+4059, be-
— J2112+4059

___________________ o 11344644 cause of the presence of a strong pulsar signal, both PILAE
e 10659+1414 |1 and SVD models seem to have absorbed a small portion

© 12006+4101 of the pulsar signals into its reconstructed RFI and pro-
duce reduced S/N. For all four pulsars, the RFI mitigation
results of the PILAE method are better than or equal to
‘ those of the SVD method. For PSR J2006+4101, we can
l increase the number of hidden layer neurons in the PIALE
] method. When the number of hidden layer neurons is set
! to 200, the S/N of PSR J2006+4101 can reach 25 after RFI

80}

|

60

a0t

removal. We show the pulse profiles and the frequency-
phase plot of the four pulsars before and after RFI removal
‘ ‘ ‘ ‘ ‘ ‘ ‘ in Figures5, 6, 7 and8. The pulse profiles of the strong
020 50 100 150 200 250 300 350 400 ny|sgrs J2112+4059 and J2113+4644 show some degree
The number of neurons in the hidden layer : A | )

of baseline distortion after RFI treatments, which suggest
Fig.4 The number of neurons in the hidden layer and thes that PILAE and SVD methods may affect the off pulse
S/N of four pulsars relation curve. profile baseline. The frequency-phase plots of these pul-

sars show that most of the bright narrow-band RFI features
We set the number of hidden layer neurons to 20, and grith the original data are no longer visible after the RFI miti-
searched between 0 and 1. The resulting S/N of the pulsargation. However, some weaker narrow-band RFI remain-
is listed in Tablel. The experimental results show that thes, These remaining RFIs seem to be varying in a short
different values of\ have very limited impact to the S/N. time scale. This suggests that PILAE and SVD-based RFI
Therefore, we choose a medium value of 0.5Xdn our  mitigation methods are best for removing persistent RFIs;
future experiments. while the fast-varying RFIs need to be treated with other
In the second experiment, we use pulsar J2112+405%chniques.

J2113+4644, J0659+1414, and J2006+4101 to fine tune \We compared the results of RFI cleaning from the t-
the number of neurons in the hidden layer. We ¥et  wo models and also evaluated the running time of the two
0.5, and experimented with a range of numbers betweemethods. FAST pulsar data is a two-dimensional matrix
2 and 400 for the hidden-layer neurons, and calculatgp9e x 262144. Our method takes a short computing time,
the resulting S/Ns after RFI mitigation. Figudeshows it takes~0.1s to remove the RFI from a single set of pul-
that for strong pulsars like J2112+4059, J2113+4644sar data (40964096 2D data) using a 24—core computer.
J0659+1414, the optimal number of neurons is possiA fits data process cost abou6 s. SVD method will take
bly around 20. The S/N of relatively weak pulsars like about 16 s to finish processing 4096096 2D data, it takes
J2006+4101 seems to increase slowly with number of neu<17 min to process one fits data. The PILAE method ex-
rons. According to this experiment, we choose to use 2@ibits a faster performance than that exhibited by the SVD

neurons in the hidden layer for later experiments. method.
Finally, we test whether the randomly initialized
3.3 PILAE Model Performance and Robustness PILAE model converges and is robust. The weight of the

encoder is randomly initialized to satisfy the Gaussian dis

In this section, we use UWB FAST data to test and COMribution with mean value 0 and variance 1, the number

pare the performance of PILAE and SVD models. We de-

termine the PILAE h ters th h the af of hidden layer neurons is set to 20, and the regulariza-
ermine the yper parameters through the alorey.,, \ is set to 0.5. After removing RFI from J2112+4059

mentioned experiments and set the number of the hIO&:')ulsar data, the S/N can be calculated. We perform 10 in-

den layer neurons to 20, andio 0.5, and use this mod- dependent experiments and obtain the mean and standard

el to remove RFI from pulsars J2112+4059, ‘]2113+4644deviati0n of the S/N i$2.7(+0.7). In comparison, we use

J0659+1414, and J2006+4101. For the SVD method, Whhe bootstrap method to estimate the nature random fluc-

(;[I):tllnglze (1;0r trtf best Irtgnk So/ll‘\lelge(;]victors ;O ;Gt‘\? olve yation in SIN due to sampling. We select one dataset and
ased on the resuiting ; and choose c ot the arge?«Iﬁndomlyselected half of its channels to calculate the S/N.

SVD eigenvectors and flagged them as RFI. We preseqthe resulting S/N i$8.7(+1.1) in 10 independent experi-
the S/Ns of the pulsar signals before and after apply-

ina PILAE and SVD he d £ oul J2112+4059ments. The experimental results show that the error caused
N9 an to the data of pulsars by random initialization of the encoder weight is compa-
J2113+4644, J0659+1414 and J2006+4101 (Tahpl€or

PSR J2113+4644, J0659+1414, both models end up im- 2 The method used numpy.linalg.svd function.
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Table 1 The Relation between Regularization Parameters and S/N

A 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
SIN 63 64 63 63 63 63 63 62 62 63
Table2 PILAE and SVD RFI Mitigation Results
Pulsar Name  Original SSN  PILAES/N  SVD S/N
J2112+4059 89 63 62
J2113+4644 98 105 98
J0659+1414 82 114 103
J2006+4101 23 22 22
Original
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Fig.5 The pulse profile and the folded frequency-phase plot of P3R2+4059 before and after RFI mitigation process-

es. The left panels show the original data. The middle pastel®s the result of the PILAE method. The right panels show
the result of the SVD method.
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Fig.6 The pulse profile and the folded frequency-phase plot of 324@44 presented in the same order as in &ig.
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Fig.7 The pulse profile and the folded frequency-phase plot of 386814 presented in the same order as in ig.
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Fig.8 The pulse profile and the folded frequency-phase plot of 320001 presented in the same order as in Eig.

rable to the nature fluctuation of S/N itself and does noffable 2 that PILAE could cleanly remove both types of
cause substantial extra divergence, indicating that the peRFI yet retain majority of the pulsar signals. This is a
formance of the PILAE model is robust against randomhighly desirable feature for pulsar searching as well as for
a slew of other exploratory scientific objectivds ¢t al.
2019 including radio exoplanets, gravitational wave, and

initialization.

4 DISCUSSION AND CONCLUSIONS

so on. We also demonstrate that our method is slightly

better than the state-of-the-art SVD-based RFI removal

In this paper, we introduce a new RFI mitigation algo-technique in recovering pulsar signals (TaB)e as well
rithm — PILAE. This algorithm can remove both persis-as taking less computing cycles to complete (S8@).
tent narrow-band RFI and the bandpass from pulsar datélthough better than threshold-based method in principle,
Traditional threshold-based filter method often completethe PILAE method and the SVD method share the same
ly removes all data in bad channels or contaminated specaveat that they sometimes still remove a small potion of

tral samples, causes the pulsar signals in those channghe pulsar signal, especially when the pulsar is substan-
s and samples to be lost. We demonstrate in Se@ion
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tially stronger than the RFIs. In these cases (for example 933
for PSR J2122+4059), the PILAE and SVD methods still Barnbaum, C., & Bradley, R. F. 1998, AJ, 116, 2598
could clearly enhance the visibility of the signal to eyes,Boonstra, A., van der Veen, A., & Raza, J. 2002, in 2002 IEEE
and they are unlikely to hinder the detection of the pulsar International Conference on Acoustics, Speech, and Signal
signal because they are already very strong. However, it is Processing, 3, Il
not advised to use these methods to precisely measure thiiggs, F. H., Bell, J. F., & Kesteven, M. J. 2000, AJ, 120, B35
pulse profiles and polarizations because they could introBurd, P. R., Mannheim, K., Marz, T, et al. 2018, Astroncchis
duce small distortion to the baseline. Nachrichten, 339, 358

At present, FAST produces over two hundred terabyte§zech, D., Mishra, A., & Inggs, M. 2018, Astronomy and
of data per day. During one night of drift-scan, the tele- Computing, 25, 52
scope produces around 10000 fits files in pulsar searchatough, R. P., Keane, E. F., & Lyne, A. G. 2009, MNRAS, 395,
project. Therefore, we need an efficient way to process da- 410
ta in order to keep up with the data stream. The trainingEllingson, S. W., & Hampson, G. A. 2002, IEEE Transactions on
of PIL is easier than other deep-learning methods because Antennas and Propagation, 50, 25
the training process does not require back-propagation. fringer, R., Curotto, F., Fuentes, R., et al. 2018, PASP, 130,
takes~6 s to process one fits data using a 24—core comput- 025002
er without considering I/O time. We can procesd4 000  Fridman, P. A, & Baan, W. A. 2001, A&A, 378, 327
fits data per day using this method. Therefore, this metho®40: P & Lyu, M. 2001, Advances in Neural Networks
can be implemented efficiently and it can meet the require- @nd Applications, 321https://ww. resear chgate.
ments of real-time processing of FAST data. net/ publ i cation/ 293477570

We could use this method to quickly clean the data®u0: P, & Lyu, M. R. 2004, Neurocomputing, 56, 101
and then process the results by eye or other searching tecfia"d: P- Yue, Y., Gan, H., et al. 2019, Science China Paysic
niques to determine whether or not they contain pulsar sig- Mechanics, and Astronomy, 62, 959502
nals. In the future, machine learning methods can be usefjeane: E- F.. Barr, E. D., Jameson, A., etal. 2018, MNRAS, 473
to identify these images directly, which will greatly im- 116 )
prove the efficiency of the pulsar search. Kocz, J., Briggs, F. H., & Reynolds, J. 2010, AJ, 140, 2086

In this work, we find the optimal hyper parameters Leshem, A,, van der Veen, A.-J., & Boonstra, A.-J. 2000, ApJS
through grid search. In future work, the hyper parameters 131, 35,5 , ,
could be determined automatically through the method o#" D., Dickey, J. M., & Liu, S. 2019, RAA(Research in

auto machine leaningr@o et al. 2018 Astronomy and Astrophysics), 19, 016
‘ Li, D., Wang, P., Qian, L., et al. 2018, IEEE Microwave
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