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Abstract The abundant photometric data collected from multiple large-scale sky surveys give importan-
t opportunities for photometric redshift estimation. However, low accuracy is still a serious issue in the
current photometric redshift estimation methods. In this paper, we propose a novel two-stage approach by
integration of Self Organizing Map (SOM) and ConvolutionalNeural Network (CNN) methods together.
The SOM-CNN method is tested on the dataset of 150 000 galaxies from Sloan Digital Sky Survey Data
Release 13 (SDSS-DR13). In the first stage, we apply the SOM algorithm to photometric data clustering and
divide the samples into early-type and late-type. In the second stage, the SOM-CNN model is established
to estimate the photometric redshifts of galaxies. Next, the precision rate and recall rate curves (PRC) are
given to evaluate the models of SOM-CNN and Back Propagation(BP). It can been seen from the PRC that
the SOM-CNN model is better than BP, and the area of SOM-CNN is0.94, while the BP is 0.91. Finally,
we provide two key error indicators: mean square error (MSE)and Outliers. Our results show that the MSE
of early-type is 0.0014 while late-type is 0.0019, which arebetter than the BP algorithm 22.2% and 26%,
respectively. When compared with Outliers, our result is optimally 1.32%, while the K-nearest neighbor
(KNN) algorithm has 3.93%. In addition, we also provide the error visualization figures about∆Z andδ.
According to the statistical calculations, the early-typewith an error of less than 0.1 accounts for 98.86%,
while the late-type is 99.03%. This result is better than those reported in the literature.
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1 INTRODUCTION

A galaxy can be seen as a celestial system containing a
variety of complex materials and galaxies are the most im-
portant class of cosmic celestial (Zhang et al. 2010). At
present, humans use advanced telescopes (Wu et al. 2012),
such as Anglo-Australian Telescope in the Two Degrees
Field (2DF) Galaxy Redshift Survey and a 2.5 m telescope
in the Sloan Digital Sky Survey (SDSS). The total number
of galaxies has exceeded 100 billion.

In the visible band, the wavelength of spectrum will
increase, which looks like moving toward the red side of
the band because the star is flying away. This phenomenon
is called “redshift.” The redshift is a very important pa-
rameter of celestial bodies, while the spectral redshift and

photometric redshift are actually calculated from two d-
ifferent methods based on different datasets. The spectral
redshift is derived from spectra that are obtained by spec-
troscopic observations, while the photometric redshift is
derived from photometry data of galaxies or quasars in
multiple bands by a large CCD camera. Photometric red-
shift estimation has become an important technique in as-
tronomy (Scranton et al. 2005; Myers et al. 2006; Hennawi
et al. 2006; Giannantonio et al. 2008) because it enables us
to measure the distance of far objects through a spectro-
scopic survey. Furthermore, the photometric redshift has
a deeper limit magnitude, which also includes the com-
plete SED (Spectral Energy Distribution) of observed ob-
jects and allows us to identify the features of certain red-
shift. Therefore, it is very important to study the photo-
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metric redshift targeting galaxy evolution studies and the
statistics of various attributes of galaxies.

There are two approaches to estimate photometric red-
shift: template fitting (e.g., Bruzual & Charlot 1993) and
empirical training set (e.g., Coleman et al. 1980). The SED
method is the most representative approach of template-
fitting (Bolzonella et al. 2000). The other method is the
x2 minimization technique (Wu et al. 2004). Although
it is easy to estimate photometric redshift, the accura-
cy of this approach strongly depends on the templates.
Meanwhile, the training set approach is data-driven rather
than template-driven. The most common algorithms are
as follows For example, nearest neighbor algorithm (Ball
et al. 2008), neural network method (Abdalla et al. 2008),
linear spectral connectivity analysis (Freeman et al. 2009),
ArborZ boosted decision tree method (Gerdes et al. 2010),
random fores (Almosallam et al. 2016), and the support
vector machine method (Cavuoti et al. 2017).

Convolutional Neural Network (CNN, Collister &
Lahav 2004) has been used in astronomy widely, such as
spectral classification and galaxies classification. However,
this method has not been applied to the prediction of pho-
tometric redshift. A self organizing map (SOM) is able to
learn independently and automatically adjust network pa-
rameters and structures according to sample characteristic-
s, which can improve the efficiency of CNN. Therefore,
in this work, SOM-CNN, which is a ‘mixed’ technique is
used to estimate photometric redshift based on the SDSS
dataset (Han et al. 2016).

This paper provides a novel two-stage photometric
redshift estimation approach (i.e., the integration of CNN
and SOM), to improve the accuracy of estimation. The
structure of the rest of this paper is as follows. Section 2
describes the original dataset after preprocessing. Section 3
presents a brief overview of CNN, SOM and our estima-
tion model of CNN-SOM. The experiments and results are
provided and discussed in Section 4. The conclusions are
given in Section 5.

2 DATA

2.1 SDSS-DR13 Photometric Data

The data that we have used in this paper are from SDSS
(York et al. 2000), which covers more than a quarter of the
sky. In SDSS-DR13, the spectral data has reached more
than 4 million, which include the spectral data of more than
2.4 million galaxies (Gao et al. 2017).

In this paper, 150 000 galaxies are selected from the
SDSS-DR13 as the initial samples, which include the

Fig. 1 Redshift distribution histogram of original samples of
galaxies. The redshift distribution for 150 000 galaxies ofthe w-
hole sample is derived from the SDSS-DR13, and the spectral
redshift (Spec Z) is in the range of [0, 0.8].

spectral redshift of the galaxies and the photometric val-
ues of five bands: petroMagu, petroMagg, petroMagr,
petroMagi, petroMagz. The redshift distribution for the w-
hole sample is shown in Figure 1.

2.2 Data Preprocessing

Due to the complexity of the data and the existence of var-
ious cosmic noises and errors of the observation system,
data preprocessing is a very important job in the photo-
metric redshift estimation.

For the experiment, the sample is processed for
extinction at first. The extinction values at each band
are extinctionu, extinctiong, extinctionr, extinctioni and
extinctionz. Equation (1) can be used to calculate the
photometric redshift after extinction, where petroMagx is
the original photometric redshift for each band, while the
petroMagx′ denotes photometric redshift after extinction
removed

petroMagx′ = petroMagx − extinctionx . (1)

After extinction, the sample data are filtered with a s-
tandard that the photometric errors of each band are greater
than zero, and the upper limit is set at 0.25. Preprocessing
also helps to remove the bad samples of−9999, and also
ensures the distribution of sample in each redshift segmen-
t. The redshift distribution histogram of the galaxies after
data preprocessing is shown in Figure 2.

There is a considerable difference in Figure 1 and
Figure 2, the reasons for the large difference of redshift dis-
tribution before and after cutting bad data are as follows:
first, because electromagnetic waves from distant galax-
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Fig. 2 Redshift distribution histogram of the galaxies after data
preprocessing. After two-step data preprocessing, the number of
suitable galaxies is 81 142. There is a considerable difference of
redshift distribution before and after cutting bad data.

ies are partly absorbed and scattered by interstellar gas or
dust, the photometry are weakened after extinction; sec-
ond, there are bad samples of−9999 in the original SDSS-
DR13 database. Consequently, the data is reduced after fil-
tering the bad samples. In addition, because the samples of
high-redshift galaxies are in deep air and have more com-
plex properties, the spectral data that can be collected in
the measurement process are relatively rare. Therefore, the
redshift is significantly reduced after the data processing.

3 METHODOLOGY

To reduce the complexity of the data and improve the
precision of the regression model, a new methodology is
proposed according to the characteristics of galaxies. The
SOM method is used at first to classify the galaxies into
early-type galaxies and late-type galaxies. Then, the photo-
metric redshift of galaxies is estimated based on the SOM-
CNN algorithm. To clearly describe the methods used in
our work, a flow chart is given in Figure 3.

3.1 Classification with SOM

Clustering analysis is an important method in data mining
(Ai et al. 2017). The clustering algorithm can effectively
reduce the complexity of data especially for the case of
huge data volume, large feature parameters and unknown
sample categories. Clustering analysis of the sample is a
key step in photometric redshift prediction, because the
data of the galaxies have high dimensional and nonlinear
characteristics.

There are many standards for galaxy classification, in-
cluding traditional morphological classification, spectral

classification, and color classification (Shaun Cole et al.
1998). Because the color of galaxies is closely related to
the spectral energy distribution, we can classify our work
according to the color features.

SOM (Cho et al. 2015; Zhu 2014) is an efficient di-
mensionality reduction model. Furthermore, the SOM is
able to learn independently and automatically adjust net-
work parameters and structures according to sample char-
acteristics. In the case of high-dimensional input, the data
can be converted to low-dimensional for clustering, which
can improve the efficiency of the algorithm. Therefore, the
SOM method is adopted to classify, and the galaxies can
be divided into early-type galaxies and late-type galaxies
by SOM. A scatter diagram based on the color clustering
in theu− r andr− g color spaces is shown in Figure 4(a).
To better visualize the galaxies’ classification results, the
number of early and late galaxies after clustering is drawn
in the u − r color space. The distribution histogram is
shown in Figure 4(b).

It can be seen from Figure 4(a) that the SOM algorith-
m clearly divides the samples in the color space, and the
boundaries between the classes are obviously approaching
a linear function. In addition, Figure 4(b) gives a distri-
bution histogram inu − r color space. Among them, the
number of early-type galaxies is 63 487, while the late-
type galaxies is 17 655. The clustering results are consis-
tent with the theories that there are more early-type galax-
ies than the late-type galaxies.

3.2 Estimation with CNN

In recent years, deep learning has been widely used.
Convolutional Neural Network (CNN), which was origi-
nally conceived as a model of the brain, knowledge is ob-
tained through the CNN learning process (Haykin 1994).
CNN is an important improved multi-layer feed-forward
neural network (Babu et al. 2016; Li et al. 2017; Moon
et al. 2016). In addition, the CNN has sparse connection-
s, which can simplify network parameters compared with
traditional neural networks. The basic structure of CNN is
shown in Figure 5.

In addition to the features of multi-feature extraction,
CNN has other advantages as follows: (1) the weight shar-
ing feature reduces the parameters of CNN learning, and
so shortens the training time of the model, which helps to
establish a deep neural network model; (2) the original in-
formation can be directly input, and then the CNN can au-
tomatically extract features from the training data.

CNN has been widely used in image processing, and
the effect is ideal. However, by reading the relevant ar-
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Fig. 3 A flow chart of the SOM-CNN methodology in photometric redshift estimation.

(a) (b)

Fig. 4 Clustering results based on the SOM algorithm. Theblue part indicates late-type galaxies, while thered part indicates early-type
galaxies. Panel (a) indicates the scatter diagram of galaxies and panel (b) shows distribution histogram inu − r color space, which
clearly pointed out that the number of early-type galaxies is more than late-type galaxies.

Fig. 5 Basic structure diagram of convolutional neural network. It consists of five basic layers, such as input layer, convolutional layer,
pooling layer, fully connected layer and output layer. The specific representation of each layer is shown in Fig. 5.
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ticles, it is known that CNN has not been used for red-
shift estimation. Considering the advantages of CNN, we
attempt to adopt the CNN algorithm to estimate the photo-
metric redshift of galaxies. CNN usually adopts supervised
learning (Li et al. 2007). So it needs to include the desired
result in training data. Here, each input data corresponds to
one galaxy and the output data is the photometric redshift.
When the network is trained successfully, we can give a
new input into the CNN model, and then the approximate
result can be obtained of the real redshift.

3.3 SOM-CNN Photometric Redshift Estimation

We provide a photometric redshift prediction model of
CNN and SOM, which integrates algorithm of CNN and
SOM to estimate photometric redshift, as follows. A seven-
layer CNN will be built based on the Tensorflow frame-
work to predict the photometric redshift of galaxies (Zhang
et al. 2017). The photometric redshift prediction model
based on SOM-CNN includes one input layer, two con-
volution layers, two pooling layers, a fully connected lay-
er and an output layer. The prediction model structure is
shown in Figure 6.

Input layer: A matrix consisting of the number of sam-
ples. Each sample contains 20 inputs, such as photometric
data, photometric errors of five bands and 10 color features.

Convolution layer: The convolution kernel with a size
of 1 × 2 is selected to perform convolution operations.
Generally, the convolution layer is composed of many fea-
ture faces, and the neurons on each feature surface are con-
nected to the upper layer by the convolution kernel, and
then the convolution operation is performed.

Pooling layer: The maximum pooling method is adopt-
ed and the ReLU function is selected as the activation func-
tion. Compared with other activation functions, the ReLU
function is simple in calculation and does not need to nor-
malize the input. It is the most widely used in activation
functions.

Fully connected layer: The number of fully connected
layers can be one layer or multiple layers, and each layer
uses an activation function to integrate the results of feature
extraction. The prediction model contains one layer in our
experiment. After two sets of convolution–pooling opera-
tions, the extracted features are input to the fully connected
layer, and then the predicted values are fitted based on the
ReLU function.

Output layer: The mean square error is defined as the
loss function. Training the network model by minimizing
the loss function, the photometric redshift prediction re-
sults are obtained through the output layer.

4 EXPERIMENT AND RESULTS

In the experiment, the sample of each galaxy is divided into
training sets and test sets, with 80% and 20% respectively.
In addition, the 20% of the training set is used as a verifi-
cation set. In every galaxy, the five bands ofu, g, r, i, z are
provided. So we can get 10 color features, such asu − g,
u−r,u−i,u−z, g−r, g−i, g−z, r−i, r−z, i−z. In addi-
tion, we use five bands values and 10 color features as the
input in our experiment, then the corresponding redshift
as an estimation output. Next the experiments and results
of BP and SOM-CNN are presented, then the analysis are
provided in the following subsections.

4.1 Photometric Redshift Estimation Experiment by
BP

Three layers of BP neural network structure is adopted in
the experiment. First of all, the number of hidden layer
neurons in early-type galaxies is 19, while the late-type
galaxies is 28. Then the tansig function is used to be trans-
fer function, and the trainlm is chosen as the training func-
tion to estimate photometric redshift. The experiment re-
sults based on BP algorithm are shown in Figure 7.

4.2 Photometric Redshift Estimation Experiment by
SOM-CNN

Based on the SOM-CNN model described in Section 3.3,
the experiment of photometric redshift estimation was car-
ried out. First, the learning rates in early-type and late-type
galaxies are set to 0.2 and 0.4, respectively. Then the num-
ber of trainings is set to 200. Finally the predicted result-
s and expected values are plotted as a scatter diagram, in
which the proportional function is used as the fitting cen-
ter line, the spectral redshift is taken as the abscissa, and
the photometric redshift is taken as the ordinate. Thus the
optimal training results are obtained as shown in Figure 8.

It can be seen from Figure 8 that the photometric red-
shift estimation model based on SOM-CNN has achieved
good prediction for both early-type and late-type galaxies.
Most of the dispersion is controlled within the range of 0.1.
Furthermore, the two types of galaxies have better conver-
gence and prediction in the part ofz < 0.8.

4.3 Comparison and Analysis

In the following part, the BP and SOM-CNN models are
evaluated first. To analyze the experimental results more
accurately, the error comparisons and visualizations analy-
sis are provided of BP and SOM-CNN algorithm.
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Fig. 6 Photometric redshift prediction model. C1 and C3 are convolutional layers, S2 and S4 are pooling layers. Between C1 and S2 is
a subsampling, which is the same as between C3 and S4. C5 is a full connection layer.

(a) (b)

Fig. 7 Photometric redshift estimation by the BP algorithm. Panel(a) represents early-type galaxies, while panel (b) shows late-type
galaxies. Theblue line indicates thatZphot is equal toZspec and thegreen lines represent the error tolerance interval.

(a) (b)

Fig. 8 Photometric redshift estimation by the SOM-CNN algorithm.Panel (a) demonstrates the estimation results of early-type galaxies,
while panel (b) represents late-type galaxies.

4.3.1 Model evaluation

Usually we can evaluate the generalization error through
experiments and then make a choice. This requires not only

effective and feasible estimation methods but also perfor-
mance measurements. Based on BP and SOM-CNN pre-
diction algorithms, four scenarios will be generated in the
prediction process: true positive (TP), false positive (FP),
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Fig. 9 The precision rate and recall rate curves of BP and SOM-
CNN models. Theblue line shows SOM-CNN model and thered
line represents the BP model. The PRC area of the two models
are 0.94 and 0.91, respectively.

true negative (TN) and false negative (FN). Equation (2) is
used to calculate the precision, while Equation (3) can be
used to calculate the recall:

Precision =
TP

TP + FP
. (2)

Recall =
TP

TP + FN
. (3)

area =
1

2

m−1
∑

i=1

(xi+1 − xi)(yi + yi+1). (4)

Precision rate and recall rate are a pair of contradicto-
ry measurements. We have provided the precision rate and
recall rate curves (PRC), which can be used to evaluate the
two prediction models. The PRC of BP and SOM-CNN
models is shown in Figure 9. When there is a crossover
of PRC, the optimal model can be determined by compar-
ing the area under PRC (the larger area, the better predic-
tion result). The calculation formula of area is shown in
Equation (4), where (x, y) represents the coordinates of
points on the curve, and m represents the number of points.
The PRC area of BP model is 0.91, while the SOM-CNN
model is 0.94 by calculating. Therefore, the SOM-CNN
model is better than BP model in photometric redshift es-
timation.

4.3.2 Results analysis

To more accurately analyze the estimation results based on
SOM-CNN, we introduced five indicators as follows.

(1) Mean square error (MSE). It can be used to calculate
the average error, as well as the degree of change in the
data.

MSE =
1

N

n
∑

i=1

(Zphot(i)− Zspec(i))
2. (5)

(2) Root mean square error (RMSE), which can reflect the
degree of dispersion between data.

RMSE =

√

√

√

√

1

N

n
∑

i=1

(Zphot(i)− Zspec(i))2. (6)

(3) Bias can reflect the central trend of∆Z.

Bias =
1

N
(Zphot(i)− Zspec(i)). (7)

(4) δ represents the standard deviation of∆Z, which can
describe the distance from the average, as well as reflect
the degree of dispersion of the data.

δ =
Zphot(i)− Zspec(i)

1 + Zspec(i)
. (8)

(5) Outliers:

Outliers = ∆Z > 3δ . (9)

According to these five error indicators, the experi-
mental results based on SOM-CNN and BP are calculated.
The results are shown in Table 1, where ETG represents
Early-type Galaxy, while LTG denotes Late-type Galaxy.

To describe the experimental results more intuitive-
ly, the error visualization figures about∆Z ( ∆Z =

Zphot(i) − Zspec(i)) andδ have provided. The∆Z error
visualization is shown in Figure 10. It can be seen from
the distribution histogram of∆Z that the estimation er-
rors of SOM-CNN model for both early-type galaxies and
late-type galaxies are less than 0.1. Furthermore, the error
distribution is similar to the Gaussian distribution, which
highlights that our method gives a fair assessment of the
estimation accuracy. According to statistical calculations,
the early-type galaxies with an error of less than 0.1 ac-
counted for 98.86%, while the late-type galaxies account-
ed for 99.03%. It is obvious that the SOM-CNN algorithm
has achieved a good estimation.

Additionally, by introducing theδ visualization figure
to better evaluate the accuracy of SOM-CNN prediction
model. Spectral redshift (Zspec) is used as the horizon-
tal axis, and theδ is adopted as the vertical axes to plot
the error maps (Freeman et al. 2009). Therefore, Figure 11
shows theδ scatter distribution of the two galaxies. In the-
ory, the smaller error of prediction results, the closer is to
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Table 1 Comparison of Prediction Results based on SOM-CNN and BP Algorithms

Error parameter SOM-CNN ETG BP ETG SOM-CNN LTG BP LTG

MSE 0.0014 0.0018 0.0019 0.0026
RMSE 0.0343 0.0433 0.0438 0.0509
Bias 0.0057 –0.0082 –0.0011 –0.0034
δ 0.0295 0.0341 0.0355 0.0396

Outliers 0.0140 0.0129 0.0132 0.0161

Statistical parameter ETG increase LTG increase
percentage percentage

MSE 22.2% 26%
RMSE 20.7% 13.4%

δ 13.4% 10.4%
Outliers –8.5% 18%

Table 1 is divided into two parts. In the upper part, we give the standard statistical indi-
cators (see the explanation in the text) which used to evaluate the prediction results of
SOM-CNN. It is improved in each error parameter compared with the BP algorithm. To
more intuitively reflect the accuracy improvement of the SOM-CNN model, we report
the fraction (expressed as percentages) in the lower part ofTable 1.

(a) (b)

Fig. 10 ∆Z histogram distribution based on the SOM-CNN algorithm. Thered line represents∆Z = 0 and the∆Z is plotted inblack,
where panel (a) demonstrates early-type galaxies, while panel (b) indicates late-type galaxies.

(a) (b)

Fig. 11 δ scatter diagrams based on SOM-CNN algorithm. Theblue dots represent theδ error distribution in the photometric redshift
experiments, in which the early-type galaxies are shown in panel (a) and the late-type galaxies are shown in panel (b).
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Table 2 Comparison of Prediction Results based on SOM-CNN
and KNN Algorithms

Error parameter SOM-CNN KNN SOM-CNN KNN
ETG ETG LTG LTG

Bias 0.0057 –0.0033 –0.0011 –0.0051
δ 0.0295 0.0331 0.0355 0.0549

Outliers 0.0140 0.0393 0.0132 0.0393

zero line. In the range of error less than 0.05, which indi-
cates that the prediction results of the early-type galaxies
account for 91.8% while the late-type galaxies is 93.3%
according to the statistics.

To further verify the prediction effect of SOM-CNN,
the SOM-CNN prediction results are compared with the
KNN algorithm-based redshift prediction results used by
Robert Beck (Beck et al. 2016). The comparison results
are shown in Table 2.

It can be seen from Table 2 that under the condition
that the prediction accuracy is equivalent, the Outliers of
the SOM-CNN algorithm are optimally 1.32%, which is
better than the optimal Outliers of 3.93% by KNN. In ad-
dition, using KNN algorithm for photometric redshift esti-
mation requires millions of training samples and needs to
be globally traversed to achieve high accuracy, so the algo-
rithm is inefficient. But, the photometric redshift prediction
based on SOM-CNN algorithm not only achieves good re-
sults but also has high efficiency. Therefore, the photomet-
ric redshift estimation based on SOM-CNN is successful.

5 CONCLUSIONS AND PROSPECTS

The accuracy of photometric redshift estimation is a prob-
lem with a long history and it exists in most photometric
redshift estimation approaches. In this paper, we analyze
the data before and after preprocessing from SDSS-DR13
at first, and then we provide a new estimation methodolo-
gy by integration of SOM and CNN methods together. In
this way, the efficiency of the algorithm has been improved
due to many features can be learned independently and au-
tomatically.

The experimental results based on SOM-CNN show
that the integrated approach can improve the accuracy of
photometric redshift estimation (e.g., the MSE errors are
0.0014 and 0.0019, which are better than the BP algorithm
22.2% and 26%, respectively). When compared with the
Outliers, our result is optimally 1.32%, while the KNN al-
gorithm is 3.93% used by Robert Beck (Beck et al. 2016).
Therefore our work successfully implements the applica-
tion of SOM-CNN, and the validity of SOM-CNN is veri-
fied in redshift estimation.

In addition, the redshift extends up to aboutz = 0.8,
with a useful coverage ofz = 0.7 in our work. But the
error in z > 0.7 is large, thus further improvement is
needed. With the development of astronomical observa-
tion, there are increasing numbers of parameters. However,
inappropriate parameters have no obvious redshift correla-
tion, this maybe lead to large errors. Thus, it has become
necessary to select the appropriate parameters. To improve
the accuracy and the range of photometric redshift, we
should consider the intersection of different astronomical
observations (Wang et al. 2008, 2009), such as SDSS and
TWOMASS in our following work.

AcknowledgementsThis work is supported by the Joint
Research Fund in Astronomy (U1531242) under coop-
erative agreement between the National Natural Science
Foundation of China (NSFC) and Chinese Academy of
Sciences (CAS).

References

Abdalla, F. B., Amara, A., Capak, P., et al. 2008, MNRAS, 387,

969
Ai, M., Zhu, M., & Fu, J. 2017, RAA (Research in Astronomy

and Astrophysics), 17, 101
Almosallam, I. A., Jarvis, M. J., & Roberts, S. J. 2016, MNRAS,

462, 726
Babu, G. S., Zhao, P., & Li, X. L. 2016, in International

Conference on Database Systems for Advanced Applications,

Deep Convolutional Neural Network Based Regression

Approach for Estimation of Remaining Useful Life, 214
Ball, N. M., Brunner, R. J., Myers, A. D., et al. 2008, ApJ, 683,

12
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