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Abstract The abundant photometric data collected from multipledasgale sky surveys give importan-

t opportunities for photometric redshift estimation. Howe low accuracy is still a serious issue in the
current photometric redshift estimation methods. In tld@ipgy, we propose a novel two-stage approach by
integration of Self Organizing Map (SOM) and Convolutiohsural Network (CNN) methods together.
The SOM-CNN method is tested on the dataset of 150 000 galéxien Sloan Digital Sky Survey Data
Release 13 (SDSS-DR13). In the first stage, we apply the SQdfitim to photometric data clustering and
divide the samples into early-type and late-type. In th@sdastage, the SOM-CNN model is established
to estimate the photometric redshifts of galaxies. Next,grecision rate and recall rate curves (PRC) are
given to evaluate the models of SOM-CNN and Back Propag@Be). It can been seen from the PRC that
the SOM-CNN model is better than BP, and the area of SOM-CNN94, while the BP is 0.91. Finally,
we provide two key error indicators: mean square error (M) Outliers. Our results show that the MSE
of early-type is 0.0014 while late-type is 0.0019, which better than the BP algorithm 22.2% and 26%,
respectively. When compared with Outliers, our result iSmally 1.32%, while the K-nearest neighbor
(KNN) algorithm has 3.93%. In addition, we also provide theevisualization figures aboutZ andé.
According to the statistical calculations, the early-tyyth an error of less than 0.1 accounts for 98.86%,
while the late-type is 99.03%. This result is better tharséheeported in the literature.
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1 INTRODUCTION photometric redshift are actually calculated from two d-
ifferent methods based on different datasets. The spectral
A galaxy can be seen as a celestial system containing r@dshift is derived from spectra that are obtained by spec-
variety of complex materials and galaxies are the most imtroscopic observations, while the photometric redshift is
portant class of cosmic celestial (Zhang et al. 2010). Aderived from photometry data of galaxies or quasars in
present, humans use advanced telescopes (Wu et al. 2012)ltiple bands by a large CCD camera. Photometric red-
such as Anglo-Australian Telescope in the Two Degreeshift estimation has become an important technique in as-
Field (2DF) Galaxy Redshift Survey and a 2.5 m telescopéronomy (Scranton et al. 2005; Myers et al. 2006; Hennawi
in the Sloan Digital Sky Survey (SDSS). The total numberet al. 2006; Giannantonio et al. 2008) because it enables us
of galaxies has exceeded 100 billion. to measure the distance of far objects through a spectro-

In the visible band, the wavelength of spectrum will scopic survey. Furthermore, the photometric redshift has

increase, which looks like moving toward the red side of® deeper limit magnitude, which also includes the com-

the band because the star is flying away. This phenomendtiete SED (Spectral Energy Distribution) of observed ob-
is called “redshift.” The redshift is a very important pa- jects and allows us to identify the features of certain red-

rameter of celestial bodies, while the spectral redshift an SNift- Therefore, it is very important to study the photo-
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metric redshift targeting galaxy evolution studies and the
statistics of various attributes of galaxies.

There are two approaches to estimate photometric rec
shift: template fitting (e.g., Bruzual & Charlot 1993) and
empirical training set (e.g., Coleman et al. 1980). The SEL
method is the most representative approach of templatt
fitting (Bolzonella et al. 2000). The other method is the
22 minimization technique (Wu et al. 2004). Although
it is easy to estimate photometric redshift, the accura
cy of this approach strongly depends on the templates
Meanwhile, the training set approach is data-driven rathe
than template-driven. The most common algorithms art
as follows For example, nearest neighbor algorithm (Bal
et al. 2008), neural network method (Abdalla et al. 2008),
linear spectral connectivity analysis (Freeman et al. 2009 Fig. 1 Redshift distribution histogram of original samples of

ArborZ boosted decision tree method (Gerdes et al. 2010g,alaxies. The redshift distribution for 150 000 galaxieshaf w-

ole sample is derived from the SDSS-DR13, and the spectral
random fores (Almosallam et al. 2016), and the supportayghift (Spec 2) is in the range of [0, 0.8].
vector machine method (Cavuoti et al. 2017).

Convolutional Neural Network (CNN, Collister & spectral redshift of the galaxies and the photometric val-
Lahav 2004) has been used in astronomy widely, such ases of five bands: petroMag petroMag, petroMag,
spectral classification and galaxies classification. Harev petroMag, petroMag. The redshift distribution for the w-
this method has not been applied to the prediction of phohole sample is shown in Figure 1.
tometric redshift. A self organizing map (SOM) is able to
learn independently and automatically adjust network pa2.2 Data Preprocessing
rameters and structures according to sample charaateristi
s, which can improve the efficiency of CNN. Therefore,
in this work, SOM-CNN, which is a ‘mixed’ technique is
used to estimate photometric redshift based on the SD ) ’ o=
dataset (Han et al. 2016). metric redshift estlmatlon. .

. . . For the experiment, the sample is processed for

This paper provides a novel two-stage photometric =~ . _ N

. S . . . extinction at first. The extinction values at each band
redshift estimation approach (i.e., the integration of CNN

and SOM), to improve the accuracy of estimation. Theare extinction, eXtInCtIOI’b, extinction., extinction and

structure of the rest of this paper is as follows. Section thInCtIOI}. Equation (1) can be used to calculate the

describes the original dataset after preprocessing (3egti photorngtnc redshift alfter exthctlon, where petroMgg
the original photometric redshift for each band, while the

presents a brief overview of CNN, SOM and our estima- roM denot hot ic redshift aft fincti
tion model of CNN-SOM. The experiments and results ard€TOMag- denotes photometric redsnitt after extinction

0 0.1 02 03 0.4 05 06 07 08
SpecZ

Due to the complexity of the data and the existence of var-

ious cosmic noises and errors of the observation system,
S%ata preprocessing is a very important job in the photo-

provided and discussed in Section 4. The conclusions arréamOVGd
given in Section 5. potroMag., = petroMag, — extinction, »
2 DATA After extinction, the sample data are filtered with a s-

tandard that the photometric errors of each band are greater
21 SDSS-DR13 Photometric Data than zero, and the upper limit is set at 0.25. Preprocessing
also helps to remove the bad samples-6H99, and also
The data that we have used in this paper are from SDSénsures the distribution of sample in each redshift segmen-
(York et al. 2000), which covers more than a quarter of the. The redshift distribution histogram of the galaxies afte
sky. In SDSS-DR13, the spectral data has reached mottata preprocessing is shown in Figure 2.
than 4 million, which include the spectral data of morethan  There is a considerable difference in Figure 1 and
2.4 million galaxies (Gao et al. 2017). Figure 2, the reasons for the large difference of redstsft di
In this paper, 150000 galaxies are selected from théribution before and after cutting bad data are as follows:
SDSS-DR13 as the initial samples, which include thdfirst, because electromagnetic waves from distant galax-
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classification, and color classification (Shaun Cole et al.
1998). Because the color of galaxies is closely related to
the spectral energy distribution, we can classify our work
according to the color features.

SOM (Cho et al. 2015; Zhu 2014) is an efficient di-
mensionality reduction model. Furthermore, the SOM is
able to learn independently and automatically adjust net-
work parameters and structures according to sample char-
acteristics. In the case of high-dimensional input, thedat
can be converted to low-dimensional for clustering, which
can improve the efficiency of the algorithm. Therefore, the
SOM method is adopted to classify, and the galaxies can

S LU A sg;cz S L be divided into early-type galaxies and late-type galaxies
by SOM. A scatter diagram based on the color clustering
Fig. 2 Redshift distribution histogram of the galaxies after datajn thew, — » andr — g color spaces is shown in Figure 4(a).
EL?tF;rt;)IZe;;IQSié intfEgtlwfézfeﬁhi?éispfEgii?jz'rggiéhdﬁgg To better visualize the galaxies’ classification resulis, t
redshift distribution before and after cutting bad data. number of early and late galaxies after clustering is drawn
in the u — r color space. The distribution histogram is
ies are partly absorbed and scattered by interstellar gas shown in Figure 4(b).
dust, the photometry are weakened after extinction; sec- |t can be seen from Figure 4(a) that the SOM algorith-
ond, there are bad samples-6§999 in the original SDSS-  m clearly divides the samples in the color space, and the
DR13 database. Consequently, the data is reduced after fipundaries between the classes are obviously approaching
tering the bad samples. In addition, because the samples gfjinear function. In addition, Figure 4(b) gives a distri-
high-redshift galaxies are in deep air and have more comgytion histogram in: — r color space. Among them, the
plex properties, the spectral data that can be collected ijumber of early-type galaxies is 63487, while the late-
the measurement process are relatively rare. Therefere, type galaxies is 17 655. The clustering results are consis-
redshift is significantly reduced after the data processing tent with the theories that there are more early-type galax-
ies than the late-type galaxies.
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3 METHODOLOGY

To reduce the complexity of the data and improve the3-2 EStimation with CNN

precision of the regression model, a new methodology i?n recent years, deep learning has been widely used.

proposed according to the characteristics of galaxies. Th&onvolutional Neural Network (CNN), which was origi-

SOM method is used at first to classify the galaxies into . . .
) , nally conceived as a model of the brain, knowledge is ob-
early-type galaxies and late-type galaxies. Then, thegahot

tained through the CNN learning process (Haykin 1994).

metric redshift of galaxies is estimated based on the SOMCNN is an important improved multi-layer feed-forward

CNN alﬁorlt:m. Tr? ctlgarly de§cr'|:l?e the3meth0ds used "heural network (Babu et al. 2016; Li et al. 2017; Moon
ourwork, a flow chart1s given In Figure . et al. 2016). In addition, the CNN has sparse connection-
s, which can simplify network parameters compared with

3.1 Classification with SOM traditional neural networks. The basic structure of CNN is

Clustering analysis is an important method in data miningghown in Figure 5.
(Ai et al. 2017). The clustering algorithm can effectively In addition to the features of multi-feature extraction,
reduce the complexity of data especially for the case oENN has other advantages as follows: (1) the weight shar-
huge data volume, large feature parameters and unknowng feature reduces the parameters of CNN learning, and
sample categories. Clustering analysis of the sample is $0 shortens the training time of the model, which helps to
key step in photometric redshift prediction, because thestablish a deep neural network model; (2) the original in-
data of the galaxies have high dimensional and nonlinegermation can be directly input, and then the CNN can au-
characteristics. tomatically extract features from the training data.

There are many standards for galaxy classification, in- CNN has been widely used in image processing, and
cluding traditional morphological classification, spettr the effect is ideal. However, by reading the relevant ar-
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Fig. 3 A flow chart of the SOM-CNN methodology in photometric redisbstimation.
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Fig. 4 Clustering results based on the SOM algorithm. Blue part indicates late-type galaxies, while tregl part indicates early-type
galaxies. Panel (a) indicates the scatter diagram of gedaaad panel (b) shows distribution histogramuin-  color space, which
clearly pointed out that the number of early-type galaxéamore than late-type galaxies.
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Fig.5 Basic structure diagram of convolutional neural netwarkohsists of five basic layers, such as input layer, coniaiat layer,
pooling layer, fully connected layer and output layer. Thedfic representation of each layer is shown in Fig. 5.
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ticles, it is known that CNN has not been used for red4 EXPERIMENT AND RESULTS

shift estimation. Considering the advantages of CNN, we

attempt to adopt the CNN algorithm to estimate the photoln the experiment, the sample of each galaxy is divided into
metric redshift of galaxies. CNN usually adopts supervisedr@ining sets and test sets, with 80% and 20% respectively.
learning (Li et al. 2007). So it needs to include the desiredn 2ddition, the 20% of the training set is used as a verifi-
result in training data. Here, each input data correspands €ation set. In every galaxy, the five bands:og, r, 7, z are

one galaxy and the output data is the photometric redshifProvided. So we can get 10 color features, such asg,
When the network is trained successfully, we can give 7 U= hU—2, 9=, §—4,§—2,T—1,7—2,i—2. In addi-

new input into the CNN model, and then the approximatéion' we use five bands values and 10 color features as the

result can be obtained of the real redshift. input in our experiment, then the corresponding redshift
as an estimation output. Next the experiments and results
3.3 SOM-CNN Photometric Redshift Estimation of BP and SOM-CNN are presented, then the analysis are

provided in the following subsections.
We provide a photometric redshift prediction model of
CNN and SOM, which integrates algorithm of CNN and 4.1 Photometric Redshift Estimation Experiment by
SOM to estimate photometric redshift, as follows. Aseven-  BP
layer CNN will be built based on the Tensorflow frame-
work to predict the photometric redshift of galaxies (ZhangThree layers of BP neural network structure is adopted in
et al. 2017). The photometric redshift prediction modelthe experiment. First of all, the number of hidden layer
based on SOM-CNN includes one input layer, two con-"€Urons in early-type galaxies is 19, while the late-type
volution layers, two pooling layers, a fully connected |ay_galaxies is 28. Then the tansig function is used to be trans-

er and an output layer. The prediction model structure ifer function, and the trainim is chosen as the training func-
shown in Figure 6. tion to estimate photometric redshift. The experiment re-

Input layer: A matrix consisting of the number of sam- SUlts based on BP algorithm are shown in Figure 7.

ples. Each sample contains 20 inputs, such as photometric _ _ o _
data, photometric errors of five bands and 10 color featureé-2 Photometric Redshift Estimation Experiment by
Convolution layer: The convolution kernel with a size SOM-CNN

of 1 x 2 is selected to perform convolution operations.B(,jlsed on the SOM-CNN model described in Section 3.3,

Generally, the convolution layer is composed of many fea’the experiment of photometric redshift estimation was car-

ture faces, and the neurons on each feature surface are ¥ out. First, the learning rates in early-type and lgfset
nected to the upper layer by the convolution kernel, an%1alaxies are set to 0.2 and 0.4, respectively. Then the num-
then the convolution operation is performed. ber of trainings is set to 200. Finally the predicted result-
Pooling layer: The maximum pooling method is adopt-g anq expected values are plotted as a scatter diagram, in
ed and the ReLU functionis selected as the activation funcz hich the proportional function is used as the fitting cen-
tion. Compared with other activation functions, the ReL U, line, the spectral redshift is taken as the abscissa, and
function is simple in calculation and does not need to NOry e photometric redshift is taken as the ordinate. Thus the
malize the input. It is the most widely used in activation 55tima| training results are obtained as shown in Figure 8.
functions. It can be seen from Figure 8 that the photometric red-
Fully connected layer: The number of fully connectedgyi; estimation model based on SOM-CNN has achieved
layers can be one layer or multiple layers, and each layg§oqq prediction for both early-type and late-type galaxies
uses an activation functionto integrate the results otif@at ;o of the dispersion is controlled within the range of 0.1.

extraction. The prediction model contains one layer in 0Uthermore, the two types of galaxies have better conver-
experiment. After two sets of convolution—pooling Opera-gence and prediction in the partof< 0.8.

tions, the extracted features are input to the fully coregkct
layer, and then the predicted values are fitted based on ti}ﬁg Comparison and Analysis
ReLU function.

Output layer: The mean square error is defined as thim the following part, the BP and SOM-CNN models are
loss function. Training the network model by minimizing evaluated first. To analyze the experimental results more
the loss function, the photometric redshift prediction re-accurately, the error comparisons and visualizations/anal
sults are obtained through the output layer. sis are provided of BP and SOM-CNN algorithm.
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Cl:feature maps
Input layer

Convolutions

Output layer

Full connection

Fig. 6 Photometric redshift prediction model. C1 and C3 are cartiabal layers, S2 and S4 are pooling layers. Between C1 anisl S

a subsampling, which is the same as between C3 and S4. C5lisarfoection layer.
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4.3.1 Model evaluation

Usually we can evaluate the generalization error throug
experiments and then make a choice. This requires noton

effective and feasible estimation methods but also perfor-
mance measurements. Based on BP and SOM-CNN pre-

I;Iiiction algorithms, four scenarios will be generated in the
Wediction process: true positive (TP), false positive)(FP
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Precicion Recall Ciwve (1) Mean square error (MSE). It can be used to calculate

— + ® * f £ I % & & I the average error, as well as the degree of change in the
Lo r 1 data.
1 & , :
0.9 T MSE = Z;(zphot(z) — Zspec(i))2. (5)
5
» wer 1  (2) Root mean square error (RMSE), which can reflect the
E degree of dispersion between data.
& 0.7 -
1< , :
- § J RMSE = N Z(thot (l) - Zspec(z))2' (6)
—— SOM-CNN (area=0. 94) =1
| P—__BP (area=0.91) .
0-BiF 1  (3) Bias can reflect the central trend &{Z.
00 o0z 04 06 08 L0 . 1 ) _
Recall Bias = < (Zpnot (1) = Zspec(7))- @)

Fig.9 The precision rate and recall rate curves of BP and SOM(4) § represents the standard deviationa¥, which can

CNN models. Thélueline shows SOM-CNN model and thed gescribe the distance from the average, as well as reflect

line represents the BP model. The PRC area of the two model ) -
are 0.94 and 0.91, respectively. the degree of dispersion of the data.

Zohot (1) — Zspec (@
true negative (TN) and false negative (FN). Equation (2)is 0 = phlti )Z, (];) ( )- (8)
used to calculate the precision, while Equation (3) can be e

used to calculate the recall: (5) Outliers:
S & Outliers = AZ > 3. 9
Precision = TP TP (2) > )
According to these five error indicators, the experi-
Recall = L (3) mental results based on SOM-CNN and BP are calculated.
TP+FN The results are shown in Table 1, where ETG represents
= Early-type Galaxy, while LTG denotes Late-type Galaxy.
area = 3 Z (g1 — ) (Yi + Yig1)- 4) To describe the experimental results more intuitive-
i=1 ly, the error visualization figures abotZ ( AZ =

Precision rate and recall rate are a pair of contradicto-Z_phot (i) = Zspec(1)) andd have provided. The\Z error

ry measurements. We have provided the precision rate aﬁ/dsuahzatlon is shown in Figure 10. It can be seen from

recall rate curves (PRC), which can be used to evaluate thtge distribution histogram oAZ that the estimation er-

two prediction models. The PRC of BP and SOM-CNN 'Ors of SOM-CNN model for both early-type galaxies and
models is shown in Figure 9. When there is a crossovelf”?te'_typ(_3 ga_IaX|_es_are less than 01 Fur_the.rmc?re, the.erro
distribution is similar to the Gaussian distribution, wic

of PRC, the optimal model can be determined by compar-~"" - )
ing the area under PRC (the larger area, the better predil&'—'ghl'gmtS that our method gives a fair assessment of the
tion result). The calculation formula of area is shown in &Stimation accuracy. According to statistical calculasio

Equation (4), wherea(, y) represents the coordinates of the early-type galaxies with an error of less than 0.1 ac-

0, I - i -
points on the curve, and m represents the number of pointg.Ounted for 98.86%, while the late-type galaxies account

The PRC area of BP model is 0.91. while the SOM-cNNEU for 99.03%. Itis obvious that the SOM-CNN algorithm

model is 0.94 by calculating. Therefore, the SOM-CNNhas achieved a good estimation.

model is better than BP model in photometric redshift es- Additionally, by introducing the visualization figu.re.
timation to better evaluate the accuracy of SOM-CNN prediction

model. Spectral redshift4,..) is used as the horizon-
tal axis, and the) is adopted as the vertical axes to plot
the error maps (Freeman et al. 2009). Therefore, Figure 11
To more accurately analyze the estimation results based @mows the) scatter distribution of the two galaxies. In the-
SOM-CNN, we introduced five indicators as follows. ory, the smaller error of prediction results, the closepis t

4.3.2 Resultsanalysis
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Table 1 Comparison of Prediction Results based on SOM-CNN and BBrilgns

Error parameter

SOM-CNNETG BPETG SOM-CNNLTG BPLTG

MSE 0.0014
RMSE 0.0343
Bias 0.0057
§ 0.0295
Outliers 0.0140

0.0018
0.0433
—-0.0082
0.0341

0.0129

0.0019
0.0438
-0.0011
0.0355
0.0132

0.0026
0.0509
—-0.0034
0.0396
0.0161

Statistical parameter

ETG increase

LTG increase

percentage percentage
MSE 22.2% 26%
RMSE 20.7% 13.4%
1) 13.4% 10.4%
Outliers —-8.5% 18%

Table 1 is divided into two parts. In the upper part, we givestandard statistical indi-
cators (see the explanation in the text) which used to etali@ prediction results of
SOM-CNN. It is improved in each error parameter compareti wie¢ BP algorithm. To
more intuitively reflect the accuracy improvement of the SG@MN model, we report
the fraction (expressed as percentages) in the lower paetdé 1.

0181
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o
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Fig. 10 AZ histogram distribution based on the SOM-CNN algorithm. fdeHinerepresenta\ Z = 0 and theA Z is plotted inblack,
where panel (a) demonstrates early-type galaxies, whilelfa) indicates late-type galaxies.
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Fig. 11 § scatter diagrams based on SOM-CNN algorithm. Blue dots represent thé error distribution in the photometric redshift
experiments, in which the early-type galaxies are showraitep(a) and the late-type galaxies are shown in panel (b).
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Table 2 Comparison of Prediction Results based on SOM-CNN In addition, the redshift extends up to abaut= 0.8,

and KNN Algorithms with a useful coverage of = 0.7 in our work. But the
Error parameter SOM-CNN  KNN  SOM-CNN  KNN error in z > 0.7 is large, thus further improvement is
ETG ETG LTG LTG needed. With the development of astronomical observa-
Bias 0.0057  -0.0033 -0.0011 -0.0051  tion, there are increasing numbers of parameters. However,
5 0.0295 00331 00355  0.0549 . . . :
Outliers 0.0140 00393 00132  0.0393 inappropriate parameters have no obvious redshift carrela

tion, this maybe lead to large errors. Thus, it has become
necessary to select the appropriate parameters. To improve

zero line. In the range of error less than 0.05, which |nd|-the accuracy and the range of photometric redshift, we

cates that the prediction results of the early-type gaiﬁX'eshould consider the intersection of different astronoimica

0, I . I I 0,
accouht for 91.8% v_vh!le the late-type galaxies is 93'?’/l)observations (Wang et al. 2008, 2009), such as SDSS and
according to the statistics.

. L TWOMASS in our following work.
To further verify the prediction effect of SOM-CNN,

the SOM-CNN prediction results are compared with theAcknowIedgementsThis work is supported by the Joint
KNN algorithm-based redshift prediction results used byresearch Fund in Astronomy (U1531242) under coop-
Robert Beck (Beck et al. 2016). The comparison resultg ative agreement between the National Natural Science
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