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Abstract Although high-resolution stellar spectra allow us to derive precise stellar labels (effective temper-
ature, metallicity, surface gravity, elemental abundances, etc.) based on resolved atomic lines and molecular
bands, low-resolution spectra have been proved to be competitive in determining many stellar labels at com-
parable precision. It is useful to consider the spectral information content when assessing the capability of a
stellar spectrum in deriving precise stellar labels. In this work, we quantify the information content brought
by the LAMOST-II medium-resolution spectroscopic survey (MRS) using the gradient spectra as well as
the coefficients-of-dependence (CODs). In general, the wavelength coverage of the MRS well constrains
the stellar labels but the sensitivities of different stellar labels vary with spectral types and metallicity of the
stars of interest. Consequently, this affects the performance of the stellar label determination from the MRS
spectra. By applying the SLAM method to the synthetic spectra which mimic the MRS data, we find that
the precision of the fundamental stellar parametersTeff , log g and[M/H] are better when combining both
the blue and red bands of the MRS. This is especially important for warm stars because the Hα line located
in the red part plays a more important role in determining theeffective temperature for warm stars. With
blue and red parts together, we are able to reach similar performance to the low-resolution spectra except
for warm stars. However, at[M/H] ∼ −2.0dex, the uncertainties of fundamental stellar labels estimated
from MRS are substantially larger than that from low-resolution spectra. We also tested the uncertainties of
Teff , log g and[M/H] from MRS data induced from the radial velocity mismatch and find that a mismatch
of about 1 km s−1, which is typical for LAMOST MRS data, would not significantly affect the stellar label
estimates. Finally, referenceprecision limitsare calculated using synthetic gradient spectra, according to
which we expect abundances of at least 17 elements to be measured precisely from MRS spectra.
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abundances

1 INTRODUCTION

A huge amount of spectral data with good quality have
been obtained through large-scale spectroscopic surveys,
such as the SEGUE (Yanny et al. 2009), RAVE (Steinmetz
et al. 2006), Gaia-ESO (Gilmore et al. 2012), GALAH
(De Silva et al. 2015), APOGEE (Majewski et al. 2017)
and LAMOST (Deng et al. 2012). On the one hand, this
has brought us new insights into the formation and evo-
lution of the Galaxy (Bland-Hawthorn & Gerhard 2016).
On the other hand, it challenges the spectral modeling.
Consequently, machine-learning approaches, (e.g., Ness
et al. 2015; Ting et al. 2019; Leung & Bovy 2019; Zhang

et al. 2019) are widely applied in the field to provide
precise stellar labels (fundamental stellar parametersTeff ,
log g and elemental abundances [X/H], etc., hereafter we
call them stellar labels following Ness et al. 2015) at in-
dustrial scales (cf. Jofré et al. 2019, and the references
therein).

As argued by Ting et al. (2017a), the precision of
stellar labels derived from spectra is determined by the
information content quantified by gradients imbedded in
the spectra, which could be characterized mainly by spec-
tral resolution (R), wavelength coverage and signal-to-
noise (S/N) ratio and also depends on spectral types.
Traditionally, low-resolution spectra (R < 5000) are suit-
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able for spectral classification, deriving fundamental stel-
lar parameters and a few elemental abundances. For exam-
ple,Teff can be easily derived from Balmer lines. Medium-
resolution spectra (5000 < R < 10 000) are generally
sufficient for analysis in many studies of stars, and high-
resolution spectra (R > 10 000) are needed for very de-
tailed analysis and determination of very reliable abun-
dances (Niemczura et al. 2014).

Although Ting et al. (2017a) conclude that low-
resolution spectra remain competitive for their low cost–
performance ratio, the role of high-resolution spectra is the
cornerstone in spectral analysis (Jofré et al. 2019) while
prices such as long exposure time and limited wavelength
coverage have to be paid to obtain them. Since their stel-
lar labels can be confidently determined, they offer a “s-
tandard/reference” for other observations (e.g., Allende
Prieto et al. 2008; Jofré et al. 2014, 2015; Heiter et al.
2015; Soubiran et al. 2016) and are even “transferred”
to low-resolution spectra (Ho et al. 2017a,b; Ting et al.
2017b; Zhang et al. 2019; Xiang et al. 2019). The abun-
dant resolved atomic lines and molecular features in high-
resolution spectra also help to derive accurate radial veloc-
ity, micro-turbulence and rotation velocity of stars, as well
as the identification of spectroscopic binary systems.

After finishing its first five-year low-resolution sur-
vey (LRS) (3900 Å < λ < 9000 Å, R ∼ 1800, cf.
Cui et al. 2012; Deng et al. 2012; Zhao et al. 2012; Luo
et al. 2015) since September 2012, LAMOST (the Large
Sky Area Multi-Object Fiber Spectroscopic Telescope) has
proceeded to conduct a new five-year medium-resolution
survey (MRS, Liu et al. in prep.) since September 2018.
The MRS operates at4950 Å < λ < 5350 Å (B band) and
6300 Å < λ < 6800 Å (R band) with spectral resolution
of R ∼ 7500. The MRS aims for several scientific goals,
such as Galactic archaeology, stellar physics, star forma-
tion, Galactic nebulae, and so on, most of which require
precise stellar labels based on the MRS spectra.

Taking advantage of the high efficiency in acquiring
spectra resulted from the 4000 fibers on the focal plane,
the MRS database will be quite attractive. However, the
wavelength coverage of the MRS is very limited. For LRS,
data-driven methods can derive precise stellar labels. For
example, Zhang et al. (2019) deriveTeff , log g, [M/H],
[α/M], [C/M], [N/M] at precision of∼ 49 K, 0.10 dex,
0.037 dex, 0.026 dex, 0.058 dex, and 0.106 dex, respec-
tively, for spectra withg-band signal-to-noise ratio> 100.
Note that even the stars with multiple observations in the
PASTEL (Soubiran et al. 2016) catalog show a scatter of
∼ 50 K. Therefore, it is worthwhile to think about how
much more spectral information we can get from MRS
compared to the LRS spectra. In this paper, we try to quan-
tify the information content in the MRS spectra in two d-

ifferent ways, namely the gradient spectra and the coeffi-
cients of dependence (CODs), aiming to assess the perfor-
mance of the MRS spectra in determining the stellar labels
of F-, G- and K-type stars. This paper is organized as fol-
lows. In Section 2, we try to explore the spectral informa-
tion content in a general way. In Section 3, we derive the
precision ofTeff , log g and[M/H] from mock MRS spec-
tra using the SLAM (Stellar LAbel Machine, Zhang et al.
2019), a data-driven method, and also present a reference
precision limit of elemental abundances for MRS. More
discussions are shown in Section 4 and Section 5 gives the
conclusion.

2 SPECTRAL INFORMATION CONTENT

The spectral information content of a spectrum depends
on spectral resolution, wavelength coverage and its stel-
lar spectral type. Quantifying the information content in
spectra given wavelength is important in traditional stellar
spectral diagnostics; that is the Balmer lines can be used
as proxies ofTeff and almost independent of the overall
metallicity [M/H]. When choosing a wavelength range for
a spectroscopic observation, one needs to think about how
much information can be extracted from it. However, this
concept of spectral information content was not systemati-
cally specified in previous works until Ting et al. (2017a).
Here we present two different methods to quantify thein-
formation contentof stellar spectra. To demonstrate the
quantification of information content of stellar spectra for
different types of stars, we select eight sample stars includ-
ing four spectral types (F-, G-, and K-dwarf and K-giant)
and two metallicities ([M/H] = 0.0 dex and−2.0 dex)
such that

1. F-dwarf,Teff = 7000 K, log g= 4.5 dex,

2. G-dwarf,Teff = 5800 K, log g= 4.5 dex,

3. K-dwarf,Teff = 4500 K, log g= 4.6 dex,

4. K-giant,Teff = 4500 K, log g= 1.8 dex.

We then generate mock spectra withTeff , log g and[M/H]

close to the parameters around each sample stars within
±1000 K, ±0.25 dex, and±0.1 dex, respectively.

2.1 Gradient Spectra – a Local Measure

The first way, as presented in Ting et al. (2017a), is
to use gradient spectra to estimate the information con-
tent. Assuming that there aren stellar labels,l =

(l1, l2, · · · , li, · · · , ln), with the notation l + ∆li =

(l1, l2, · · · , li +∆li, · · · , ln), the gradient of the spectrum
on theith stellar label is numerically calculated using

∂

∂li
f(l, λ) =

f(l+∆li, λ)− f(l, λ)

∆li
. (1)
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This measures the spectral response to variation of a given
stellar labelli. To quantify the totalinformation content
relevant to fundamental stellar parameters, we plot the sum

of gradient spectra, i.e.,
∑

i

∣

∣

∣

∂

∂li
f(l, λ)

∣

∣

∣
, following Ting

et al. (2017a) in Figure 1, where the sum is overTeff , log g
and[M/H].

In the upper / lower panel of Figure 1, we show the
sum of gradient spectra for sample spectra at[M/H] = 0.0

/ −2.0 from 3000 to 10 000Å. The gradient spectra are
evaluated using model spectra produced with ATLAS9
model (Castelli & Kurucz 2003) atR ∼ 300 000 and
binned to 10Å for visualization. A few well known spec-
tral features and the wavelength spans of the LAMOST
LRS and MRS are marked in the figure.

It is obvious that no matter at which metallicity, with-
in this wavelength range, the blue part contains more in-
formation than the red part (∼ 1 magnitude). In the low-
er metallicity case, the hydrogen features can be seen in
the gradient spectra, such as the Balmer and Paschen fea-
tures, especially in F-dwarf. From 3000 to 8000Å, the gra-
dient of F-dwarf decreases with wavelength more rapidly
than cooler stars, which indicates that for warm stars more
information of stellar labels is in the blue part. Beyond
8000Å, as the Paschen lines arise, the gradient rises again.

Late-type stars contain rich and significant metal lines
and molecular bands. Although the blue part is more infor-
mative than the red, they are usually more luminous in the
red part. Therefore, one has to compromise between the in-
formation content and luminosity in practice to carry out a
meaningful spectral observation.

2.2 CODs: a Global Measure

Second, Zhang et al. (2019) used SLAM (Stellar LAbel
Machine), a data-driven method, to evaluate the Coefficient
of Dependence (COD) which quantifies the global spec-
tral information content. The basic idea is to measure the
percentage of variance explained(PVE) of spectral flux
at each wavelength by regression.The full COD indicates
the total spectral information content for determining al-
l stellar labels, and the CODs for a single stellar label
quantifies the spectral information content for that stellar
label.The advantages of CODs are that they can be evalu-
ated from observed spectra with known stellar labels rather
than synthetic spectra and CODs have unity scales. We re-
fer the reader to Appendix A for the demonstration of how
the PVE could be used to quantify the information content
in noisy data.

Here we briefly explain how to evaluate the full COD
and the CODs for single stellar labels. We define

CODfull =
∑

i

COD(li) = PVEfull, (2)

where PVEfull is the variance explained when trained us-
ing all stellar labels, andli denotes theith stellar label.
Because SLAM always produces a regression model that
is close toideal by adopting adaptive model complexities
for each pixel, we can assume that the CODfull is a simple
sum of the contribution from each stellar label. To evaluate
the COD of each stellar label separately, we do a leave-one-
label-out training for each label. LetW (li) be the relative
contribution ofli, PVE(−li) be the PVE after excluding
li in training, from the leave-one-label-out training process
we have the following linear equations














+W (l2) +W (l3) + · · · +W (ln) = PVE(−l1)
W (l1) +W (l3) + · · · +W (ln) = PVE(−l2)

...
...

...
. . .

... =
...

W (l1) +W (l2) +W (l3) + · · · = PVE(−ln)

.

(3)

Obviously, we have

∑

i

W (li) =

∑

j PVE(−lj)

n− 1
(4)

hence

W (li) =

∑

j PVE(−lj)

n− 1
− PVE(−li). (5)

The CODs for each stellar label can be derived via

COD(li) = CODfull ×
W (li)

∑

j W (lj)

= PVEfull ×

(

1−
(n− 1)PVE(−li)
∑

j PVE(−lj)

)

.

(6)

They indicate the relevant fractions of spectral informa-
tion content for determining each stellar label at a specific
wavelength.Compared to gradient spectra, CODs have ad-
vantages including that they can measure the global sen-
sitivity of the flux against the variance of stellar labels
and can be directly evaluated from observed spectra, as
shown in Zhang et al. (2019). Interestingly, Zhang et al.
(2019) found that CODs are highly consistent with our tra-
ditional spectroscopic experience. For instance, the Balmer
lines are good measures ofTeff and almost independent of
[M/H], and the Mg I triplet at5175 Å is a good proxy of
log g compared to other spectral features in3900 Å < λ <

5800 Å.

2.3 The Information Content of F-, G- and K-type
Stars in Optical Spectra

We are able to evaluate the CODfull and the CODs of each
stellar label for sample stars used in the previous subsec-
tion and display them in Figure 2.

In the upper panel of Figure 2, we show the CODs
for stars with solar metallicity. For better visualization, we



51–4 B. Zhang et al.: LAMOST MRS Spectral Information Content

10−2

10−1

100

101

102

103
MRS B band MRS R band

LAMOST LRS

Na
 D

M
g 

I

HαHβHγ
 +

 G
 b

an
d

HδHε
 +

 C
a 

H&
K

Ba
lm

er
 fo

re
st

Pa
sc

he
n 

fo
re

st

[M/H] =  0.0

3000 4000 5000 6000 7000 8000 9000 10000
λ [Å]

10−2

10−1

100

101

102

103
MRS B band MRS R band

LAMOST LRS

Na
 D

M
g 

I

HαHβHγ
 +

 G
 b

an
d

HδHε
 +

 C
a 

H&
K

Ba
lm

er
 fo

re
st

Pa
sc

he
n 

fo
re

st

[M/H] = -2.0

In
fo

rm
at

io
n 

de
ns

ity
 [d

ex
−1

 Å
−1

]

F dwarf
G dwarf
K dwarf
K giant
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Fig. 3 In each panel, thethick solid linesrepresent the scatter-S/N relation for sample stars with[M/H]= 0.0. Theblue/red/black lines
are calculated using MRSB band only / MRSR band only / both MRSB andR band spectra, respectively. Thegray thick lineis the
result of the same test with LRS spectra. Thedashed lineswith corresponding colors are the bias. The first, second andthird rows of
the figure show the results forTeff , log g and[M/H], respectively. Each column represents one type of sample stars, which is marked
in the top panels. Note that we useσ to represent random error and use∆ to represent bias. In each panel, the left vertical axis denotes
random uncertainties, and the right one denotes the bias.

shift COD(Teff), COD(log g) and COD([M/H]) by a con-
stant 1, 2 and 3, respectively. It is obvious that the CODfull,
which quantifies the total information content, decreases
with wavelength in the range from 3000 to 8000Å. Cool
stars have a higher information content than warm stars at
almost all wavelength, which is consistent with the gradi-
ent result.

In general, COD(Teff) traces the hydrogen features and
metal lines while COD([M/H]) traces the metal lines and
molecular bands. The molecular bands are not significant
because the effective temperature of the K-type stars in the
test is not sufficiently low. The COD(log g) remains low
value except for K-type giant stars, meaning that it is rela-
tively easy to determinelog g for K giant stars.

In the lower panel, we show similar results for low
metallicity ([M/H] = −2) stars. The major difference is
that all CODs are lower than those at solar metallicity.
The COD(Teff) strongly follows the hydrogen features and
COD(log g) almost vanishes at the red band. It is noted
that, for metal-poor stars, the COD([M/H]) is only sig-
nificant in the blue band (λ < 6000 Å). There are a few
wavelength ranges where COD([M/H]) is high, including

λ ∼ 3900 Å, which is mostly contributed by Ca K and
H lines. However, for metal-poor F- and G-type stars, the
overall COD([M/H]) in the MRS blue band is not promi-
nent.

The MRS blue (B)/red (R) band is originally designed
for the observations of Mg I triplet/Hα. The figure shows
that, for warm stars, the MRSR band has more information
on Teff than theB band, while for cool stars theB band
is more informative. In general, our results are consistent
with the analysis of gradient spectra (Ting et al. 2017a) and
also consistent with the traditional methods of measuring
fundamental stellar parameters summarized in Jofré et al.
(2019).

3 THE EXPECTED PRECISION OF STELLAR
LABELS FROM MRS

Empirically, we expect that the abundances of many el-
ements could be determined with MRS which hasR ∼

7, 500. However, the precision of elemental abundance es-
timates highly relies on the precision of fundamental stel-
lar labels. In this section, we utilize SLAM (Zhang et al.
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Fig. 4 Similar to Fig. 3 but for[M/H] = −1.
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Fig. 9 The upper/lower panel shows theprecision limitsof elemental abundances for F-, G-, K-type dwarf and K-type giant stars in
blue, orange, redandpurple, respectively, at[M/H] = 0/−2.

2019), a data-driven method, to assess the performance of
MRS spectra on stellar labels of F-, G- and K-type stars,
and also derive referenceprecision limitsfor many elemen-
tal abundances with gradient spectra.

3.1 Precision of Fundamental Stellar ParametersTeff ,
log g and [M/H]

We use ATLAS9 to generate 6000 mock MRS spectra at
R ∼ 50 000 and smoothed with a Gaussian kernel to de-
grade them toR ∼ 7500 with Teff between 3500 and

9000 K, log g between 0 and 5 and[M/H] between−4

and 0.5. To compare with LRS, we also generate anoth-
er 6000 atR ∼ 1800 keeping other conditions the same.
The MRS and LRS spectra are re-sampled to 0.2Å and
1.0 Å, respectively, to keep approximately the sampling
steps atλ/3R. To simulate the practical procedure of deriv-
ing fundamental stellar parameters using data-driven meth-
ods, noise is added to each spectrum so that the S/N is at
100. We trained SLAM separately with these two data sets.

To test the performance of MRS in deriving fundamen-
tal stellar parameters, again we study the four types of test
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stars used in Section 2 but at three different metallicities
([M/H]= 0, −1 and−2). Noise is added to each test s-
tar to mimic observed spectra at different S/N per pixel
from 10 to 180. Tests are repeated for 50 times at each
S/N so that we are able to evaluate the bias and scatter
for different combinations of test stellar spectra, metallic-
ity, and S/N ratio. In Figure 3, we show the results of our
tests for[M/H] = 0. In the top left panel, the thick solid
lines represent the relationship between the scatter ofTeff

and S/N for F-dwarfs. The blue/red/black lines are calcu-
lated using MRSB band only / MRSR band only / both
MRS B andR band spectra, respectively. The gray thick
line is the result of a similar test but with LRS spectra.
The dashed lines with corresponding colors are the bias of
Teff estimates. The second and last rows are similar, but
for log g and[M/H], respectively. From the second to the
fourth column, we show the tests for G-, K-dwarfs, and
K-giants. Figures 4 and 5 are similar to Figure 3, but for
[M/H] = −1 and−2, respectively.

In this series of figures, it is obvious that the MRSB
band is more informative than theR band for K-type stars.
The performance of any fundamental stellar parameter us-
ing theB band alone is close to that using the combination
of B andR bands. The reason is that for K-type stars, met-
al lines are abundant in theB band.

For G-type stars, the situation is similar to the K-
type stars at solar metallicity, while it is quite differen-
t at [M/H] = −2. As discussed in the previous section,
the metal lines are relatively weak when metallicity is low.
Since theB band is designed mainly for Mg I triplet and
other metal lines and it does not cover any goodTeff indica-
tors such as hydrogen features, theB band lacks informa-
tion of Teff . Because theTeff is the primary stellar param-
eter and may affect the performance oflog g and [M/H]

estimates, all the three cannot be well determined using
theB band only.

For F-dwarfs, theTeff derived from theB band alone
is relatively uncertain compared to theR band, especial-
ly in the metal-poor case ([M/H] = −2). However, the
B band still has a precision of[M/H] comparable to the
R band. Hence, combining bothB andR bands is impor-
tant for F-dwarfs. All three fundamental stellar parameters
show larger uncertainties compared to G- and K-type s-
tars. This is reasonable because most metal lines are weak
at this effective temperature.

Interestingly, although the LRS has a low resolution,
it behaves quite robust across all metallicities and spec-
tral types in these tests. It is important to recall that the
precision of stellar labels is determined by the total infor-
mation content in spectra with a given wavelength range.
Although the spectral resolution is low, covering from
3900 to 9000̊A makes the LRS spectra contain similar (or

even more) information in some situations than the MRS
with narrower wavelength range. Although we expect other
elemental abundances from MRS to be more precise than
the LRS, to determine the fundamental stellar parameters
such asTeff , log g and[M/H], the LRS data is essential-
ly more valuable. Besides, combining with other spectro-
scopic, photometric, astrometric and asteroseismic data is
also helpful to derive more precise stellar labels (Jofré et al.
2019).

3.2 The Influence of Radial Velocity Mismatch

It is necessary to correct radial velocity (RV) before deriv-
ing the stellar labels in most methods. Therefore, accurate
RV is important in deriving precise stellar labels. Wang
et al. (2019) reported that the intrinsic precision of their
RV measurements for spectra in MRS is able to achieve
1.36km s−1, 1.08km s−1 and 0.91km s−1 for the spec-
tra at S/N ratio of 10, 20, 50, respectively. However, the
RV precision depends on stellar spectral types as well. For
example, K giants spectra contain abundant narrow met-
al lines, thus it is easy to obtain more precise RV than
for A- and F-dwarf stars. Xiong et al. (in prep.) develop
a method to self-calibrate the RVs of a star using multiple
epoch observations and analyzes the relation between RV
precision and spectral types in more detail. In their work, at
S/N∼ 40, the errors of RVs are generally under 0.7km s−1

for almost all types of stars except B-type. Li et al. (in
prep.) confirmed this RV difficulty for B-type stars.

For F-, G- and K-type stars, we present a simulation to
estimate the response of stellar labels to the RV mismatch.
In Figures 6, 7 and 8, we show that the deviation of stel-
lar labelsTeff , log g and[M/H] against the RV mismatch at
[M/H] = 0,−1 and−2, respectively. The random RV mis-
match used in this test is assumed to be Gaussian. Tests are
done in the same way as in the scatter-S/N test but an addi-
tional random error in RV is added to shift the test spectra.
We also test the scatter-RV mismatch relation at three S/N
ratios, i.e., 20, 50 and 100.

At almost all the three metallicities and all S/N ratios,
a large RV mismatch introduces not only a scatter but also
a significant bias of stellar labels. The effect of erroneous
RV tends to overestimate theTeff andlog g of all the four
types of test stars (F-, G- and K-type dwarf and K giant)
at all metallicity and all S/N ratios, while it tends to un-
derestimate[M/H] of F-, G- and K-type dwarfs, except
K-giants.

A reasonable explanation of this is that for spectra with
relatively wide features (e.g., dwarfs), SLAM tends to pre-
dict best-matched spectra with shallower lines due to the
RV mismatched spectra, so that theTeff andlog g are high-
er than the true values, while the[M/H] is of course low-
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er. For the K-giants, the different behavior of the bias of
[M/H] is probably because most of the spectral lines are
very narrow and deep. However, within the reported preci-
sion of RV estimations, we do not see any significant incre-
ment of the scatter for any fundamental stellar parameter.

3.3 Prospects of Precise Abundances of Many
Elements from MRS

With synthetic gradient spectra, we are also able to predict
theprecision limitsof elemental abundances from MRS us-
ing a method similar to Ting et al. (2017b). The signal-to-

noise ratio atλ is S/N(λ) =
f(l, λ)

δf(l, λ)
by definition, where

f(l, λ) andδf(l, λ) are the normalized flux atλ and its as-
sociated uncertainty. Letli represent[X/H], the elemental
abundance under interest, the gradient spectrum onli can
be evaluated via Equation (1). Assuming that all pixels are
uncorrelated with each other, the precision of the elemental
abundance,σ(li), is determined via

1

σ(li)2
=
∑

λ

(

∂
∂li

f(l, λ)

δf(l, λ)

)2

(7)

=
∑

λ

(

S/N(λ)× ∂
∂li

f(l, λ)

f(l, λ)

)2

. (8)

We use ATLAS9 to generate the normalized spectra at
R ∼ 50 000 for the sample stars defined in Section 2 (F-,
G-, K-dwarf and K-giant) and degrade them toR ∼ 7500

using a Gaussian smoothing. In our test, the∆[X/H] is
chosen to be 0.1 dex andS/N = 100 which is wavelength-
independent. Note that since these spectra are “born” on
a normalized scale, we get around thepseudo-continuum
normalizationstep which contributes a large number of un-
certainties in the reduction of observed spectra. Therefore,
our precision estimation is very optimistic and can be re-
garded asprecision limit. We adopted solar abundance
from Grevesse & Sauval (1998) and theprecision limitsof
∼ 90 elemental abundances are shown in the upper/lower
panel of Figure 9 for[M/H] = 0/−2. The results for F-,
G-, K-type dwarf and K-type giant stars are shown in blue,
orange, red and purple, respectively.

In the[M/H] = 0 case (upper panel of Fig. 9, thepre-
cision limits), there are many elements withσ([X/H]) .

0.01 dex. These elements include C, N, O, Na, Mg, Al, Si,
Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Y, and we expect
precise abundances of at least these 17 elements come out
from MRS. In general, K-type giants provide the most pre-
cise elemental abundances among our four test stars. When
[M/H] = −2, most elemental abundances become uncer-
tain, except that Mg and Fe can still be measured precisely.
This is as expected because the MRSB band is designed
for Mg I triplet atλ ∼ 5175 Å and ion lines are abundant

in the optical range. Note that stars with enhanced elemen-
tal abundances are a special case. For example, the carbon-
enhanced metal-poor (CEMP) stars could have[C/Fe] > 2

(Aoki et al. 2007), which means the carbon features are
significant in spectra and remain detectable despite low
[M/H]. Our precision limitsare S/N–dependent so that
onceS/N > 100 is achieved, the precision of elemental
abundances could be better than shown and more elements
can be measured.

4 DISCUSSION

4.1 The Precision of Stellar Labels

In this work, we adopted SLAM as a representative of data-
driven methods to simulate the process of deriving stellar
labels. The precision and bias of the SLAM-predicted stel-
lar labels for the LRS are shown in Figures 3, 4 and 5. At
the high S/N ratio end, the precision of our stellar labels is
very small. For example, for the high S/N F-dwarf (S/N∼
100), the scatter ofTeff is about 10 K.

On the one hand, this is due to the fact that our simula-
tion is performed ideally. The random error of flux and the
training error of SLAM are the only sources of the scat-
ter of stellar labels. In practice, the observed spectra may
have bad pixels due to various reasons, and the pseudo-
continuum normalization may introduce lots of uncertain-
ties to the normalized spectra. Therefore, the precision in
practice will be worse than that in this work. Typical s-
catters ofTeff , log g and[Fe/H] for LAMOST LRS spec-
tra atg-band S/N higher than 100 are 50 K, 0.09 dex and
0.07 dex, respectively, as reported in (Zhang et al. 2019)
using the 3900 to 5800̊A spectra.

On the other hand, compared to the precision derived
not with data-driven methods but with a synthetic model,
such as Ting et al. (2017a), our scatters of stellar labels are
quite similar to theirs.

4.2 Caveat

Several things are not taken into account in the test in this
work. One of the most important is the influence of bina-
ry stars. AtR ∼ 7500, a significant fraction of double-
lined binary systems or even triple systems can be identi-
fied. Considering the significant binary frequency in F-, G-
and K-type stars (Gao et al. 2014), it is important to identi-
fy whether the object is a single star or not before deriving
stellar labels (Li et al. in prep.).

5 CONCLUSIONS

As the LAMOST MRS is going on, it is important to assess
the increase of the spectroscopic information compared to
the previous LRS. We conclude our results below.
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1. We explored the information quantification first, in-
cluding the using gradient spectra and using CODs. As
general-purpose tools, they are very helpful and valu-
able for astronomers working on stellar spectroscopy.
It is easy to identify which wavelength window is more
informative than others for a specific spectral type.

2. With these two tools, we can predict, in somehow, the
performance of the MRSB and R bands in deriv-
ing stellar labels. The LAMOST MRSB band is de-
signed mainly for Mg I triplet and some other metal
lines while theR band captures theHα line.

3. We utilized SLAM, a typical data-driven method, to
simulate the process of deriving fundamental stellar
parameters from MRS data. It is consistent with our
analysis in the spectral information that for warm s-
tars theB band does not behave as well as theR band
while it supersedesR band for K-type stars. For metal-
poor stars, it is dangerous to useB band orR band
alone to derive stellar labels for F- and G-type stars
due to the lack ofTeff-indicators inB band and the
lack of [M/H]-indicators in theR band. As a sugges-
tion, targeting more objects that are observed in LRS
or combining with other spectroscopic, photometric,

astrometric and asteroseismic surveys may be benefi-
cial for the MRS survey.

4. We estimatedprecision limitsfor the abundances of
∼ 90 elements with gradient spectra. Taking advan-
tages of the medium-resolution (R ∼ 7500), we ex-
pect abundances of at least 17 elements to be measured
precisely in the MRS spectra.

5. We also tested the influence on stellar labels intro-
duced by erroneous RV. The simulated results show
that within the precision of RV for MRS currently, we
do not see a significant increase in the scatter. Note
that the reported RV precision is mostly based on cool
stars.

6. We did not take into account the binary and multiple
systems, but we do see the need for identification of bi-
nary systems before deriving stellar labels using MRS
spectra.
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Appendix A: THE PERCENTAGE OF VARIANCE EXPLAINED (PVE)

This section introduces the concept of thepercentage of variance explained(PVE). Assuming we have a mock data set
containing featuresxi and observationsyi. An ideal regression model whose model complexity matches the data, is then
fitted to the mock data. Assuming we haveN observations, we can calculate the mean and variance of the observed data
y with

µ =
1

N

N
∑

i

yi (A.1)

and

s2 =
1

N

N
∑

i

(yi − µ)2. (A.2)

Fitting with anideal regression model to the data, we
are able to evaluate the variance of the residuals via

s2res =
1

N

N
∑

i

(yi − ymod,i)
2. (A.3)

The PVE is then evaluated with

PVE = 1−
s2res
s2

. (A.4)

By definition, it approaches 1 when the data contains in-
formation of featurex without noise (S/N → ∞) and
modeled properly, and it approaches 0 when information

is overwhelmed by noise in data (S/N → 0) . Therefore,
we can use PVE to indicate theinformation contentof sig-
nals in noisy data. For a systematic introduction of these
concepts we refer to Hastie et al. (2009).

We show a demo to explain it a bit more. We generate
mock data withy = sinx + ǫ, where the Gaussian ran-
dom noise termǫ ∼ N (0, 0.01), N (0, 0.16) andN (0, 4),
which corresponds to S/N ratios of 20, 5 and 1, respec-
tively. Ideal models are fitted to the three data sets and
shown in Figure A.1. Note that bothx andy are standard-
ized to have a zero mean and a unity variance for visu-
alization. The upper panels show the data and regression
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Fig. A.1 The demonstration of PVE values for high S/N, modest S/N and low S/N data are shown in left, middle and right panels,
respectively. The upper panels show the standardized mock data and the regression model, and the lower panels show the residuals.

models while the lower panels show the residuals. In these
three cases, including high S/N, modest S/N, and low S/N,
we see that thePVE = 0.97, 0.79 and0.13, respective-
ly. The PVE-indicated information content of signals are,
therefore, consistent with our understanding of data.
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