RAA 2020 Vol. 20No. 4, 51(12pp) doi: 10.1088/1674—-4527/20/4/51 )
(© 2020 National Astronomical Observatories, CAS and 0P iBhisig Ltd. Research in

http://www.raa-journal.org  http://iopscience.iop.drga iggggg}rg{casnd

Exploring the spectral information content in the LAMOST
medium-resolution survey (MRS)

Bo Zhang-?, Chao Liu-?, Chun-Qian L}-?, Li-Cai Dend, Tai-Sheng Yahand Jian-Rong Shi

I Key Laboratory of Optical Astronomy, National Astrononii€@bservatories, Chinese Academy of Sciences, Beijing
100101, Chinabozhang@nao.cas.cn
2 University of Chinese Academy of Sciences, Beijing 100@8na

Received 2019 October 9; accepted 2019 October 29

Abstract Although high-resolution stellar spectra allow us to degvecise stellar labels (effective temper-
ature, metallicity, surface gravity, elemental abundanete.) based on resolved atomic lines and molecular
bands, low-resolution spectra have been proved to be citimp@t determining many stellar labels at com-
parable precision. Itis useful to consider the spectralrimftion content when assessing the capability of a
stellar spectrum in deriving precise stellar labels. 18 thork, we quantify the information content brought
by the LAMOST-II medium-resolution spectroscopic survBRS) using the gradient spectra as well as
the coefficients-of-dependence (CODSs). In general, theelgagth coverage of the MRS well constrains
the stellar labels but the sensitivities of different stelabels vary with spectral types and metallicity of the
stars of interest. Consequently, this affects the perfagaaf the stellar label determination from the MRS
spectra. By applying the SLAM method to the synthetic sgeatnich mimic the MRS data, we find that
the precision of the fundamental stellar paramefgss log g and[M/H] are better when combining both
the blue and red bands of the MRS. This is especially impofteirwarm stars because theHine located

in the red part plays a more important role in determiningdfiective temperature for warm stars. With
blue and red parts together, we are able to reach similaoimeaice to the low-resolution spectra except
for warm stars. However, dM/H] ~ —2.0dex, the uncertainties of fundamental stellar labels exgoh
from MRS are substantially larger than that from low-reioluspectra. We also tested the uncertainties of
Tes, log g and[M/H] from MRS data induced from the radial velocity mismatch and that a mismatch

of about 1 km s, which is typical for LAMOST MRS data, would not significaptffect the stellar label
estimates. Finally, referengeecision limitsare calculated using synthetic gradient spectra, acogtdin
which we expect abundances of at least 17 elements to be mdgmecisely from MRS spectra.

Key words: methods: data analysis — methods: statistical — stars:dfonmeshtal parameters — stars:
abundances

1 INTRODUCTION et al. 2019) are widely applied in the field to provide
precise stellar labels (fundamental stellar paraméfgrs

A huge amount of spectral data with good quality havelogg and elemental abundanf:es [/, etc., hereafter.we
. ) call them stellar labels following Ness et al. 2015) at in-

been obtained through large-scale spectroscopic SurVede'l’JstriaI scales (cf. Jofré et al. 2019, and the references

such as the SEGUE (Yanny et al. 2009), RAVE (Steinmet herein) ' ' '

et al. 2006), Gaia-ESO (Gilmore et al. 2012), GALAH '

(De Silva et al. 2015), APOGEE (Majewski et al. 2017) As argued by Ting et al. (2017a), the precision of

and LAMOST (Deng et al. 2012). On the one hand, thisstellar labels derived from spectra is determined by the

has brought us new insights into the formation and evoinformation content quantified by gradients imbedded in

lution of the Galaxy (Bland-Hawthorn & Gerhard 2016). the spectra, which could be characterized mainly by spec-

On the other hand, it challenges the spectral modelingral resolution R), wavelength coverage and signal-to-

Consequently, machine-learning approaches, (e.g., Nes®ise (S/N) ratio and also depends on spectral types.

et al. 2015; Ting et al. 2019; Leung & Bovy 2019; Zhang Traditionally, low-resolution spectra( < 5000) are suit-
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able for spectral classification, deriving fundamental ste ifferent ways, namely the gradient spectra and the coeffi-
lar parameters and a few elemental abundances. For exagients of dependence (CODSs), aiming to assess the perfor-
ple, T.gx can be easily derived from Balmer lines. Medium- mance of the MRS spectra in determining the stellar labels
resolution spectra5000 < R < 10000) are generally of F-, G- and K-type stars. This paper is organized as fol-
sufficient for analysis in many studies of stars, and highiows. In Section 2, we try to explore the spectral informa-
resolution spectra > 10000) are needed for very de- tion content in a general way. In Section 3, we derive the
tailed analysis and determination of very reliable abunprecision ofT.g, log ¢ and[M/H] from mock MRS spec-
dances (Niemczura et al. 2014). tra using the SLAM (Stellar LAbel Machine, Zhang et al.
Although Ting et al. (2017a) conclude that low- 2019), a data-driven method, and also present a reference

resolution spectra remain competitive for their low cost-Precision limitof elemental abundances for MRS. More
performance ratio, the role of high-resolution spectrhés t discussions are shown in Section 4 and Section 5 gives the
cornerstone in spectral analysis (Jofré et al. 2019) whil€onclusion.

prices such as long exposure time and limited wavelength

coverage have to be paid to obtain them. Since their ste2 SPECTRAL INFORMATION CONTENT

lar labels can be confidently determined, they offer a “s-

tandard/reference” for other observations (e.g., AIIend(;rhe spectral information content of a spectrum depends

Prieto et al. 2008: Jofré et al. 2014. 2015 Heiter et al®" spectral resolution, wavelength coverage and its stel-

2015; Soubiran et al. 2016) and are even “transferredl‘ar spectr.al type. Quantifying the informatiop_content in
to low-resolution spectra (Ho et al. 2017a,b; Ting et aI'spectra given wavelength is important in traditional stell

2017b; Zhang et al. 2019; Xiang et al. 2019). The abun_spectral diagnostics; that is the Balmer lines can be used

dant resolved atomic lines and molecular features in high®> frl?x!fsﬁﬁgf' awng alm;)st mdepender:t oft';]he overfall
resolution spectra also help to derive accurate radiakvelo metallicity [M/H]. When choosing a wavelength range for

ity, micro-turbulence and rotation velocity of stars, adlwe a spectroscopic observation, one needs to think about how

as the identification of spectroscopic binary systems. much information can be extracted from it. However, this
L ) _ concept of spectral information content was not systemati-
After finishing its first five-year low-resolution sur-

3 3 ¢ cally specified in previous works until Ting et al. (2017a).
vey (LRS) 8900A < A < 90004, R ~ 1800, cf. Here we present two different methods to quantifyithe

Cui let al. 201_2; Deng et allol 2012; Zhao et al. 2?\12; I‘uoformation contentof stellar spectra. To demonstrate the
et al. 2015) since September 2012, LAMOST (the I‘arg%uantification of information content of stellar spectra fo

Sky Area Multi-Object Fiber Spectroscopic Telescope) ha%Iif'ferent types of stars, we select eight sample starsd@aclu
proceeded to conduct a new five-year medium-resolution1g four spectral types (F-, G-, and K-dwarf and K-giant)

survey (MRS, Liu et al. in prep.) since September 2018and two metallicities [M/H] = 0.0 dex and—2.0 dex)
The MRS operates an50 A < A < 5350 A (B band) and such that

63004 < X < 6800 A (R band) with spectral resolution
of R ~ 7500. The MRS aims for several scientific goals, 1. F-dwarf,T.g = 7000 K, log g = 4.5 dex,
such as Galactic archaeology, stellar physics, star forma2. G-dwarf, T, = 5800 K, log g = 4.5 dex,
tion, Galactic nebulae, and so on, most of which require 3 i _gwarf, 7.4 = 4500 K, log g = 4.6 dex,
precise stellar labels based on the MRS spectra. 4. K-giant,Tur = 4500 K, log g = 1.8 dex.

Taking advantage of the high efficiency in acquiring
spectra resulted from the 4000 fibers on the focal planéMe then generate mock spectra with, log g and[M /H]
the MRS database will be quite attractive. However, theclose to the parameters around each sample stars within
wavelength coverage of the MRS is very limited. For LRS,£1000 K, £0.25 dex, and+0.1 dex, respectively.
data-driven methods can derive precise stellar labels. For
example, Zhang et al. (2019) deriig, logg, [M/H], 2.1 Gradient Spectra—a Local Measure
[a/M], [C/M], [N/M] at precision of~ 49 K, 0.10 dex, i o )
0.037 dex, 0.026 dex, 0.058 dex, and 0.106 dex, respe(!-—he first way, as presented n Ting et_al. (20176‘)’ IS
tively, for spectra withy-band signal-to-noise ratis 100. to use gradl_ent spectra to estimate the information con-
Note that even the stars with multiple observations in thdent. Assuming that th_ere are stel[ar labels,! =
PASTEL (Soubiran et al. 2016) catalog show a scatter offs 2y s liy o ), with the nOt"_"t'Onl + Al =
~ 50 K. Therefore, it is worthwhile to think about how (L1, L2, . by + Al - . s 1), the_ gradient of the spgctrum
much more spectral information we can get from MRSON theith stellar label is numerically calculated using
compared to the LRS spectra. In this paper, we try to quan- 9 Fl+ Al A) = f(I,N)
tify the information content in the MRS spectra in two d- al, (I, A) = Al : 1)




B. Zhang et al. LAMOST MRS Spectral Information Content 51-3

This measures the spectral response to variation of a givamhere PVE, is the variance explained when trained us-
stellar labell;. To quantify the totainformation content ing all stellar labels, and; denotes theth stellar label.
relevant to fundamental stellar parameters, we plot the sufBecause SLAM always produces a regression model that
is close toideal by adopting adaptive model complexities
for each pixel, we can assume that the GQDs a simple
sum of the contribution from each stellar label. To evaluate
the COD of each stellar label separately, we do a leave-one-

¢ aradi ¢ | label-out training for each label. L&/ (I;) be the relative
sum of gradient spectra for sample spectra/gttl] = 0.0 contribution ofl;, PVE(—[;) be the PVE after excluding

/ 2.0 from 3_000 to 10000A. The gradient spectra are [; in training, from the leave-one-label-out training praces
evaluated using model spectra produced with ATLAS9

; we have the following linear equations
model (Castelli & Kurucz 2003) ak ~ 300000 and

of gradient spectra, i.e}_,

gf(l, /\)‘, following Ting
etal. (2017a) in Figure 1, where the sum is aver, log g
and[M/H].

In the upper / lower panel of Figure 1, we show the

binned to 10A for visualization. A few well known spec- +W(l2) +W(ls) +--- +W(ln) = PVE(-l)
tral features and the wavelength spans of the LAMOS W) W) +--- +W(in) = PVE(-k) _
LRS and MRS are marked in the figure. : : : - L= :

It is obvious that no matter at which metallicity, with- ¢ W () +W(l2) +W(ls) +--- = PVE(=ln)

®)

in this wavelength range, the blue part contains more in-,, .
. . Obviously, we have

formation than the red part( 1 magnitude). In the low-

er metallicity case, the hydrogen features can be seen in Zj PVE(—{;)

the gradient spectra, such as the Balmer and Paschen fea- Z W) = T -1 4)

tures, especially in F-dwarf. From 3000 to 800nthe gra- ‘

dient of F-dwarf decreases with wavelength more rapidlyhence

than cooler stars, which indicates that for warm stars more S PVE(—1;)

information of stellar labels is in the blue part. Beyond W(l;) = =

80004, as the Paschen lines arise, the gradient rises again. ] .
Late-type stars contain rich and significant metal lines' '€ CODs for each stellar label can be derived via

and molecular bands. Although the blue part is more infor-

mative than the red, they are usually more luminous in the

—— " — PVE(-L,). (5)

COD(li) = CODqu X %

red part. Therefore, one has to compromise between the in- (6)
. N . (n — 1)PVE(-1;)

formation content and luminosity in practice to carry out a =PVEqn x [ 1 - .

meaningful spectral observation. Zj PVE(—;)

They indicate the relevant fractions of spectral informa-
2.2 CODs: a Global Measure tion content for determining each stellar label at a specific

Second, Zhang et al. (2019) used SLAM (Stellar I_AbelwavelengthCompared to gradient spectra, CODs have ad-

Machine), a data-driven method, to evaluate the Coefficienfantages including that they can measure the global sen-

of Dependence (COD) which quantifies the global Spec_sitivity of the flux against the variance of stellar labels

tral information content. The basic idea is to measure th"d ¢an be directly evaluated from observed spectra, as

percentage of variance explainéBVE) of spectral flux shown in Zhang et al. (2019)_' Interestipgly, Zhang et al.
at each wavelength by regressidime full COD indicates (2019) found that CODs are highly consistent with our tra-

the total spectral information content for determining al- ‘?"“O”a' Spectroscopic experience. For ms_tance, the Balm
| stellar labels, and the CODs for a single stellar label lines are good measurgsiifﬁ- and %Imost independent of
guantifies the spectral information content for that stella [M/H], and the Mg triplet a6175 A is a good proxy of

label. The advantages of CODs are that they can be evald%8 9 compared to other spectral featureg@0 A < A <
ated from observed spectra with known stellar labels rathet>00 A

than synthetic spectra and CODs have unity scales. We re- _

fer the reader to Appendix A for the demonstration of how?-3 The Ir_1forma_1t|on Content of F-, G- and K-type
the PVE could be used to quantify the information content Stars in Optical Spectra

in noisy data. We are able to evaluate the CPand the CODs of each

Here we briefly explain how to evaluate the full COD ggiar |abel for sample stars used in the previous subsec-
and the CODs for single stellar labels. We define tion and display them in Figure 2.

CODpy — ZCOD(ZZ-) — PVEg, @ In the .upper panel o-f -Flgure 2, we sjhow- thg CODs
; for stars with solar metallicity. For better visualizatjove
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Fig. 1 Eachsolid linerepresents the sum of gradient spectra. Blae/orangdred/purple lineshows the results of F-, G- and K-dwarf,
and K-giant. The upper panel and lower panel show the gradjgectra afM/H] = 0 and —2, respectively. Several well known
spectral features are marked and the wavelength rangee bAMOST LRS and MRS are also showngray andblue'red bands.
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Fig. 2 In the upper panel, each curve represents either the full QBe COD for a specific stellar label. CODg), COD(log g) and
COD(M/H]) are shifted by a constant for visualization. Tilae, orange red andpurpletrace the F-, G- and K-dwarf, and K-giant,
respectively. Several well known spectral features arekethand the wavelength ranges of the LAMOST LRS and MRS are als
shown ingray andblue/ red bands. The lower panel shows a similar plot fflof/H] = —2.
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Fig. 3 In each panel, ththick solid linesrepresent the scatter-S/N relation for sample stars Wit ]= 0.0. Thebluered/black lines
are calculated using MRB band only / MRSR band only / both MRSB and R band spectra, respectively. Tgey thick lineis the
result of the same test with LRS spectra. Thashed linesvith corresponding colors are the bias. The first, secondlzind rows of
the figure show the results f@.q, log ¢ and[M/H], respectively. Each column represents one type of samguig, sthich is marked
in the top panels. Note that we useo represent random error and uSeo represent bias. In each panel, the left vertical axis @sno
random uncertainties, and the right one denotes the bias.

shift COD(I%.¢), COD(og g) and COD{M/H]) by acon- A ~ 3900 A, which is mostly contributed by CaK and
stant 1, 2 and 3, respectively. Itis obvious thatthe G@P H lines. However, for metal-poor F- and G-type stars, the
which quantifies the total information content, decreasesverall COD(M/H]) in the MRS blue band is not promi-
with wavelength in the range from 3000 to 8a80Cool  nent.
stars have a higher information content than warm stars at The MRS blue B)/red (R) band is originally designed
almost all wavelength, which is consistent with the gradi<for the observations of Mg tripldifa.. The figure shows
ent result. that, for warm stars, the MRB band has more information

In general, COD[ ) traces the hydrogen features andon T.g than theB band, while for cool stars th& band
metal lines while CODM/H]) traces the metal lines and is more informative. In general, our results are consistent
molecular bands. The molecular bands are not significarwith the analysis of gradient spectra (Ting et al. 2017a) and
because the effective temperature of the K-type stars in thelso consistent with the traditional methods of measuring
test is not sufficiently low. The COD{g ¢g) remains low fundamental stellar parameters summarized in Jofré et al.
value except for K-type giant stars, meaning that it is rela{2019).
tively easy to determinkg g for K giant stars.

In the lower panel, we show similar results for low 3 THE EXPECTED PRECISION OF STELLAR
metallicity (M/H] = —2) stars. The major difference is | ABELS FROM MRS
that all CODs are lower than those at solar metallicity.
The COD(.¢) strongly follows the hydrogen features and Empirically, we expect that the abundances of many el-
COD(log g) almost vanishes at the red band. It is notedements could be determined with MRS which Has~
that, for metal-poor stars, the CODP{/H]) is only sig- 7,500. However, the precision of elemental abundance es-
nificant in the blue bandX( < 6000 A). There are a few timates highly relies on the precision of fundamental stel-
wavelength ranges where CODI/H]) is high, including lar labels. In this section, we utilize SLAM (Zhang et al.
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Fig.9 The upper/lower panel shows tpescision limitsof elemental abundances for F-, G-, K-type dwarf and K-tyjaatgstars in

blue orange red andpurple respectively, afM /H] = 0/—2.

2019), a data-driven method, to assess the performance 800 K, log g between 0 and 5 anfM/H] between—4
MRS spectra on stellar labels of F-, G- and K-type starsand 0.5. To compare with LRS, we also generate anoth-

and also derive referenpeecision limitsfor many elemen-
tal abundances with gradient spectra.

3.1 Precision of Fundamental Stellar Parameterg g,
log g and [M/H]

er 6000 atR ~ 1800 keeping other conditions the same.
The MRS and LRS spectra are re-sampled to.and

1.0 A, respectively, to keep approximately the sampling
steps af\ /3 R. To simulate the practical procedure of deriv-
ing fundamental stellar parameters using data-driven-meth
ods, noise is added to each spectrum so that the S/N is at

We use ATLAS9 to generate 6000 mock MRS spectra al00. We trained SLAM separately with these two data sets.

R ~ 50000 and smoothed with a Gaussian kernel to de-

grade them toR ~ 7500 with T.g between 3500 and

To test the performance of MRS in deriving fundamen-
tal stellar parameters, again we study the four types of test
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stars used in Section 2 but at three different metallicitie®ven more) information in some situations than the MRS
(IM/H]= 0, —1 and —2). Noise is added to each test s- with narrower wavelength range. Although we expect other
tar to mimic observed spectra at different S/N per pixelelemental abundances from MRS to be more precise than
from 10 to 180. Tests are repeated for 50 times at eacthe LRS, to determine the fundamental stellar parameters
S/N so that we are able to evaluate the bias and scatteuch asT.g, logg and[M/H], the LRS data is essential-
for different combinations of test stellar spectra, matall ly more valuable. Besides, combining with other spectro-
ity, and S/N ratio. In Figure 3, we show the results of ourscopic, photometric, astrometric and asteroseismic data i
tests for[M/H] = 0. In the top left panel, the thick solid also helpful to derive more precise stellar labels (Jdfed.e
lines represent the relationship between the scattégof 2019).
and S/N for F-dwarfs. The blue/red/black lines are calcu-
lated using MRSB band only / MRSE band only / both 32 The Influence of Radial Velocity Mismatch
MRS B and R band spectra, respectively. The gray thick
line is the result of a similar test but with LRS spectra.lt is necessary to correct radial velocity (RV) before deriv
The dashed lines with corresponding colors are the bias dfg the stellar labels in most methods. Therefore, accurate
T.g estimates. The second and last rows are similar, buRV is important in deriving precise stellar labels. Wang
for log g and[M/H], respectively. From the second to the et al. (2019) reported that the intrinsic precision of their
fourth column, we show the tests for G-, K-dwarfs, andRV measurements for spectra in MRS is able to achieve
K-giants. Figures 4 and 5 are similar to Figure 3, but for1.36kms™*, 1.08kms™' and 0.91kms™" for the spec-
[M/H] = —1 and—2, respectively. tra at S/N ratio of 10, 20, 50, respectively. However, the
In this series of figures, it is obvious that the MBS RV precision depends on stellar spectral types as well. For
band is more informative than tiieband for K-type stars. example, K giants spectra contain abundant narrow met-
The performance of any fundamental stellar parameter ugl lines, thus it is easy to obtain more precise RV than
ing the B band alone is close to that using the combinatiorfor A- and F-dwarf stars. Xiong et al. (in prep.) develop
of B andR bands. The reason is that for K-type stars, meta method to self-calibrate the RVs of a star using multiple
al lines are abundant in th2 band. epoch observations and analyzes the relation between RV
For G-type stars, the situation is similar to the K- precision and spectral types in more detail. Inthelrwo‘rk a
type stars at solar metallicity, while it is quite differen- S/N~ 40, the errors of RVs are generally under Brif s~
tat[M/H] = —2. As discussed in the previous section, for almost all types of stars except B-type. Li et al. (in
the metal lines are relatively weak when metallicity is low. Prep.) confirmed this RV difficulty for B-type stars.
Since theB band is designed mainly for Mg triplet and For F-, G- and K-type stars, we present a simulation to
other metal lines and it does not cover any gdépgindica-  estimate the response of stellar labels to the RV mismatch.
tors such as hydrogen features, fhdand lacks informa- In Figures 6, 7 and 8, we show that the deviation of stel-
tion of 7. Because th&,g is the primary stellar param- lar labelsT.q, log g and[M/H] against the RV mismatch at
eter and may affect the performancelof g and[M/H]  [M/H] = 0, —1 and—2, respectively. The random RV mis-
estimates, all the three cannot be well determined usingnatch used in this testis assumed to be Gaussian. Tests are
the B band only. done in the same way as in the scatter-S/N test but an addi-
For F-dwarfs, thel.¢ derived from theB band alone tional random error in RV is added to shift the test spectra.
is relatively uncertain compared to tdeband, especial- We also test the scatter-RV mismatch relation at three S/N

ly in the metal-poor caseNI/H] = —2). However, the ratios, i.e., 20, 50 and 100.

B band still has a precision ¢M/H] comparable to the At almost all the three metallicities and all S/N ratios,
R band. Hence, combining both and R bands is impor-  a large RV mismatch introduces not only a scatter but also
tant for F-dwarfs. All three fundamental stellar parameter a significant bias of stellar labels. The effect of erroneous
show larger uncertainties compared to G- and K-type sRV tends to overestimate &g andlog g of all the four
tars. This is reasonable because most metal lines are webjpes of test stars (F-, G- and K-type dwarf and K giant)
at this effective temperature. at all metallicity and all S/N ratios, while it tends to un-

Interestingly, although the LRS has a low resolution,derestimatgM/H] of F-, G- and K-type dwarfs, except
it behaves quite robust across all metallicities and sped<-giants.
tral types in these tests. It is important to recall that the A reasonable explanation of this is that for spectra with
precision of stellar labels is determined by the total infor relatively wide features (e.g., dwarfs), SLAM tends to pre-
mation content in spectra with a given wavelength rangedict best-matched spectra with shallower lines due to the
Although the spectral resolution is low, covering from RV mismatched spectra, so that thigr andlog g are high-
3900 to 900G\ makes the LRS spectra contain similar (or er than the true values, while tfiil/H] is of course low-
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er. For the K-giants, the different behavior of the bias ofin the optical range. Note that stars with enhanced elemen-

[M/H] is probably because most of the spectral lines ar¢éal abundances are a special case. For example, the carbon-

very narrow and deep. However, within the reported precienhanced metal-poor (CEMP) stars could H&y&e] > 2

sion of RV estimations, we do not see any significant incre{Aoki et al. 2007), which means the carbon features are

ment of the scatter for any fundamental stellar parametersignificant in spectra and remain detectable despite low

[M/H]. Our precision limitsare S/IN-dependent so that

3.3 Prospects of Precise Abundances of Many onceS/N > 100 is achieved, the precision of elemental

Elements from MRS abundances could be better than shown and more elements

) , ) ~can be measured.
With synthetic gradient spectra, we are also able to predict

theprecision limitsof elemental abundances from MRS us-4 p1sSCUSSION
ing a method similar to Ting et al. (2017b). The signal-to-

AU
of(l,\)
f(I,\)anddf(1, \) are the normalized flux atand its as-  In this work, we adopted SLAM as a representative of data-
sociated uncertainty. Léf represenfX /H], the elemental driven methods to simulate the process of deriving stellar
abundance under interest, the gradient spectruii3 oan labels. The precision and bias of the SLAM-predicted stel-
be evaluated via Equation (1). Assuming that all pixels ardar labels for the LRS are shown in Figures 3, 4 and 5. At
uncorrelated with each other, the precision of the elenhentdhe high S/N ratio end, the precision of our stellar labels is

4.1 The Precision of Stellar Labels

noise ratio at\ is S/N(\) = by definition, where

abundances(l;), is determined via very small. For example, for the high S/N F-dwarf (S/N
5 9 100), the scatter df ¢ is about 10 K.
1 _ Z < [ (L /\>> @) On the one hand, this is due to the fact that our simula-
o(li)? S\ of(L,A) tion is performed ideally. The random error of flux and the

o (1 2 training error of SLAM are the only sources of the scat-
_ Z S/N(A) x a_hf( ) _ (8) ter of stellar labels. In practice, the observed spectra may
X fA) have bad pixels due to various reasons, and the pseudo-

We use ATLASO to generate the normalized spectra sgontinuum normalization may introduce lots of uncertain-
R ~ 50000 for the sample stars defined in Section 2 (F- ties to the normalized spectra. Therefore, the precision in

G-, K-dwarf and K-giant) and degrade them&o~ 7500 practice will be worse than that in this work. Typical s-
using a Gaussian smoothing. In our test, thiX/H] is ~ catters ofles, log g and|[Fe/H] for LAMOST LRS spec-
chosen to be 0.1 dex aiiN = 100 which is wavelength- tra atg-band S/N hlgher than 100 are 50 K, 0.09 dex and
independent. Note that since these spectra are “born” ofy07 dex, respectively, as reported in (Zhang et al. 2019)
a normalized scale, we get around fieudo-continuum USing the 3900 to 5804 spectra. . _
normalizatiorstep which contributes a large number of un- ~ On the other hand, compared to the precision derived

certainties in the reduction of observed spectra. Theegfor 10t With data-driven methods but with a synthetic model,

our precision estimation is very optimistic and can be reSuch as Ting et al. (2017a), our scatters of stellar labels ar

garded asprecision limit We adopted solar abundance AUite similar to theirs.
from Grevesse & Sauval (1998) and threcision limitsof
~ 90 elemental abundances are shown in the upper/lowéh-2 Caveat
panel of Figure 9 fofM/H] = 0/—2. The results for F-,
G-, K-type dwarf and K-type giant stars are shown in blue
orange, red and purple, respectively.

In the[M/H] = 0 case (upper panel of Fig. 9, tpee-

Several things are not taken into account in the test in this
work. One of the most important is the influence of bina-
ry stars. AtR ~ 7500, a significant fraction of double-
R ) lined binary systems or even triple systems can be identi-
cision limitg, there are mapy elements with[X/H]) _fied. Considering the significant binary frequency in F-, G-
0.01 dex. These elements include C, N, O, Na, Mg, Al, SI’and K-type stars (Gao et al. 2014), it is important to identi-

Ca, SC, Ti, V, Cr, Mn, Fe, Co, Ni, and Y, and we expectfy whether the object is a single star or not before deriving
precise abundances of at least these 17 elements come Wj1ar labels (Lietal. in prep.)

from MRS. In general, K-type giants provide the most pre-

cise elemental abundances among our four test stars. Whgn - qNncLUSIONS

[M/H] = —2, most elemental abundances become uncer-

tain, except that Mg and Fe can still be measured precisehAs the LAMOST MRS is going on, itis importantto assess
This is as expected because the MB®and is designed the increase of the spectroscopic information compared to
for Mg | triplet at A ~ 5175 A and ion lines are abundant the previous LRS. We conclude our results below.
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1. We explored the information quantification first, in- astrometric and asteroseismic surveys may be benefi-
cluding the using gradient spectra and using CODs. As  cial for the MRS survey.
general-purpose tools, they are very helpful and valu-4. We estimatedgrecision limitsfor the abundances of
able for astronomers working on stellar spectroscopy. ~ 90 elements with gradient spectra. Taking advan-
Itis easy to identify which wavelength window is more tages of the medium-resolutio®(~ 7500), we ex-
informative than others for a specific spectral type. pect abundances of at least 17 elements to be measured
2. With these two tools, we can predict, in somehow, the  precisely in the MRS spectra.
performance of the MRS and R bands in deriv- 5. We also tested the influence on stellar labels intro-

ing stellar labels. The LAMOST MR® band is de- duced by erroneous RV. The simulated results show
signed mainly for Mg triplet and some other metal that within the precision of RV for MRS currently, we
lines while theR band captures thH« line. do not see a significant increase in the scatter. Note

3. We utilized SLAM, a typical data-driven method, to that the reported RV precision is mostly based on cool
simulate the process of deriving fundamental stellar  stars.
parameters from MRS data. It is consistent with our 6. We did not take into account the binary and multiple
analysis in the spectral information that for warm s-  systems, but we do see the need for identification of bi-
tars theB band does not behave as well as thband nary systems before deriving stellar labels using MRS
while it supersedeR band for K-type stars. For metal- spectra.
poor stars, it is dangerous to ugeband orR band
alone to derive stellar labels for F- and G-type stardAcknowledgementsThe authors thank the referee for
due to the lack off.g-indicators inB band and the Providing many useful suggestions.
lack of [M/H]-indicators in theR band. As a sugges- This work is supported by the National Key R&D

tion, targeting more objects that are observed in LRSrogram of China (2019YFA0405501). CL thanks the

11835057).

Appendix A: THE PERCENTAGE OF VARIANCE EXPLAINED (PVE)

This section introduces the concept of fiercentage of variance explainéBVE). Assuming we have a mock data set
containing features; and observationg;. An ideal regression model whose model complexity matches the dattaen
fitted to the mock data. Assuming we ha¥eobservations, we can calculate the mean and variance obder\ed data

y with

= %Zyi (A1)

%

and

N
P = > (- w0 (A2)

Fitting with anideal regression model to the data, we is overwhelmed by noise in daté /(N — 0) . Therefore,

are able to evaluate the variance of the residuals via we can use PVE to indicate tir@ormation contendf sig-
N nals in noisy data. For a systematic introduction of these
$2, = % Z(yi — Ymod.1)>- (A.3) concepts we refer to Hastie et al. (2009).
i We show a demo to explain it a bit more. We generate
The PVE is then evaluated with mock data withy = sinx + ¢, where the Gaussian ran-
) dom noise terme ~ N(0,0.01), A(0,0.16) and A/ (0, 4),
PVE=1— Sr_gs (A.4)  which corresponds to S/N ratios of 20, 5 and 1, respec-
S

tively. Ideal models are fitted to the three data sets and
By definition, it approaches 1 when the data contains inshown in Figure A.1. Note that bothandy are standard-
formation of featurer without noise §/N — oo0) and ized to have a zero mean and a unity variance for visu-
modeled properly, and it approaches 0 when informatioralization. The upper panels show the data and regression
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Fig.A.1 The demonstration of PVE values for high S/N, modest S/N amdS/N data are shown in left, middle and right panels,
respectively. The upper panels show the standardized natekashd the regression model, and the lower panels showstideiats.

models while the lower panels show the residuals. In theseélo, A. Y. Q., Rix, H.-W., Ness, M. K., et al. 2017a, ApJ, 841, 40
three cases, including high S/N, modest S/N, and low S/NHo, A. Y. Q., Ness, M. K., Hogg, D. W., et al. 2017b, ApJ, 836,

we see that th&® VE = 0.97, 0.79 and0.13, respective-

ly. The PVE-indicated information content of signals are,

therefore, consistent with our understanding of data.
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