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Abstract Galaxy clustering provides insightful clues to our understanding of galaxy formation and evo-
lution, as well as the universe. The redshift assignment forthe random sample is one of the key steps to
accurately measure galaxy clustering. In this paper, by virtue of the mock galaxy catalogs, we investigate
the effect of two redshift assignment methods on the measurement of galaxy two-point correlation functions
(hereafter 2PCFs), theVmax method and the “shuffled” method. We have found that the shuffled method
significantly underestimates both of the projected 2PCFs and the two-dimensional 2PCFs in redshift space,
while theVmax method does not show any notable bias on the 2PCFs for volume-limited samples. For flux-
limited samples, the bias produced by theVmax method is less than half of the shuffled method on large
scales. Therefore, we strongly recommend theVmax method to assign redshifts to random samples in the
future galaxy clustering analysis.

Key words: galaxies: statistics — galaxies: galaxy formation and evolution — large-scale structure of
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1 INTRODUCTION

Observed galaxy distribution encodes a wealth of informa-
tion on the formation and evolution of galaxies, dark mat-
ter halos, and the large-scale structure of the universe. In
the past two decades, with the successes of completed and
ongoing wide-field surveys such as the Two Degree Field
Galaxy Redshift Survey (2dFGRS; Colless et al. 2003),
the Sloan Digital Sky Survey (SDSS; York et al. 2000),
the Baryon Oscillation Spectroscopic Survey (BOSS;
Eisenstein et al. 2011), the VIMOS Public Extragalactic
Redshift Survey (VIPERS; Garilli et al. 2012), and the
Dark Energy Spectroscopic Instrument (DESI; Levi et al.
2013a; DESI Collaboration et al. 2016a,b), we are able
to map the three-dimensional distribution of over a mil-
lion galaxies with well-measured spectroscopic redshifts.
These observed galaxies exhibit a variety of physical prop-
erties (e.g., luminosity, color, stellar mass, morphology,
spectral type) as well as notable environment-dependent
features (Dressler et al. 1997; Blanton et al. 2003a; Goto

et al. 2003). Consequently one primary goal of observa-
tional cosmology is to utilize an efficient and reliable tech-
nique to optimally extract information from these sam-
ples, to interpret these property-dependent distributions
and gain some cosmological insights.

The galaxy two-point correlation function is one of the
most powerful and fundamental tools to characterize the
spatial distribution of galaxies (Peebles 1980). On small
scales, apart from the galaxy peculiar velocities (Jackson
1972; Hawkins et al. 2003; de la Torre et al. 2013), the
2PCF is shaped by the complex baryonic physics involved
in galaxy formation in dark matter halos, offering unique
checks for empirical galaxy-halo connection models, such
as the halo occupation distribution model (HOD; Jing et al.
1998, 2002; Peacock & Smith 2000; Berlind & Weinberg
2002; Zheng et al. 2005; Guo et al. 2015; Xu et al. 2018),
the conditional luminosity function technique (CLF; Yang
et al. 2003, 2004, 2005a,b, 2008, 2012, 2018; Vale &
Ostriker 2004; van den Bosch et al. 2007), and the sub-
halo abundance matching method (SHAM; Kravtsov et al.
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2004; Conroy et al. 2006; Vale & Ostriker 2006; Guo et al.
2010; Simha et al. 2012; Guo & White 2014; Chaves-
Montero et al. 2016). On large scales, the anisotropy im-
printed in the redshift-space clustering, arising from the
gravity-driven coherent motion of matter, is widely used to
measure the growth rate of the cosmic structure, to distin-
guish dark energy models and to constrain the cosmologi-
cal parameters (Kaiser 1987; Peacock et al. 2001; Tegmark
et al. 2004a; Seljak et al. 2006; Guzzo et al. 2008; Percival
et al. 2010; Blake et al. 2011; Reid et al. 2012; Weinberg
et al. 2013; Ross et al. 2014; Li et al. 2016; Shi et al. 2018;
Wang et al. 2018). Therefore, to accurately measure the
2PCF is a critical step for probing the galaxy formation
and cosmology.

To measure the galaxy 2PCF, we usually need a ran-
dom sample with the same sky coverage and radial se-
lection function as the galaxy sample (Hamilton 1993).
For most redshift surveys, the observed galaxies are flux-
limited samples suffering from luminosity-dependent s-
election bias. As the redshift increases, only luminous
galaxies can be observed and the dim galaxies are too faint
to be detected. Consequently, the galaxy number density
varies as a function of redshift. Generally, it is easy to pro-
duce random samples for the luminosity-selected galaxies
if the luminosity function is fairly determined. However,
for a galaxy sample selected by other physical quantities
such as color, stellar mass, morphology and so forth, it
is not straightforward to generate their corresponding ran-
dom samples.

For these property-selected galaxy samples, the shuf-
fled method has been widely used in galaxy clustering
analysis (Levi et al. 2013b; Reid et al. 2012; Anderson
et al. 2012; Sánchez et al. 2012; Guo et al. 2013; Ross
et al. 2014). Previous tests have shown that the 2PCF mea-
sured using random sample constructed from the shuffled
method produces the least biased result compared with
other methods (Kazin et al. 2010; Howlett et al. 2015).
In particular, Ross et al. (2012) proved that the system-
atic bias induced by the shuffled method is quite small for
the redshift-space correlation function on the scale around
30 ∼ 150h−1Mpc, with a statistical uncertainty of at most
5%. However, as current and future redshift surveys are
aiming at∼1% level accuracy of clustering measurements,
the systematic bias induced by the shuffled method should
be carefully taken into account. Generally, in the shuffled
method, there is a hidden issue in that the structures in the
radial distribution of real galaxies can be transferred to the
random sample through the shuffling process, resulting in
an underestimation of galaxy clustering. By applying d-
ifferent approaches to construct the random samples, de la
Torre et al. (2013) found that the projected 2PCF (hereafter
P2PCF) measured using a random sample from theVmax

method is more accurate than the measure from the shuf-
fled method. This is not surprising since the random red-
shifts generated from theVmax method are randomly dis-
tributed in the maximum observable volume of the galax-
ies, only depending on the flux limits of the survey (Cole
2011). Therefore, in principle, theVmax method is superior
to the shuffled method.

The purpose of this paper is to demonstrate that apart
from the P2PCF, the shuffled method can impact theshape
of the 2PCF in a 2D space, thus resulting in systematic
errors in the redshift-space distortion measurement. While
such systematics is not induced in theVmax method, here
we use mock galaxy catalogs to quantify and compare the
systematic uncertainty induced by random samples from
the Vmax method and the shuffled method. We primarily
focus our tests on the galaxy clustering on scales below
40h−1Mpc. For theVmax method, we also need to correct-
ly estimate the maximum observable volume for individual
galaxies based on the magnitude limits of the survey.

This paper is organized as follows. In Section 2, we
first introduce how we construct the mock galaxy catalogs
and prepare for our tests. The three radial distribution func-
tions that we applied to produce the random samples are
also outlined in this section. In Section 3, we compare the
galaxy correlation functions measured from three different
methods in detail and quantify the systematic uncertain-
ties of these measurements. Finally, we discuss our results
and conclude the paper in Section 4. In our distance cal-
culation, we assume a flatΛCDM cosmology withΩm =

1− ΩΛ = 0.268, h = H0/(100 kms−1Mpc−1) = 0.71.

2 DATA

2.1 Construction of Mocks

The mock galaxy catalogs are constructed basically in the
same way as Yang et al. (2019). Briefly, we use a cosmo-
logical N -body simulation from the CosmicGrowth sim-
ulation suite (Jing 2019) namedWMAP 3072 600. This
simulation was performed by executing a parallel adap-
tiveP3M code with30723 particles in a600h−1Mpc cube
box, assuming a standard flatΛCDM cosmology with
{Ωm = 0.268, Ωb = 0.045, σ8 = 0.83, ns = 0.968}

andh = H0/(100 kms−1Mpc−1) = 0.71, which are con-
sistent with the observation of the Nine-Year Wilkinson
Microwave Anisotropy Probe (WMAP 9) (Bennett et al.
2013; Hinshaw et al. 2013). For each output snapshot, the
friends-of-friends algorithm (Davis et al. 1985) is applied
to find halos with a linking length of 0.2 in units of the
mean particle separation. Then, the Hierarchical Bound-
Tracing technique (Han et al. 2012, 2018) was used to i-
dentify subhalos along with their merger history. We pick
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the snapshot atz = 0 to construct our halo catalog and
halos containing at least 50 particles are included.

There are many popular galaxy-halo connection mod-
els that can successfully reproduce the observed galaxy
clustering on different scales. Here, we apply the SHAM
model to build the mock galaxy catalogs by assuming a
monotonic relation between the galaxy absolute magni-
tude M0.1

r and the peak massMpeak of subhalos. The
Mpeak is defined as the maximum mass that a subha-
lo ever had throughout its evolutionary history. The lu-
minosity function of SDSS DR7full 1 sample of the
New York University Value-Added catalog (NYU-VAGC)1

(Blanton et al. 2001, 2003b, 2005b) is adopted to per-
form the SHAM, where ther−band absolute magnitude
M0.1

r of galaxies have beenk− ande−corrected to red-
shift z = 0.1. The ‘orphan’ galaxies are also taken into
account in the halo catalog, see Yang et al. (2019) for de-
tails. A galaxy naturally obtains the position and velocity
of a subhalo when it matches to the subhalo. By stacking
the simulation box periodically and randomly setting the
locations of the observers, we construct 60 mock galaxy
catalogs in total. Galaxies in these mocks are complete at
M0.1

r ≤ −18, and their number densityn(z) should be
the inputnDR7(z) but with a scatter due to cosmic vari-
ance. All mock galaxy catalogs have the same sky cover-
age of∼ 2777deg2 and the same radial comoving distance
dC of [0, 600]h−1Mpc. The true redshifts of galaxies are
converted into the observed redshiftzobs by adding the in-
fluence of peculiar velocity. The apparent magnitudemr is
simply derived bymr = M0.1

r +5log10[dC(1+zobs)]+25.
In this study, as our vital goal is to identify the system-
atic bias in clustering measurements caused by different
types of random samples, we use relatively simple models
in constructing our mock galaxy catalogs to eliminate po-
tential uncertainties. First, we do not add a scatter in the
M0.1

r − Mpeak matching relation, so that the galaxies se-
lected in each realization corresponding to the same mass
subhalos. Second, we ignore thek− and e−corrections
in all magnitude-related calculations. These simplification-
s will allow us to focus on testing the impact of random
samples.

2.2 Mock Galaxy Catalog

Galaxies observed in redshift surveys are usually flux-
limited, whose number density may vary as a function
of redshift. To obtain a well-understood sample of galax-
ies for the measurement and modeling of the two-point s-
tatistics, a volume-limited sample or a magnitude cut flux-
limited sample is usually constructed, at a cost of discard-
ing a significant number of galaxies and therefore, low-

1 lfvmax − q2.00a− 1.00.dr72full1.fits.

ering the statistical accuracy (Zehavi et al. 2005; Xu et al.
2016). In this work, we construct both types of galaxy sam-
ples to carry out our tests.

First, to define a volume-limited sample, we draw
a flux-limited sample with apparent magnitude14.5 ≤

mr ≤ 17.6 from each mock sample. Then, we specify an
absolute magnitude range−21.5 ≤ M0.1

r ≤ −20.5 and a
redshift range0.04 ≤ zobs ≤ 0.09 to the flux-limited sam-
ple, ensuring that a galaxy in the volume-limited sample
can be displaced to any redshift in [0.04, 0.09] and stil-
l remains within the apparent magnitude limits (Norberg
et al. 2001, 2002; Tegmark et al. 2004b; Zehavi et al.
2011). These constraints result in a constant comoving
number densitynconst, and so is the radial selection func-
tion, hence, it is straightforward to create a random sample
having exactly the samenconst as a volume-limited galaxy
sample.

We then construct a set of magnitude cut flux-limited
samples with apparent magnitude limits of15 ≤ mr ≤

17 and absolute magnitude−22 ≤ M0.1
r ≤ −19 from

the mocks. For a magnitude cut flux-limited sample, the
galaxy number density is a strong function of redshiftn(z),
as at a given redshift galaxies only in a certain absolute
magnitude range can be detected by survey (Zehavi et al.
2002). The derivation of galaxy radial selection function
needs to integrate the luminosity function of galaxy sam-
ple appropriately. In our case, we derive the expected co-
moving number density as a function of redshift for our
flux-limited samples by equation:

n(z) =

∫ M0.1
r,faint(z)

M0.1
r,bright

(z)

Φ(M0.1
r )dM0.1

r , (1)

whereΦ(M0.1
r ) is the input luminosity function of the

SDSS DR7full 1 sample, and

M0.1
r,bright(z) = max[M0.1

r,min, 15−DM(z)], (2)

M0.1
r,faint(z) = min[M0.1

r,max, 17−DM(z)], (3)

whereDM(z) is the distance modulus at redshiftz, and we
setM0.1

r,min = −22 andM0.1
r,max = −19, respectively. The

radial selection functionφ(z) of the flux-limited sample
can be estimated via equation:

φ(z) =
n(z)∫

−19

−22
Φ(M0.1

r )dM0.1
r

. (4)

As an example, we show a volume-limited sample and
a flux-limited sample and the mean number densities of
mock galaxy catalogs in Figure 1. In the upper-left pan-
el, the blue points denote the galaxy distribution of the
volume-limited sample on the redshift and absolute mag-
nitude diagram, the raw flux-limited sample is denoted by
the gray points. In the upper-right panel, the black and blue
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Fig. 1 Galaxy distribution in redshift andr-band absolute magnitude for the mock galaxy catalog with different selection criteria (left
panels), and comparison of the comoving number densities for thesesamples (right panels). In the upper-left panel, thegray points
denote one of our flux-limited samples with apparent magnitude cuts14.5 ≤ mr ≤ 17.6. We construct a volume-limited sample from
this flux-limited sample as shown in theblue points, that we select galaxies within an absolute magnitude of [−20.5, −21.5] and a
redshift range of [0.04, 0.09]. The black curve in the upper-right panel is the mean comoving number densityn̄(z) as a function of
comoving distance for the 60 flux-limited mock samples. The error bars denote1σ variation among these samples. Then̄(z) of the
volume-limited samples are shown in theblue curve with error bars, which is constant as expected. Thered dashed line represents
the inputnDR7(z) of SDSS DR7full 1 sample. For a flux-limited sample with15 ≤ mr ≤ 17 as shown in the lower-left panel (in
gray), we further make absolute magnitude cuts at−22 and−19 (in blue). The mean number density of different flux-limited samples
is shown in the lower-right panel. Note, we useh = H0/(100 km s−1Mpc−1) = 0.71 in our calculations (see text for details).

curves represent the mean number densitiesn̄(z) for the
60 flux-limited samples and volume-limited samples, re-
spectively. The error bars stand for1σ variation among
these samples. The red dashed line marks the number den-
sity nDR7(z) derived from the input luminosity function
of SDSS DR7full 1 sample. As expected, thēn(z) of
volume-limited samples agree very well with the constan-
t nDR7(z). The distributions of flux-limited samples are
displayed in the lower panels of Figure 1. The meann̄(z)

of the flux-limited sample is a strong function of red-
shift, which again agrees with thenDR7(z) estimated from
Equation (1) very well. Once the mean comoving number
density is well estimated, we can easily construct the ra-

dial distribution of random samples for individual galaxy
samples.

2.3 Random Sample

In this study, our basic goal is to identify the systematic un-
certainty in galaxy clustering caused by random samples.
More specifically, we aim to make a robust comparison of
theVmax method and the shuffled method. The comparison
will help us assess to what extent the random samples can
impact our measurements of the 2PCFs.

Basically, we construct random samples for individu-
al galaxy samples based on their radial distributions from
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Fig. 2 Comparison of radial distributions for galaxy sample and random samples. Theblack shaded histograms denote the distributions
of a volume-limited sample (left panel) and a flux-limited sample (right panel) selected from our 60 mock galaxy samples. The bin sizes
are∆d = 5h−1Mpc for the volume-limited sample and∆d = 10h−1Mpc for the flux-limited sample. Thegreen, blue dashed and
red curves represent the distributions of random samples generated byusing the radial selection function derived from the truen(z),
theVmax method, and the shuffled method, respectively. The total number of each random sample is scaled to be the same number
as the galaxy sample. The lower small panels show the relative number bias in each distance of random points and galaxies,which is
defined as∆ ≡ (nr − ng)/ng. ∆ for different methods are coded in the same colors as the upper panels.

Fig. 3 Mean of bias∆ for 60 volume-limited samples (upper panel) and 60 flux-limited samples (lower panel). Thegreen, blue and
red curves denote the∆ for the truen(z), theVmax method, and the shuffled method, respectively. Error bars stand for1σ deviation of
biases among these samples.
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three methods. First, we create a set of random points that
uniformly distribute on the surface of a sphere, then points
covering an equal area as the galaxy sample is selected.
Without adding any angular selection effect, we take these
points as the angular positions of the random samples.
Theoretically, modeling the radial distribution of galaxy
sample requires the true number density of galaxy sample.
This is difficult to achieve in observation since we always
sample galaxies in a certain volume of the universe, and the
n(z) can only be estimated empirically from the observed
galaxies. By using mocks, the true number densityn(z) is
the inputnDR7(z) as described in Section 2.2, therefore,
allowing us to construct then(z) for random samples ex-
actly identical to the true one. Three methods that are used
to construct the radial distribution are described below:

1. True n(z), where we apply the radial selection func-
tion φ(z) derived from Equation (1) with the input
nDR7(z) to build the redshifts. In the following tests,
we will use the correlation functions measured using
the truen(z) as the benchmarks and explore impacts
of theVmax method or the shuffled method.

2. Vmax method, where we uniformly spread random
points in the maximum observable volumeVmax of
individual galaxies to obtain the radial comoving
distance for random samples. For a volume-limited
sample,Vmax is a fixed volume at redshift range
[0.04, 0.09]. For a flux-limited sample, we assign
the absolute magnitudes of observed galaxies to ran-
dom points, and their maximum/minimum redshifts
zmax,min are estimated by

zmax = min[zm,max, zsample,max], (5)

zmin = max[zm,min, zsample,min], (6)

and

mr,faint = M0.1
r,faint +DM(zm,max), (7)

mr,bright = M0.1
r,bright +DM(zm,min), (8)

where we setmr,bright = 15, mr,faint = 17,
M0.1

r,bright = −22, andM0.1
r,faint = −19 based on the

magnitude cuts to the flux-limited samples.
3. Shuffled method, where we randomly select redshifts

from the galaxy samples and assign the redshifts to the
corresponding random samples.

As an example, Figure 2 demonstrates the distribution
of radial comoving distance for the two types of galaxy
samples (black shaded histograms) in one of our realiza-
tions, as well as the random samples generated using the
radial selection functionφ(z) estimated from the truen(z)
(green curves), theVmax method (blue dashed curves), and
the shuffled method (red curves), respectively. The bin size
is ∆d = 5h−1Mpc for the volume-limited sample and

∆d = 10h−1Mpc for the flux-limited sample. We also
compute the number difference∆ of random samples rel-
ative to the galaxy samples as shown in the lower small
panels. We define the difference as∆ ≡ (nr − ng)/ng,
wherenr andng denote the number of random points and
galaxies in each distance bin. The mean difference∆ of in-
dividual∆ for all 60 realizations are displayed in Figure 3.
The error bars represent the standard deviation from∆ a-
mong all samples in each bin. Apparently, random samples
constructed using the shuffled method show the best agree-
ment with the radial distribution of galaxies for both the
volume-limited samples and the flux-limited samples, indi-
cating the structures of galaxies in the line-of-sight direc-
tion are reserved. Radial distributions constructed by the
truen(z) and theVmax method are nearly identical, espe-
cially for the volume-limited samples. Meanwhile, the two
distributions exhibit small deviations from each other in
the flux-limited sample. As mentioned before, this is due
to the fact that each observation is actually one sampling
of a small set of galaxies in the universe. The larger the ob-
served galaxy sample, the closer the number density is to
the truen(z). Moreover, we see that the distribution given
by theVmax method seems slightly closer to the distribu-
tion of the galaxy sample. This difference indicates that
theVmax method still suffers very slightly from the large-
scale structure as noted by Blanton et al. (2005a), which
may impact the luminosity function and hence the redshift
distribution of our random points.

3 CLUSTERING MEASUREMENT

In this section, we will compare galaxy correlation func-
tions measured using three different random samples, to
demonstrate that using the one constructed from the shuf-
fled method leads to an underestimation of galaxy cluster-
ing. Meanwhile, the measurements using theVmax random
sample have much better performance on all of the scales
that we explored.

3.1 Clustering Estimator

We use the common way to calculate the correlation func-
tion (Huchra 1988; Hamilton 1992; Fisher et al. 1994) in
a 2D space, that the redshift separation vectors and the
line-of-sight vectorl are defined ass ≡ v1 − v2 and
l ≡ (v1 + v2)/2, separately, wherev1 andv2 are the
redshift space position vectors of a pair of galaxies. The
separations parallel (π) and perpendicular (rp) to the line
of sight are derived as

π ≡
s · l

|l|
, r2p ≡ s · s− π2. (9)

A grid of π andrp is constructed by taking1h−1Mpc as
the bin size forπ from 0 linearly up toπmax = 60h−1Mpc
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Fig. 4 The average correlation function contoursξ(rp, π) measured using random samples constructed with the truen(z) (top-left
panel), theVmax method (top-right panel), and the shuffled method (bottom-left panel) for the volume-limited samples. Theshaded
regions mark1σ deviations among 60 mock samples. The bottom-right figure shows comparison ofξ(rp, π) for different methods. The
contour levels from outside-in correspond toξ(rp, π) = [0.1, 0.2, 0.3, 0.5, 1, 2, 5], respectively.

and0.2 dex as the bin size forrp logarithmically in the
range of [0.01, 60] h−1Mpc. The estimator of Landy &
Szalay (1993) is adopted as

ξ(rp, π) =
DD − 2DR+RR

RR
, (10)

whereDD, DR, andRR are the numbers of data-data,
data-random, and random-random pairs. Then, by integrat-
ing theξ(rp, π) along the line-of-sight separation we esti-
mate the P2PCF (Davis & Peebles 1983) by

wp(rp) ≡ 2

∫
∞

0

ξ(rp, π) dπ = 2

∫ πmax

0

ξ(rp, π) dπ.

(11)
In this work, we runCORRFUNC (Sinha & Garrison 2019)
for pair counting to measure all mock galaxy correlation
functions. To reduce the shot noise, we use random sam-
ples which are∼40 times the number of galaxies.

3.2 Comparison of Correlation Functions

Our main results in comparison of the 2PCFs measured
from three different methods are presented in this section.

We consider the correlation function measured from the
truen(z) as the true 2PCF. The comparison of the correla-
tion function contours, the redshift-space correlation func-
tions, and the projected two-point correlation functions are
shown in Figure 4 to Figure 7, respectively.

Figure 4 and Figure 5 display the average contours
of the two-dimensional correlation functionsξ(rp, π) for
the volume-limited samples and the flux-limited samples,
respectively. The trueξ(rp, π) (hereafterξtrue(rp, π)) de-
rived from the truen(z) is denoted by the green contours
in the top-left panel, the shaded light green regions rep-
resent1σ variance among 60 individual measurements of
ξtrue(rp, π). The blue and red contours in the top-right pan-
el and the bottom-left panel denote theξ(rp, π) of theVmax

method and the shuffled method (hereafterξVmax(rp, π)

andξshuffled(rp, π)) , separately. A comparison of the av-
erageξ(rp, π) for all three different methods is shown in
the bottom-right panel, whereξVmax is denoted by the blue
dashed contours to distinguish fromξtrue. For the volume-
limited samples, theξVmax(rp, π) contours are generally
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Fig. 5 The same as Fig. 4 but for the flux-limited samples.

indistinguishable from theξtrue(rp, π) contours. For the
flux-limited samples,ξVmax(rp, π) contours exhibit over-
all great agreement with the true ones, with a very small
systematic bias at large radii well below the1σ uncertain-
ty.

For the case of shuffled method, theξshuffled(rp, π) ex-
hibit a prominent systematic bias fromξtrue(rp, π) for both
types of samples, especially for the flux-limited samples
where the bias is almost beyond1σ statistical uncertainty.
Note that the systematic bias indeed changes the shape of
ξ(rp, π), which will induce systematic errors in the cos-
mological probes using the redshift distortion effects on
intermediate scales (see e.g., Shi et al. 2018).

A comparison of the average redshift-space corre-
lation functionsξ(s) is shown in the upper panels of
Figure 6. The left panel displays the meanξ(s) of 60
volumed-limited mock samples, the right panel shows the
same results but for the flux-limited samples. The true
ξtrue(s) is denoted by the green curve. Theξ(s) from
theVmax method and the shuffled method are in blue and
red curves, respectively. The error bars represent1σ vari-
ance amongξ(s). The lower panels show the mean bias
∆ξ of ξVmax(s) andξshuffled(s) with respect toξtrue(s).

The mean bias is defined as∆ξ = (
∑N

i=1 ∆
i
ξ)/N , where

∆i
ξ = (ξiVmax − ξitrue)/ξ

i
true for Vmax method or∆i

ξ =

(ξishuffled − ξitrue)/ξ
i
true for shuffled method, theξi is the

correlation function of theith galaxy sample, andN = 60.
The error bars denote1σ variance of 60 individual∆i

ξ. We
can clearly see that, the comparison results are completely
consistent with the results shown in Figure 4 and Figure 5.
For the volume-limited samples, the mean bias ofξVmax

relative toξtrue is almost zero. Comparatively, there is a
systematic bias of∼ 3% betweenξshuffled andξtrue at s-
mall scales. On scales above8h−1Mpc, the bias gradu-
ally increases. At the scale of∼ 30h−1Mpc, the mean
bias∆ξ,shuffled is∼ 15%. For the flux-limited samples, the
Vmax method also exhibits much better performance than
the shuffled method. On scale below10h−1Mpc, ξVmax is
fairly identical toξtrue, andξshuffled exhibits an underesti-
mate with a bias up to∼ 5%. On scaless > 10h−1Mpc,
both methods display underestimates to a certain extent,
where the∆ξ,Vmax gradually increases to12% at the scale
of 30h−1Mpc and the∆ξ,shuffled is ∼ 30% on the same
scale.

Finally, a comparison of the average P2PCFs is shown
in Figure 7, where the color-codedwp from three differ-
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Fig. 6 Top panels: The average redshift-space correlation functionsξ(s) of 60 volume-limited samples (left) and 60 flux-limited samples
(right) and their standard deviations (error bars). Thegreen curves represent the trueξ(s) measured using random samples from the
truen(z), the blue and red curves denote theξ(s) for theVmax method and the shuffled method, respectively.Bottom panels: The
average bias∆ξ and1σ deviations from the trueξ(s) for the two radial selection models, which are determined using 60 mock galaxy
catalogs.

Fig. 7 The same as Fig. 6 but for the projected two-point correlation functions.

ent methods is the same as Figure 6. We can see that,
without the effect of redshift distortion,wp,Vmax remains
roughly identical towp,true for the volume-limited sam-
ples (left panels), and for the flux-limited samples (right
panels)wp,Vmax also agrees withwp,true on scale small-

er than1h−1Mpc. Meanwhile, on larger scale, theVmax

method results in a slightly increasing underestimation
compared with the true one, and∆wp,Vmax

is also larg-
er than∆ξ,Vmax. As for the shuffled method, on scale of
rp < 1h−1Mpc, the averagewp,shuffled shows less devi-
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ation fromwp,true compared with the results of redshift-
space correlation functions for both types of samples. The
mean deviation ofwp,shuffled fromwp,true increases with a
strong bias above scales of1h−1Mpc. The∆wp,shuffled

is
up to15% for the volume-limited samples and34% for the
flux-limited samples at30h−1Mpc, respectively.

Based on this comparison, our results steadily demon-
strate that using random samples constructed from the
Vmax method to measure the correlation function, we can
achieve much higher accuracy than those from the shuf-
fled method. For the volume-limited samples, the average
correlation functions from theVmax method are almost i-
dentical to the true correlation functions on all concerned
scales, with nearly zero bias and negligible statistical un-
certainty. For the flux-limited samples, on scales smaller
than10h−1Mpc for ξ(s) and1h−1Mpc forwp(rp), the av-
erage correlation functions from theVmax method are still
fully consistent with the true correlation functions with as-
tatistical uncertainty of at most5%. As the scale increases,
the correlation functions from theVmax method tends to
underestimate the galaxy clustering slightly. Nevertheless,
the mean bias from theVmax method is still much smaller
than the bias from the shuffled method in general.

4 DISCUSSION AND CONCLUSIONS

In this paper, using mock galaxy catalogs, we have in-
vestigated the systematic bias induced by random sam-
ples generated using theVmax method and the shuffled
method in galaxy clustering measurement. We have com-
pared the redshift-space correlation functions and the pro-
jected 2PCFs for the volume-limited samples and the flux-
limited samples, respectively. Our results demonstrate that
theVmax method is more robust to simulate the radial dis-
tribution of galaxies for the random sample. Our main re-
sults can be summarized as follows:

1. For the volume-limited samples, theVmax method can
produce an unbiased measure of galaxy clustering on
the scale less than40h−1Mpc, while, the shuffled
method results in an increasing systematic underesti-
mation with the increase of scale.

2. For the flux-limited samples, the 2PCFs measured
from random samples of theVmax method remain un-
biased concerning the true galaxy clustering on small
scales. On scales larger than10h−1Mpc, both meth-
ods display a systematic bias beyond the systematic
uncertainty, but theVmax method still has better per-
formance than the shuffled method.

3. By comparing the correlation contours, we find that
the shuffled method can significantly underestimate
the squashing effect on large scales, which may induce

potential systematics in cosmological probes using the
linear redshift distortion effect.

4. Finally, the projected 2PCF measured from the shuf-
fled method still produces an underestimation, espe-
cially on scales larger than2h−1Mpc. This scale is
also known as the “two-halo term” scale (Mo & White
1996; Sheth & Tormen 1999; Cooray & Sheth 2002).
Thus, if galaxy clustering measured from the redshift
shuffled random samples are used as constraints, a
non-negligible systematic bias will be introduced to
models such as the halo model, galaxy formation mod-
els, and the galaxy-halo connection models.

Based on these tests, we suggest using theVmax

method to generate random samples. The galaxy correla-
tion function from theVmax method can recover the galaxy
clustering more accurately, then providing more reliable
and stringent constraints on the models of galaxy forma-
tion and cosmology.

There are some simplifications in our probes that
should be noted. In this paper, we ignored thek− ande−
corrections in our tests, however, these corrections need
to be carefully handled when the analysis is performed to
the observed galaxies. To determine these corrections, one
should fit the spectral templates to the galaxy spectrum or
the broad-band photometry (Blanton & Roweis 2007), and
the fitting results largely depend on the assumptions of the
galaxy star formation history, the stellar population syn-
thesis model, and the dust extinction model (Kroupa 2001;
Pforr et al. 2012). As long as the maximum observable vol-
ume of individual galaxies is estimated correctly, our con-
clusions still firmly hold. In addition, we also note that the
systematic bias from the shuffled method determined by
Ross et al. (2012) is somewhat smaller than ours for the
redshift-space correlation function at scale∼ 30h−1Mpc.
One possible reason is that our tests performed with the
low redshift galaxies of SDSS DR7, with a median redshift
at∼ 0.1. But the BOSS CMASS data that they studied is
a high-redshift sample with a median redshift at∼ 0.52,
where they have a larger volume. All in all, we are con-
fident in our tests and conclude that theVmax method is
a more robust way to measure galaxy clustering. We will
adopt this method to investigate the property-dependent
galaxy clustering in our future works.
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