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Abstract The detection of clumps (cores) in molecular clouds is an important issue in sub-millimetre as-
tronomy. However, the completeness of the identification and the accuracy of the returned parameters of
the automated clump identification algorithms are still notclear. In this work, we test the performance and
bias of the GaussClumps, ClumpFind, FellWalker, Reinhold,and Dendrograms algorithms in identifying
simulated clumps. By designing the simulated clumps with various sizes, peak brightness, and crowded-
ness, we investigate the characteristics of the algorithmsand their performance. In the aspect of detection
completeness, FellWalker, Dendrograms, and GaussClumps are the first, second, and third best algorithm-
s, respectively. The numbers of correct identifications of the six algorithms gradually increase as the size
and signal-to-noise ratio (SNRs) of the simulated clumps increase and they decrease as the crowdedness
increases. In the aspect of the accuracy of retrieved parameters, FellWalker and Dendrograms exhibit bet-
ter performance than the other algorithms. The average deviations in clump parameters for all algorithms
gradually increase as the size and SNR of clumps increase. Most of the algorithms except FellWalker ex-
hibit significant deviation in extracting the total flux of clumps. Taken together, FellWalker, GaussClumps,
and Dendrograms exhibit the best performance in detection completeness and extracting parameters. The
deviation in virial parameter for the six algorithms is relatively low. When applying the six algorithms to
the clump identification for the Rosette molecular cloud, ClumpFind1994, ClumpFind2006, GaussClumps,
FellWalker, and Reinhold exhibit performance that is consistent with the results from the simulated test.
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1 INTRODUCTION

Giant molecular clouds (GMCs) have complex and hier-
archical structures that can be divided into substructures
of clouds, clumps, and cores (Blitz & Williams 1999).
The clumps and cores could be gravitationally unstable
(Solomon et al. 1987; Heyer et al. 2001) and evolve into
protostars. A particular issue in sub-millimeter astronomy
is the identification of clumps and cores. The traditional
clumps (cores) identification method is to find compact and
bright sources in observational datasets by eye. In this case,
subjective biases are evident as each person could perceive
the data differently and thus identify different clumps and
extract different parameters. As the datasets become larger
or the clumps are more crowded, the traditional method is

more inefficient or incompetent in the detection of clumps
(cores).

Several common algorithms have been used to i-
dentify clumpy structures in molecular clouds, such as
GaussClumps, ClumpFind, FellWalker, Reinhold, and
Dendrograms. Except for Dendrograms, these algorithm-
s are included within CUPID (Berry et al. 2007)1.
GaussClumps is the oldest algorithm in automated clump
identification (Stutzki & Guesten 1990). It was first applied
in the M17 molecular cloud and then was frequently per-
formed in other molecular clouds (Schneider et al. 1998;
Dent et al. 2009; Lo et al. 2009). The GaussClumps al-
gorithm fits the 3D molecular line data with Gaussian el-
lipsoids (or ellipses for 2D column density maps) around

1 http://starlink.eao.hawaii.edu/starlink/
CUPID
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the local maxima. The resulting ellipsoids (or ellipses) are
recognized as clumps in the observational data. This pro-
cess is repeated until the termination criteria are met. The
output clumps may overlap in the GaussClumps algorith-
m. For this reason, each input pixel is not simply assigned
to a single clump (as what is done in algorithms such as
FellWalker or ClumpFind), and the total flux in the fitted
Gaussians may exceed the real flux in the input data. The
GaussClumps algorithm can only fit a strict elliptic shape
and it does not allocate flux to a clump at large distance
from the peak.

ClumpFind is the most widely used algorithm for
molecular gas clump identification. Williams et al. (1994)
developed this algorithm and applied it to detect the com-
pact structures in the Rosette molecular cloud (RMC). In
brief, this algorithm locates the peak position by determin-
ing the highest value in the array. The process then de-
scends down from the peak pixel with a certain interval
(ClumpFind.DeltaT). If no new independent maximum is
found within an intensity interval, the process continues
into lower intensity intervals until a new local maximum
is found or it reaches the specified minimum contour lev-
el (ClumpFind.TLow). Clumps with brightness below this
level are ignored as they are assumed to be noise. When
an area contains multiple clumps then the pixels in that
area are divided between the clumps, with the association
of each pixel being given to the closest clump. The asso-
ciation is determined by the distance of the pixel to the
boundary of an assigned clump according to a friends-
of-friends algorithm. The ClumpFind algorithm was re-
written with some minor adjustments in 2006, so it has
the ClumpFind1994 and ClumpFind2006 versions (set by
ClumpFind.IDLAlg).

The ClumpFind algorithm is found to be sensi-
tive to the input parameters ClumpFind.DeltaT and
ClumpFind.TLow (Kainulainen et al. 2009; Rathborne
et al. 2009; Pineda et al. 2009). A large ClumpFind.DeltaT
parameter tends to find the large and bright structures
but miss the clumps with low brightness. If a smal-
l ClumpFind.DeltaT value is provided, then increased false
clumps are identified due to the noise spike. Enoch et al.
(2006) performed investigations into the detection com-
pleteness of the ClumpFind algorithm. They found that
ClumpFind tends to interpolate clumps and break the
bright source into multiple clumps.

The FellWalker algorithm was developed specifical-
ly for CUPID to address some of the problems associated
with ClumpFind. It was developed and fully described in
Berry (2015). Unlike other algorithms, this algorithm first
defines a minimum level (FellWalker.Noise) to ignore the
influence of the noise spike. Then the process ascends the
steepest route until reaching a peak, which provides a cer-
tain way of reaching the peak along the greatest ascending

gradient. Sometimes this process may be affected by noise
spikes and thus FellWalker checks the extended surround-
ing (FellWalker.MaxJump) pixels to see if there is a pixel
in the surrounding with greater value. For any pixel on the
minimum level, a path from this pixel to the nearby maxi-
mum value based on this ascending method can be found.
All routes that meet at the same maximum point are classi-
fied as a clump. This process is analogous to a fell-walker
ascending a hill by following the steepest ascent line as its
name suggests.

The Reinhold algorithm was developed by Kim
Reinhold and included within CUPID. This algorithm con-
verts the original two or three-dimensional data arrays into
one-dimensional arrays. It then identifies the highest val-
ue in all one-dimensional arrays. If the peak value is below
the defined minimum, then the algorithm decides that there
is no real peak in that array. If the peak value is above the
minimum, then the program goes from this peak in both di-
rections along the array until it reaches a pixel that fulfills
the criteria for being an edge pixel. The data arrays are re-
combined into the original two or three-dimensional arrays
with the clump edges now determined, which produces a
number of ring or shell-like structures which outline the
clumps. Basically, the algorithm looks for edges of clump-
s, the clumps determined are therefore more susceptible to
noise and need to be cleaned up.

The Dendrograms algorithm was first demonstrated in
the structural analysis of molecular clouds by Rosolowsky
et al. (2008). This algorithm presents an analytic technique
aimed to characterize the hierarchical structure in molecu-
lar gas and relate it to the star formation process. Its prin-
cipal advantage is using standard molecular line analysis
techniques to characterize the branches in a dendrogram
and simultaneously provide the measurement of various
properties for structures in a large range of physical s-
cales. The smallest structures that are described as leaves
in Dendrograms can be recognized as clumps. In addi-
tion, Dendrograms is a reduction of the structure in a data
set to its essential features. Three parameters (minvalue,
min delta, and minnpix) would limit the output results of
the clump identification. It is the newest algorithm com-
pared with the above other algorithms for structure iden-
tification but has been performed more than one hundred
times (Goodman et al. 2009; Williams et al. 2019).

So far, many automated algorithms have been used
for clump identification, although the principles are dif-
ferent. Consequently, different algorithms could make bias
results in both clump identification and extraction of pa-
rameters such as size, line width, temperature, and mass
(Schneider & Brooks 2004; Curtis & Richer 2010; Watson
2010). However, it is still not clear which algorithm has
the best performance in the aspects of completeness, false
detection probability, and accuracy of physical parameters
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Fig. 1: Simulated clumps with clump sizes (FWHM) dis-
tributing randomly from 1 to 11 pixels.

of the clump identification. A simulated test is needed be-
fore applying these algorithms in observational data. In this
work, we mainly focus on testing the completeness and ac-
curacy of the physical parameters of the clumps identified
using the above six algorithms (including two versions of
ClumpFind) and present comparisons between them. The
method is described in Section 2 and the results are pre-
sented in Section 3. We discuss the bias of the algorithms in
estimation of the virial parameter and the performances of
algorithms in identifying clumps in the RMC in Section 4
and draw a summary in Section 5.

2 METHOD

Mass-size relations describe the relationship between the
mass and spatial scale of clumps. The mass contained
within radius r is usually described with a power law
m(r) ∼ r−k (Larson 1981; McKee & Ostriker 2007;
Kauffmann et al. 2010a,b). This relation can be explained
by a power law density profiles of the molecular clump-
s: ρ(r) ∼ r−p (Parmentier et al. 2011). Previous studies
found that1.5 ≤ p ≤ 2 (Heaton et al. 1993; Hatchell et al.
2000; Beuther et al. 2002; Fontani et al. 2002; Mueller
et al. 2002). However, it has been found that a single pow-
er law density profile cannot fit the emission from starless
cores and that an inner flattening portion is always need-
ed to reproduce the observational data (Ward-Thompson
et al. 1994; Andre et al. 1996; Bacmann et al. 2000; Alves
et al. 1999). Considering the power law behavior for large
r and the central flattening at smallr, Tafalla et al. (2002)
adopted the following analytic density profile for molecu-
lar clumps,

ρ(r) ∼ 1

1 + (r/r0)p
. (1)

Here, r0 is the radius of the flat region (2r0 is the
FWHM), r = (s2 + z2)1/2, s is the projected distance
from the clump center andz is the length along the line of
sight. In this case, the column density distribution of the

clump obeys

N(s) ∼
∫

1

1 + (s/r0)p
dz . (2)

Kauffmann et al. (2010b) found that if the index of
density profile isp, the index of column density profile can
be approximated asp − 1 whens >> r0. Then the radial
column density profile follows

N(s) ∼ 1

1 + (s/r0)p−1
. (3)

Juvela et al. (2018) have studied the column density
structures of the Galactic Cold Cores. They found that the
radial column density profiles of these cores follow power
law distributions with the indexes of about 1. Therefore, we
adopt a column density profile of Equation (3) withp−1 =

1 for clumps in this study.
The third dimension of observational data stands for

the velocity. An optically thin spectrum of a clump probes
the velocity distribution of the molecules. Indeed, the ve-
locity profile of an optically thin molecular line emission in
observations generally follows the Gaussian distribution.
Therefore, the brightness distribution over the voxels of
our simulated clumps is chosen to obey the form

T (s, v) = N(s)× 1√
2πσ

exp(
−(v − v0)

2

2σ2
)

=
N0√
2πσ

× 1

1 + (s/r0)1.0
× exp(

−(v − v0)
2

2σ2
) ,

(4)
where N0√

2πσ
represents the peak brightness at the center of

the clump.
We created three-dimensional arrays that contain

clumps and background noise. The positions of the clump-
s are designed to distribute randomly. To avoid that the
clumps are located at the edges of the arrays, the center-
s of the simulated clumps are distributed at least 15 pixels
from the edges. The brightness profiles of the clumps are of
the form of Equation (4) and we assume thatσ = r0 (in the
unit of voxel). Thus, the FWHM(v) in the velocity dimen-
sion is equal to

√
8ln2r0, which is similar to the radial size

of the clump (FWHM(s) = 2r0 ). In the following analysis,
the input size of the simulated clump is represented by the
spatial FWHM size (FWHM(s) = 2r0). When we perform
the identification of the compact sources in observational
data, the FWHM,∆V, and the peak value of the clumps are
naturally limited to the instrument resolution and the sen-
sitivity of the observation. In our test, we set the FWHM
and∆V to be two pixels and two channels, respectively,
for all the six algorithms. The minimum peak value pa-
rameter is set to be five times the one sigma noise level
and the number of voxels of an output clump is required
to be above 16. We use other default input parameters in
CUPID for all the six algorithms, so that we can determine
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(a) (b)

(c) (d)

Fig. 2: Frequency distributions of the correct identifications (a), repeated identifications (b), erroneous identification-
s (c), and score points (d) of the six algorithms in identifying clumps with different FWHM sizes. ClumpFind1994,
ClumpFind2006, and Dendrograms have score points lower than the range to display in panel (d).

(a) (b)

(c) (d)

Fig. 3: The mean error of position (a), size (solid line) and velocity dispersion (dashed line) (b), peak brightness (c), and
total flux (d) of algorithms in identifying clumps of different FWHM sizes.

the advantages and disadvantages of different algorithms.
If the clumps identified by the algorithm are too far from
the real situation, even if the results can be improved by
adjusting the parameters later, it is clear that the algorithm
is too sensitive to the parameters. Considering that it is a

hard challenge for automated algorithms to identify clump-
s that are small, weak, or crowded, we created clumps with
these characteristics in the test. Then the above six algo-
rithms (GaussClumps, ClumpFind1994, ClumpFind2006,
FellWalker, Reinhold, and Dendrograms) are applied to i-
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Fig. 4: Simulated clumps with the signal-to-noise ratios
distributing randomly from 1 to 21.

dentify the clumps. The configuration parameters of each
algorithm are displayed in Appendix A and their perfor-
mance are presented in Sections 3.1–3.3.

3 RESULTS

3.1 Test 1: Performance of the Algorithms in
Identifying Clumps of Different Sizes

To investigate the performance of different algorithms in
identifying clumps of different sizes, we generated 1000
clumps with clump sizes (FWHM= 2r0) distributing ran-
domly from 1 to 11 pixels. The data are designed to be
1000×1000×1000 array (Fig. 1). In this case, very few
clumps would overlap. The above six algorithms are ap-
plied to identify the clumps in the simulated data so that
the performance of each algorithm can be unbiasedly esti-
mated.

In test 1 we focus on the performance of the algorithms
to detect different sizes of clumps. To reduce the influence
of peak brightness, the peak brightness of the clumps is
fixed to be 10 times the one sigma noise value. We present
the completeness and accuracy of the parameters of the six
algorithms in Sections 3.1.1 and 3.1.2.

3.1.1 Completeness of the algorithms

When estimating the advantages and disadvantages of an
algorithm, the primary criterion is the completeness of
the output clumps. Here the term “completeness” mean-
s a high percentage of correctly identified clumps, and
at the meantime a low percentage of false or repeated i-
dentification. When the spatial scale of an output clump
is smaller than the simulated clump along all the three
axes, then we mark this clump as a correctly identified
clump. Figure 2a shows the numbers of correct identifi-
cations for different algorithms when identifying clump-
s of different sizes. It can be seen that when the sizes of
clumps are smaller than two pixels, most of the algorithm-
s perform poorly. As clumps become larger, the number-

s of correct identifications of the algorithms gradually in-
crease. ClumpFind1994, ClumpFind2006, FellWalker, and
Dendrograms perform well when the sizes of clumps are
larger than three pixels, where the correct rate can reach
more than 90%. GaussClumps exhibits lower correct rate
compared to its performance presented in Section 3.2. One
possible reason is that the brightness profile of simulat-
ed clumps obeys power law in the spatial dimensions.
When the number of consecutive failures of fitting suc-
ceeds the designated one, which is appointed by param-
eter GaussClumps.MaxSkip, the iterative fitting process of
GaussClumps is terminated.

When a simulated clump is identified more than once,
the clump closest to the simulated position is marked as
a matching output and the other clumps are recorded as
repeated results. Figure 2b shows the number of repeat-
ed identification for different algorithms. The percentages
of repeated results for all algorithms are lower than 10%
when the sizes of the input clumps are smaller than two
pixels. Figure 2c shows the number of erroneous identifica-
tions for the six algorithms. FellWalker and GaussClumps
almost never erroneously identify the fluctuation of noise
to be a clump. As the clumps become more extended,
the numbers of repeated and erroneous identifications of
the Dendrograms, ClumpFind1994, and ClumpFind2006
gradually increase.

To estimate the comprehensive performance of each
algorithm, we establish a simple scoring mechanism. The
algorithm scores 1 point when it correctly identifies a sim-
ulated clump, scores –1 when it outputs a false result, and
score –0.5 when it finds duplicate clumps. We show the
score for each algorithm in Figure 2d. As shown in the
scoring results, FellWalker exhibits the best performance
compared with the other algorithms. ClumpFind1994,
ClumpFind2006, and Dendrograms receive low marks be-
cause they conduct a lot of repeated and erroneous identi-
fications.

3.1.2 Accuracy of the retrieved parameters

When an algorithm is used to automatically search for the
clumps, the output parameters of the clumps will be used
to calculated the physical parameters, so accurately repro-
ducing the clump parameters is an important aspect of an
algorithm. To compare the comprehensive performance of
each algorithm in the aspect of accuracy of retrieved pa-
rameters, we calculated the average deviation of the posi-
tion (E(|∆X|)), size (E(∆S)), velocity dispersion (E(∆V)),
peak brightness (E(∆I)), and total flux (E(∆flux)) of the
output results of each algorithm. The E(|∆X|), E(∆S),
E(∆V), and E(∆I) are obtained through subtracting the
output parameters from the input ones and then averaging
over the correctly identified clumps. The E(∆flux) is the
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(a) (b)

(c) (d)

Fig. 5: Frequency distributions of the correct identifications (a), repeated identifications (b), erroneous identifications (c),
and the score points (d) of the six algorithms in identifyingclumps with data of different signal-to-noise ratios.

(a) (b)

(c) (d)

Fig. 6: The average error of position (a), size (solid line) and velocity dispersion (dashed line) (b), peak brightness (c),
and total flux (d) of six algorithms in identifying clumps with data of different signal-to-noise ratios.

ratio between the deviation of the total flux and the input
flux sum averaged over the correctly identified clumps.

The average deviations in clump position, size, peak
brightness, and the total flux as a function of input clump
size are shown in Figure 3. It can be seen that when the
size of clumps are smaller than five pixels, the average er-

ror in clump position for Dendrograms is about 0.5 pix-
el, while the deviations for other algorithms are more than
0.5 pixel. The average deviation in clump position shows
no trend with the size of clumps for all algorithms. The
average errors in clump size and velocity dispersion for
each algorithm gradually increase as the size of clumps in-



C. Li et al.: Comparison of the Clump Identification Algorithms 31–7

creases. As shown in Figure 3b, the average error in clump
velocity dispersion is generally less than the error in size
for most of the algorithms. However, the relative errors of
the size are similar to the errors of velocity dispersion (see
Table 3). The largest errors in clump size, velocity disper-
sion, and peak brightness for all algorithms are about –
9 pixels (ClumpFind2006), –3 pixels (GaussClumps), and
2.5 times of the noise (FellWalker), respectively. As the
clump becomes larger, the error in peak brightness decreas-
es to about 1.7 times the noise for all algorithms. Except
for FellWalker, all algorithms return clump sizes that are
smaller than the input clump sizes. The clump peak bright-
ness retrieved by all algorithms is higher than the input
parameters. The total flux of a clump is the sum of bright-
ness at all pixels within the boundary of the clump. For an
optically thin clump, this parameter is proportional to the
clump mass. As shown in Figure 3d, FellWalker exhibits
the best performance compared to the other algorithms in
the aspect of total flux, with about 60% of the total flux
of the simulated clump being retrieved. For the other algo-
rithms, the output total fluxes are lower than 40% of the
simulated clumps. A reasonable explanation of this large
error in clump total flux is the large error in the clump size,
i.e., only a small fraction of the clump total flux is counted.
Another possible reason is the omission of part of the flux
by the algorithms. When the algorithms perform clump i-
dentification, the voxels with brightness below a designat-
ed value, which is adopted to be three times the noise level
in our tests, are considered to be noise and are ignored.

3.2 Test 2: Performance of the Algorithms with Data
of Different Signal-to-Noise Ratios

In addition to the fact that the size of the input clumps has
a significant impact on the clump identification results, the
performance of an algorithm in identifying clumps with
data of different peak brightness is also an important issue.
In the 1000×1000×1000 array, we generated 1000 clump-
s with signal-to-noise ratio (SNRs) distributing randomly
from 1 to 21 (Fig. 4). As in Section 3.1, the six algorithm-
s are used to search the simulated clumps to estimate the
performance of different algorithms. We set the size of the
clumps (FWHM) to be five pixels. In Section 3.1.1 it can
be seen that when the size of clumps is larger than five
pixels, most of the algorithms perform well in the aspect
of completeness. In current test the influence of size and
crowdedness are reduced as much as possible. We focused
on the performances of the algorithms when the SNRs of
the data are changed.

3.2.1 Completeness of the algorithms

Figure 5a shows the number of correct identifications for
all algorithms. It can be seen that all algorithms cannot

detect clumps with peak brightness around the noise lev-
el. When the SNR of clumps is less than 3, all algo-
rithms exhibit poor performance. When the SNR reach-
es 5, the numbers of correct identifications for all the
six algorithms except GaussClumps and Reinhold are al-
l higher than 75%. Reinhold and GaussClumps exhibit
lower completeness than the other algorithms when SNR
is lower than 5. However, as the SNR increases, the ac-
curacy of Reinhold and GaussClumps increases. The ac-
curacy of GaussClumps reaches more than 90% when
the SNR reaches 11. The accuracy of Reinhold reaches
20% only when the SNR is as large as 17. Therefore,
Reinhold and GaussClumps are only suitable for search-
ing for clumps with high brightness. Figure 5b shows the
number of repeated identifications for different algorithms.
The ClumpFind2006 and ClumpFind1994 algorithms ex-
hibit the highest repetitive rates. Duplicate identifications
of FellWalker, Reinhold, and GaussClumps are fewer than
other algorithms.

The numbers of erroneous identifications of differ-
ent algorithms are presented in Figure 5c. Surprisingly,
as the SNR of the simulated clumps increases, the num-
bers of false clumps returned by ClumpFind1994 and
ClumpFind2006 increase. The other algorithms almost do
not erroneously count the fluctuation of the noise as a
clump. As in Section 3.1.1, we establish a simple scor-
ing mechanism to evaluate the overall performance of
each algorithm. The scores of the algorithms are shown
in Figure 5d. It can be seen that FellWalker, Dendrograms,
and GaussClumps are the best algorithms. ClumpFind1994
and ClumpFind2006 score low due to their many false i-
dentifications.

3.2.2 Accuracy of the retrieved parameters

We calculated the average errors of the position (E(|∆X|)),
size (E(∆S)), velocity dispersion (E(∆V)), peak bright-
ness (E(∆I)), and total flux (E(flux)) for each algorithm.
These average errors as a function of different SNRs are
shown in Figure 6. It can be seen that as the SNR of the
clumps increases, the errors in the clump position and peak
brightness gradually decrease. The average errors in clump
size for each algorithm gradually increase as the SNR of
clumps increases, while the average errors in clump veloc-
ity dispersion remain nearly constant. The overall perfor-
mance of FellWalker in reproducing the clump parameters
is still good. As shown in Figure 6d, FellWalker exhibit the
best performance among the six algorithms in the aspect of
total flux, with more than 40% of the total flux being ex-
tracted to output when the SNR reaches 20. Reinhold ex-
hibits the biggest total flux deviation compared to the oth-
ers. FellWalker and Dendrograms perform better than oth-
er algorithms in retrieving the parameters. Most of the al-
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gorithms return a smaller size and velocity dispersion and a
higher peak brightness than the simulated data, and the to-
tal fluxes of the output are always lower than the simulated
clumps.

3.3 Test 3: Performance of the Algorithms in
Identifying Clumps with Different Crowdedness

It has long been realized that automated algorithms tend
to interpolate clumps at various peak values and break the
bright sources into multiple clumps (Enoch et al. 2006).
Therefore, the automated algorithms are susceptible to the
crowdedness of the clumps. In order to investigate the per-
formance of different algorithms in the identification of
clumps with different crowdedness, we create 100 clumps
in 200×200×200, 150×150×150, and 100×100×100 ar-
rays, respectively (Fig. 7). In the 200×200×200 array, few
clumps are overlapped. In the 150×150×150 array some
clumps overlaps at their edges. In the most crowded case
(100×100×100), many clumps overlap. We identify the
clumps with the six algorithms so that their performance
can be unbiasedly estimated.

We set the peak brightness of the clump to be 10 times
the noise value, and the size to be five pixels. In this case,
the influence of brightness and size is reduced as much as
possible. We focus on the performance of the algorithms
with different crowdedness. The completeness and accura-
cy of retrieved parameters from all the six algorithms are
presented in Sections 3.3.1 and 3.3.2.

3.3.1 Completeness of the algorithms

Figure 8a shows the numbers of correct identifications of
different algorithms. It can be seen that as the clumps
become more crowded, the completeness of FellWalker
gradually decreases. ClumpFind1994, ClumpFind2006,
Dendrograms, and GaussClumps perform better than
Reinhold and FellWalker in the aspect of complete-
ness. In the case of [150, 150, 150], some clump-
s overlap at their edges and the brightness and bound-
ary of the clumps are influenced by the ambien-
t clumps. Accordingly, ClumpFind1994, ClumpFind2006,
Dendrograms, and GaussClumps get more output num-
bers, repeated, and erroneous identifications than in the
[200, 200, 200] arrays. Due to that many clumps overlap or
merge into a new clump in the most crowded ([100, 100,
100]) case, the accuracy of all the algorithms fall down to
20%–100%.

Figure 8b shows the numbers of repeated identifica-
tions of different algorithms in the detection of clump-
s. Although ClumpFind1994 and ClumpFind2006 present
good performance in accuracy, at the same time they re-
peatedly identified 600%–1200% clumps. This may be due
to the fact that the ClumpFind algorithm tends to break the

bright sources into multiple clumps (Enoch et al. 2006).
FellWalker does not produce duplicate clumps, which is
an important advantage compared to other algorithms.

Figure 8c shows the numbers of erroneous identifica-
tions of different algorithms. It can be seen that 2000%–
9000% false clumps are outputted from ClumpFind1994
and ClumpFind2006. FellWalker almost never identifies
the fluctuation of the noise to be a clump.

3.3.2 Accuracy of the retrieved parameters

The average deviations of the corresponding retrieved pa-
rameters from the six algorithms in different crowdedness
are shown in Figure 9. It can be seen that in the most sparse
case ([200, 200, 200]), the best algorithm for extracting
the position parameter is GaussClumps, with Dendrograms
and ClumpFind2006 being the next. As the clumps get
more crowded, the average errors in position and peak
brightness gradually increase. GaussClumps performs well
in size and intensity extraction. For the peak brightness pa-
rameter, all of the algorithms return values higher than the
simulated data. The largest deviation in peak brightness a-
mong the six algorithms is about 8 times the one sigma
noise which occurs in the most crowded case. In the most
crowded case ([100, 100, 100]), the output total flux of
FellWalker, GaussClumps, and ClumpFind1994 exceeds
the input data, which may be caused by the merge of mul-
tiple clumps into a new clump.

4 DISCUSSION

4.1 The Bias of the the Algorithms in Estimation of
the Virial Parameter

The clumps which are in gravitationally unstable will
collapse and are expected to evolve into protostars.
The virial parameterαvir, which is defined asαvir =

5σ2Rc/(GMc) ∼ Ekin/Eg (Bertoldi & McKee 1992), is
a crucial parameter to understand the dynamics of a clump.
Here,Ekin andEg are the kinematic and gravitational ener-
gy of the clump, respectively.Mc andRc indicate the mass
and radius of the clump,G is the gravitational constant, and
σ is the velocity dispersion. In the absence of external pres-
sure or magnetic fields for an isothermal sphere, the clump
will collapse if αvir < 1 (Tan et al. 2014). When the re-
gion is under external pressure, this pressure will work to-
wards compressing the clump, and it could collapse even if
αvir > 1. Several surveys revealed a relationship between
αvir and the mass of the clumps, indicating that the massive
clumps tend to be more gravitationally unstable (Urquhart
et al. 2014, 2018; Traficante et al. 2018). However, theαvir

derived from the six algorithms can be influenced by the
bias of the returned parameters. Here, we assume that the
mass of the clump is proportional to the total flux of the
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Fig. 7: Distributions of 100 simulated clumps in 200×200×200 (left), 150×150×150 (middle), and 100×100×100 arrays
(right), respectively.

(a) (b)

(c) (d)

Fig. 8: Frequency distributions of the correct (a), repeated (b), erroneous identifications (c), and the score points (d) of the
six algorithms in identifying clumps with different crowdedness.

clump (Mc ∼ flux). The ratio between the output virial
parameter (αout) derived from the six algorithms and the
input virial parameter (αin) is displayed in Figure 10.

As shown in Figure 10, the six algorithms almost
return a virial parameter close to the input virial value.
The output virial parameter shows no trend with the size,
SNR, and crowdedness of the clumps. ClumpFind1994 and
Dendrograms return more accurate virial parameter than
the other algorithms.

4.2 The Performance of the Algorithms in Identifying
Clumps in the Rosette Molecular Cloud

Using the PMO-13.7m millimeter telescope at Delingha in
China, Li et al. (2018) have conducted a large-scale simul-
taneous survey of12CO, 13CO, and C18O J = 1 − 0 e-

mission toward the RMC region with a sky coverage of
3.5× 2.5 square degrees (Fig. 11). The spatial pixel of the
FITS data cube has a size of 30′′ × 30′′ and the effective
spectral resolution is 61.0 kHz, corresponding to a velocity
resolution of 0.16 km s−1 at the 115 GHz frequency of the
12COJ = 1− 0 line. The sensitivity of the observation is
estimated to be around 0.5 K for the12COJ = 1−0 emis-
sion and around 0.3 K for the13CO and C18OJ = 1−0 e-
mission. We apply the six algorithms in identifying clumps
in the RMC, and the results are presented in Figures 12–13.

Figure 12a presents the output number for each
algorithm in identifying clumps of12CO, 13CO, and
C18O emission. It shows that ClumpFind2006 and
ClumpFind1994 get the most clumps in the RMC.
As shown in the above simulated tests (Sect. 3),
ClumpFind2006 and ClumpFind1994 always get much
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(a) (b)

(c) (d)

Fig. 9: The average error of position (a), size (solid line) and velocity dispersion (dashed line) (b), peak brightness (c),
and total flux (d) of six algorithms in identifying clumps with different crowdedness.

(a) (b) (c)

Fig. 10: The ratio between the output virial parameter (αout) derived from the six algorithms and the input virial parameter
(αin) for clumps with different size (a), SNR (b), and crowdedness (c).

(a) (b) (c)

Fig. 11: Maps of12CO emission intensity integrated from –2 km s−1 to 30 km s−1 (a),13CO emission intensity integrated
from 3 km s−1 to 26 km s−1 (b), and C18O emission intensity integrated from 3 km s−1 to 19 km s−1 (c). For details, see
Li et al. (2018).
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(a) (b)

Fig. 12:Left: the output number for each algorithm in identifying clumpsof 12CO, 13CO, and C18O emission.Right: the
CPU consuming time of the six algorithms.

Table 1: Cross-matching of12CO,13CO, and C18O Clumps

Algorithm 12CO 13CO C18O 13CO/12CO C18O/13CO
(1) (2) (3) (4) (5) (6)

ClumpFind1994 5653 969 44 76% 55%
ClumpFind2006 8080 1480 75 74% 37%
GaussClumps 646 611 4 67% 100%
FellWalker 1243 370 22 81% 91%
Reinhold 247 68 0 15% -
Dendrograms 2726 727 36 92% 0%

Notes: Columns (2)–(4) give the output number of the clumps.Columns (5)–(6) give the percentage of
the 13CO clumps that coincide with12CO clumps and the percentage of the C18O clumps that coincide
with 13CO clumps, respectively.

Table 2: General Performance of the Algorithms in Completeness

Algorithm Correct Rate Repetitive Rate Erroneous Rate

ClumpFind1994 high (100%) very high (< 10000%) very high (< 15000%)
ClumpFind2006 high (100%) very high (< 12000%) very high (< 20000%)
GaussClumps intermediate (10% − 100%) low (< 10%) intermediate (< 70%)
FellWalker high (90% − 100%) very low (0%) very low (0%)
Reinhold low (< 10% when clump peak brightness (SNR) lower than 15) very low (0%) very low (0%)
Dendrograms high (100%) high (< 1000%) high (< 2000%)

more repeated and erroneous identifications than the num-
ber of input simulated clumps, producing more output
clumps than other algorithms. Reinhold gets the least
clumps in the RMC due to that it can only find clump-
s when the peak brightness is higher than 12 times the
noise level (see Sect. 3 and Fig. 13c). GaussClumps get-
s relatively fewer clumps of12CO, for which one pos-
sible reason is that12CO emission is usually optically
thick and the velocity profiles of12CO clumps do not
obey Gaussian profile well. The iterative fitting process
of GaussClumps is terminated when more than designated
consecutive clumps cannot be fitted with Gaussian profile
successfully. For Dendrograms, it rarely finds false clumps
in the simulated data (see Sect. 3). However, we find that
more than 100 false clumps are identified by Dendrograms,
but these clumps are distributed at the edge of observation-
al 12CO,13CO, and C18O data arrays. The numbers shown
in Figure 12a and Table 1 do not include the false clumps
located at the edges of the data arrays. Figure 12b presents

the computer CPU consuming time for the six algorithms
in identifying 12CO, 13CO, and C18O clumps. Reinhold
takes the least time and the least clumps are identified.
Among the six algorithms, FellWalker is the most efficient
algorithm in terms of the number of identified clumps and
CPU time. Due to the iterative Gaussian fitting process, the
time cost by GaussClumps is much more than the other al-
gorithms. The dominant frequency of the computer CPU in
our testing is 2.2 GHz. The memory size of the computer
is 16 GB and the memory speed is 1600 MHz.

Table 1 presents the cross-matching results between
12CO, 13CO, and C18O clumps. Due to the difference in
optical depth between the12CO, 13CO, and C18O emis-
sion, it is usually expected that13CO clumps have good
association with12CO clumps and C18O clumps in the
same way have good association with13CO clumps. From
Table 1 it can be seen that the13CO and C18O clumps
from GaussClumps and FellWalker exhibit the best asso-
ciation. However, GaussClumps identifies only four C18O
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(a) (b)

(c) (d)

Fig. 13: Distributions of the size (a), velocity dispersion(b), peak brightness (c), and total flux (d) of the13CO clumps
in the RMC derived from the six algorithms. Thedashed line indicates the probability distribution of the pixel peak
brightness of the RMC.

Table 3: Average Errors of the Algorithms in Extracting Parameters

Algorithm E(|∆X|) E(∆S) E(∆V) E(∆I) E(∆flux)
(pixel) (rms)

(1) (2) (3) (4) (5) (6)

ClumpFind1994 1.1 −38% −38% 1.3 −70%

ClumpFind2006 1.1 −57% −40% 1.3 −83%

GaussClumps 1.1 −65% −58% 1.5 −78%

FellWalker 0.9 −7% −43% 1.8 −19%

Reinhold 1.8 −88% −53% 2.9 −93%

Dendrograms 0.4 −25% −42% 1.3 −65%

Notes: The average errors of the algorithms in extracting parameters are derived from the
(1000+1000+300) clumps in Sections 3.1–3.3. Columns (2) and (5) represent the average devi-
ation of the position (E(|∆X|)) and peak brightness (E(∆I)). Columns (3), (4), and (6) give the
relative errors of the size (E(∆S)), velocity dispersion (E(∆V)), and total flux (E(∆flux)).

clumps, which is much fewer than the number identified by
eye. For ClumpFind1994, ClumpFind2006, Reinhold, and
Dendrograms, the association between the13CO and C18O
clumps is relatively low, which implies that their identifi-
cations deviate somewhat from the actual situation.

Figure 13 shows the distributions of the size, velocity
dispersion, peak brightness, and total flux of13CO clump-
s, respectively. It can be seen that the clump size identi-
fied by FellWalker is larger than that from the other algo-
rithms. The most likely reason is that FellWalker return-
s the larger and more accurate clump size than the other
algorithms (see Sect. 3). The clump velocity dispersion i-
dentified by Dendrograms is significantly larger than that
from the other algorithms. As shown in Figure 13c, most
of the clumps identified by GaussClumps and Reinhold
have higher peak brightness than the clumps from the oth-

er algorithms, which is consistent with the test results in
Section 3.2 that only clumps with high brightness can be
identified by GaussClumps and Reinhold. The distribution
of the total flux of13CO clumps is presented in Figure 13d.
Due to that FellWalker returns a larger and more accurate
clump total flux than the other algorithms, GaussClumps
and Reinhold tend to miss the clumps with low brightness,
it can be seen that the total flux extracted by Reinhold,
GaussClumps, and FellWalker are higher than that by the
other algorithms.

5 SUMMARY

Using simulated clumps, we have tested the performance
of the GaussClumps, ClumpFind1994, ClumpFind2006,
FellWalker, Reinhold, and Dendrograms algorithms in i-
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dentifying clumps. We focus on the performance of each
algorithm in terms of completeness and parameter extrac-
tion.

We generated the simulated clumps in three-
dimensional arrays with background noise. The brightness
profiles of the clumps are of the formT (s, v) = N0√

2πσ
×

1
1+(s/r0)1.0

×exp(−(v−v0)
2

2σ2 ). The simulated clumps are de-
signed to vary in size, brightness, and crowdedness to in-
vestigate the performance of the six algorithms in these
aspects. For the six algorithms, the minimum FWHM and
∆V of the identifying clumps are set to be two pixels and
two channels, respectively. The minimum peak value pa-
rameter is set to be five times the one sigma noise level
and the number of voxels of an output clump is required to
be above 16. We summarize our results as follows.

1. In the aspect of detection completeness, FellWalker,
Dendrograms, and GaussClumps are the first, second, and
third best algorithms, respectively. The numbers of correct
identifications of the six algorithms gradually increase as
the size and SNR of the simulated clumps increase and they
decrease as the crowdedness increases. The repetitive and
erroneous rates of ClumpFind increase as the clump size
and SNR increase. Reinhold is only suitable for searching
for clumps with peak brightness (SNR) higher than 10. The
general performance of the six algorithms is summarized
in Table 2.

2. In the aspect of the accuracy of retrieved parame-
ters, the average errors in clump parameters gradually in-
crease as the clump size, SNR, and crowdedness increase.
The average errors of the algorithms in extracting param-
eters of the clumps in Sections 3.1–3.3 are presented in
Table 3. As Table 3 shows, the algorithms best perform-
ing in extracting parameters are Dendrograms in retrieving
clump position (E(|∆X|)=0.4 pixels) and peak brightness
(E(∆I)=1.3 RMS), FellWalker in size (E(∆S)=−7%) and
total flux (E(∆flux) =−19%), and ClumpFind1994 in ve-
locity dispersion (E(∆V)=−38%). All in all, FellWalker,
Dendrograms, and GaussClumps exhibit better perfor-
mance in extracting clump parameters than the other algo-
rithms. Except for FellWalker, the other algorithms exhibit
significant deviation in extracting the total flux of clumps.

3. The ratios between the output virial parameter
(αout) derived from the six algorithms and the input viri-
al parameter (αin) show no trend with the size, SNR, and
crowdedness of the clumps. For the simulated clumps, the
six algorithms almost return virial parameters similar to the
input virial parameters (αout/αin = 0.5− 1.5).

4. When applying the six algorithms to clump iden-
tification for the RMC, GaussClumps, ClumpFind1994,
ClumpFind2006, FellWalker, and Reinhold exhibit perfor-
mance that is consistent with the results from the simulated
test. Dendrograms finds more than 100 false clumps at the
edge of observational data arrays.
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Appendix A: ALGORITHMS CONFIGURATION
PARAMETERS

Table A.1: GaussClumps Parameters

GAUSSCLUMPS.EXTRACOLS=0
GAUSSCLUMPS.FWHMBEAM=2
GAUSSCLUMPS.MAXBAD=0.05
GAUSSCLUMPS.MAXCLUMPS=2147483647
GAUSSCLUMPS.MAXNF=100
GAUSSCLUMPS.MAXSKIP=10
GAUSSCLUMPS.MAXWF=1.1
GAUSSCLUMPS.MINPIX=3
GAUSSCLUMPS.MINWF=0.8
GAUSSCLUMPS.MODELLIM=3
GAUSSCLUMPS.NPAD=10
GAUSSCLUMPS.NPEAK=9
GAUSSCLUMPS.NSIGMA=3
GAUSSCLUMPS.NWF=10
GAUSSCLUMPS.S0=1
GAUSSCLUMPS.SA=1
GAUSSCLUMPS.SB=0.1
GAUSSCLUMPS.SC=1
GAUSSCLUMPS.THRESH=5
GAUSSCLUMPS.VELORES=2
GAUSSCLUMPS.WMIN=0.05
GAUSSCLUMPS.WWIDTH=2

Table A.2: ClumpFind1994 Parameters

CLUMPFIND.ALLOWEDGE=0
CLUMPFIND.DELTAT=2*RMS
CLUMPFIND.FWHMBEAM=2
CLUMPFIND.IDLALG=0
CLUMPFIND.MAXBAD=0.05
CLUMPFIND.MINPIX=16
CLUMPFIND.NAXIS=3
CLUMPFIND.Noise=2*RMS
CLUMPFIND.TLOW=3*RMS
CLUMPFIND.VELORES=2

Table A.3: ClumpFind2006 Parameters

CLUMPFIND.ALLOWEDGE=0
CLUMPFIND.DELTAT=2*RMS
CLUMPFIND.FWHMBEAM=2
CLUMPFIND.IDLALG=1
CLUMPFIND.MAXBAD=0.05
CLUMPFIND.MINPIX=16
CLUMPFIND.NAXIS=3
CLUMPFIND.Noise=2*RMS
CLUMPFIND.TLOW=3*RMS
CLUMPFIND.VELORES=2
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Table A.4: FellWalker Parameters

FELLWALKER.ALLOWEDGE=1
FELLWALKER.CLEANITER=1
FELLWALKER.FLATSLOPE=1*RMS
FELLWALKER.FWHMBEAM=2
FELLWALKER.MAXBAD=0.05
FELLWALKER.MAXJUMP=4
FELLWALKER.MINDIP=3*RMS
FELLWALKER.MINHEIGHT=5*RMS
FELLWALKER.MINPIX=16
FELLWALKER.NOISE=3*RMS
FELLWALKER.VELORES=2

Table A.5: Reinhold Parameters

REINHOLD.CAITERATIONS=1
REINHOLD.CATHRESH=26
REINHOLD.FIXCLUMPSITERATIONS=1
REINHOLD.FLATSLOPE=1*RMS
REINHOLD.FWHMBEAM=2
REINHOLD.MINLEN=4
REINHOLD.MINPIX=16
REINHOLD.NOISE=3*RMS
REINHOLD.THRESH=5*RMS
REINHOLD.VELORES=2

Table A.6: Dendrograms Parameters

MIN VALUE=3*RMS
MIN DELTA=2*RMS
MIN NPIX=16
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