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Abstract The detection of clumps (cores) in molecular clouds is anoirigmt issue in sub-millimetre as-
tronomy. However, the completeness of the identification #e accuracy of the returned parameters of
the automated clump identification algorithms are still clefr. In this work, we test the performance and
bias of the GaussClumps, ClumpFind, FellWalker, Reinhafdi Dendrograms algorithms in identifying
simulated clumps. By designing the simulated clumps withious sizes, peak brightness, and crowded-
ness, we investigate the characteristics of the algorittamaistheir performance. In the aspect of detection
completeness, FellWalker, Dendrograms, and GaussClurapkeafirst, second, and third best algorithm-
s, respectively. The numbers of correct identificationshefgix algorithms gradually increase as the size
and signal-to-noise ratio (SNRs) of the simulated clumpgseaase and they decrease as the crowdedness
increases. In the aspect of the accuracy of retrieved paeasp&ellWalker and Dendrograms exhibit bet-
ter performance than the other algorithms. The averagatiens in clump parameters for all algorithms
gradually increase as the size and SNR of clumps increasst dlohe algorithms except FellWalker ex-
hibit significant deviation in extracting the total flux olichps. Taken together, FellWalker, GaussClumps,
and Dendrograms exhibit the best performance in detectiompieteness and extracting parameters. The
deviation in virial parameter for the six algorithms is telaly low. When applying the six algorithms to
the clump identification for the Rosette molecular cloudir@bFind1994, ClumpFind2006, GaussClumps,
Fellwalker, and Reinhold exhibit performance that is cstesit with the results from the simulated test.

Key words: methods: data analysis — methods: humerical — ISM: strectur

1 INTRODUCTION more inefficient or incompetent in the detection of clumps
(cores).
Several common algorithms have been used to i-

Giant molecular clouds (GMCs) have complex and hier_dentn‘y clumpy structures in molecular clouds, such as

. - . GaussClumps, ClumpFind, FellWalker, Reinhold, and
archical structures that can be divided into substructureB :
of clouds, clumps, and cores (Blitz & Williams 1999) endrograms. Except for Dendrograms, these algorithm-
’ ' s are included within CUPID (Berry et al. 2007)

The clumps and cores could be gravitationally unstabl . . .
(Solomon et al. 1987: Heyer et al. 2001) and evolve intgiGaussCIumps is the oldest algorithm in automated clump

; . . - Identification (Stutzki & Guesten 1990). It was first applied
protostars. A particular issue in sub-millimeter astrogom .

is the identification of clumps and cores. The traditional " the M.17 molecular cloud and then was frequently per-
. e : : ormed in other molecular clouds (Schneider et al. 1998;
clumps (cores) identification method is to find compact an )
. . . . ent et al. 2009; Lo et al. 2009). The GaussClumps al-
bright sources in observational datasets by eye. Inthescas_ . . . . .

" . . orithm fits the 3D molecular line data with Gaussian el-
subjective biases are evident as each person could perceﬁeSoiols (or ellipses for 2D column density maps) around
the data differently and thus identify different clumps and P P y map
extract different parameters. As the datasets becomelarge 1 http://starlink. eao. hawaii.edu/ starl i nk/

or the clumps are more crowded, the traditional method isurl D
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the local maxima. The resulting ellipsoids (or ellipse® ar gradient. Sometimes this process may be affected by noise
recognized as clumps in the observational data. This praspikes and thus FellWalker checks the extended surround-
cess is repeated until the termination criteria are met. Thimg (FellWalker.MaxJump) pixels to see if there is a pixel
output clumps may overlap in the GaussClumps algorithin the surrounding with greater value. For any pixel on the
m. For this reason, each input pixel is not simply assignedninimum level, a path from this pixel to the nearby maxi-
to a single clump (as what is done in algorithms such asnum value based on this ascending method can be found.
FellWalker or ClumpFind), and the total flux in the fitted All routes that meet at the same maximum point are classi-
Gaussians may exceed the real flux in the input data. Thiged as a clump. This process is analogous to a fell-walker
GaussClumps algorithm can only fit a strict elliptic shapeascending a hill by following the steepest ascent line as its
and it does not allocate flux to a clump at large distanc@ame suggests.

from the peak. The Reinhold algorithm was developed by Kim

ClumpFind is the most widely used algorithm for Reinhold and included within CUPID. This algorithm con-
molecular gas clump identification. Williams et al. (1994)verts the original two or three-dimensional data arrays int
developed this algorithm and applied it to detect the comene-dimensional arrays. It then identifies the highest val-
pact structures in the Rosette molecular cloud (RMC). Irue in all one-dimensional arrays. If the peak value is below
brief, this algorithm locates the peak position by determinthe defined minimum, then the algorithm decides that there
ing the highest value in the array. The process then déds no real peak in that array. If the peak value is above the
scends down from the peak pixel with a certain intervalminimum, then the program goes from this peak in both di-
(ClumpFind.DeltaT). If no new independent maximum isrections along the array until it reaches a pixel that fulfill
found within an intensity interval, the process continueghe criteria for being an edge pixel. The data arrays are re-
into lower intensity intervals until a new local maximum combined into the original two or three-dimensional arrays
is found or it reaches the specified minimum contour levwith the clump edges now determined, which produces a
el (ClumpFind.TLow). Clumps with brightness below this number of ring or shell-like structures which outline the
level are ignored as they are assumed to be noise. Whatumps. Basically, the algorithm looks for edges of clump-
an area contains multiple clumps then the pixels in thas, the clumps determined are therefore more susceptible to
area are divided between the clumps, with the associatiomoise and need to be cleaned up.

of each pixel being given to the closest clump. The asso-  The Dendrograms algorithm was first demonstrated in
ciation is determined by the distance of the pixel to thethe structural analysis of molecular clouds by Rosolowsky
boundary of an assigned clump according to a friendset al. (2008). This algorithm presents an analytic techaiqu
of-friends algorithm. The ClumpFind algorithm was re- gimed to characterize the hierarchical structure in melecu
written with some minor adjustments in 2006, so it hasar gas and relate it to the star formation process. Its prin-
the ClumpFind1994 and ClumpFind2006 versions (set byipal advantage is using standard molecular line analysis
ClumpFind.IDLAIg). techniques to characterize the branches in a dendrogram
The ClumpFind algorithm is found to be sensi- and simultaneously provide the measurement of various
tive to the input parameters ClumpFind.DeltaT andproperties for structures in a large range of physical s-
ClumpFind.TLow (Kainulainen et al. 2009; Rathbornecales. The smallest structures that are described as leaves
et al. 2009; Pineda et al. 2009). A large ClumpFind.DeltaTin Dendrograms can be recognized as clumps. In addi-
parameter tends to find the large and bright structureson, Dendrograms is a reduction of the structure in a data
but miss the clumps with low brightness. If a smal-set to its essential features. Three parameters_yaline,
| ClumpFind.DeltaT value is provided, then increased falsamin_delta, and mimpix) would limit the output results of
clumps are identified due to the noise spike. Enoch et athe clump identification. It is the newest algorithm com-
(2006) performed investigations into the detection com-pared with the above other algorithms for structure iden-
pleteness of the ClumpFind algorithm. They found thattification but has been performed more than one hundred
ClumpFind tends to interpolate clumps and break thd¢imes (Goodman et al. 2009; Williams et al. 2019).

bright source into multiple clumps. So far, many automated algorithms have been used
The FellWalker algorithm was developed specifical-for clump identification, although the principles are dif-
ly for CUPID to address some of the problems associateterent. Consequently, different algorithms could make bia
with ClumpFind. It was developed and fully described inresults in both clump identification and extraction of pa-
Berry (2015). Unlike other algorithms, this algorithm first rameters such as size, line width, temperature, and mass
defines a minimum level (FellWalker.Noise) to ignore the(Schneider & Brooks 2004; Curtis & Richer 2010; Watson
influence of the noise spike. Then the process ascends t2010). However, it is still not clear which algorithm has
steepest route until reaching a peak, which provides a cethe best performance in the aspects of completeness, false
tain way of reaching the peak along the greatest ascendiragtection probability, and accuracy of physical paranseter
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Fig. 1: Simulated clumps with clump sizes (FWHM) dis-
tributing randomly from 1 to 11 pixels.

of the clump identification. A simulated test is needed be
fore applying these algorithms in observational data. ik th
work, we mainly focus on testing the completeness and a
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Kauffmann et al. (2010b) found that if the index of
density profile i, the index of column density profile can
be approximated gs— 1 whens >> ro. Then the radial
column density profile follows

1
T 1t (3oL

Juvela et al. (2018) have studied the column density
structures of the Galactic Cold Cores. They found that the
radial column density profiles of these cores follow power
law distributions with the indexes of about 1. Therefore, we
adopt a column density profile of Equation (3) with 1 =
1 for clumps in this study.

The third dimension of observational data stands for

)

N(s) ®)

curacy of the physical parameters of the clumps identifieqhe velocity. An optically thin spectrum of a clump probes

using the above six algorithms (including two versions o

f

the velocity distribution of the molecules. Indeed, the ve-

ClumpFind) and present comparisons between them. Tn(acity profile of an optically thin molecular line emissiam i

method_ 'S des_crlbed n S_echon 2 and the results are Pr%pservations generally follows the Gaussian distribution
sented in Section 3. We discuss the bias of the algorithmsii herefore, the brightness distribution over the voxels of

estlm_anon (.)f Fhe V|_r|a_1l parameter and the performar_lces %Bur simulated clumps is chosen to obey the form
algorithms in identifying clumps in the RMC in Section 4

and draw a summary in Section 5. 2
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Mass-size relations describe the relationship between the

mass and spatial scale of clumps. The mass containé’Were\/];%U
within radius r is usually described with a power law the clump.
m(r) ~ r~% (Larson 1981; McKee & Ostriker 2007; We created three-dimensional arrays that contain
Kauffmann et al. 2010a,b). This relation can be explaine@¢lumps and background noise. The positions of the clump-
by a power law density profiles of the molecular clump-S are designed to distribute randomly. To avoid that the
s:p(r) ~ r—P (Parmentier et al. 2011). Previous studiesclumps are located at the edges of the arrays, the center-
found thatl.5 < p < 2 (Heaton et al. 1993; Hatchell et al. S of the simulated clumps are distributed at least 15 pixels
2000; Beuther et al. 2002; Fontani et al. 2002; Muellefromthe edges. The brightness profiles of the clumps are of
et al. 2002). However, it has been found that a single powthe form of Equation (4) and we assume that r (in the

er law density profile cannot fit the emission from starlesg!nit of voxel). Thus, the FWHM() in the velocity dimen-
cores and that an inner flattening portion is always needsion is equal to/8In2ry, which is similar to the radial size

ed to reproduce the observational data (Ward-Thompso®f the clump (FWHM§) = 21, ). In the following analysis,

et al. 1994; Andre et al. 1996; Bacmann et al. 2000; Alveghe input size of the simulated clump is represented by the
et al. 1999). Considering the power law behavior for largespatial FWHM size (FWHM() = 2r,). When we perform

r and the central flattening at small Tafalla et al. (2002) the identification of the compact sources in observational

adopted the following analytic density profile for molecu- data, the FWHMAYV, and the peak value of the clumps are
lar clumps, naturally limited to the instrument resolution and the sen-

sitivity of the observation. In our test, we set the FWHM
and AV to be two pixels and two channels, respectively,
for all the six algorithms. The minimum peak value pa-
Here, ry is the radius of the flat regior{, is the rameter is set to be five times the one sigma noise level
FWHM), r = (s% 4+ 22)!/2, s is the projected distance and the number of voxels of an output clump is required
from the clump center andis the length along the line of to be above 16. We use other default input parameters in
sight. In this case, the column density distribution of theCUPID for all the six algorithms, so that we can determine

2 METHOD x exp(

) )
(4)

represents the peak brightness at the center of

1
1+ (s/19)t0

1
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Fig. 2: Frequency distributions of the correct identifioas (a), repeated identifications (b), erroneous identiifioa
s (c), and score points (d) of the six algorithms in identifyiclumps with different FWHM sizes. ClumpFind1994,
ClumpFind2006, and Dendrograms have score points lowaerttiearange to display in panel (d).
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Fig. 3: The mean error of position (a), sizel{d line) and velocity dispersiordashed line) (b), peak brightness (c), and
total flux (d) of algorithms in identifying clumps of diffené FWHM sizes.

the advantages and disadvantages of different algorithmbard challenge for automated algorithms to identify clump-
If the clumps identified by the algorithm are too far from s that are small, weak, or crowded, we created clumps with
the real situation, even if the results can be improved byhese characteristics in the test. Then the above six algo-
adjusting the parameters later, it is clear that the algorit rithms (GaussClumps, ClumpFind1994, ClumpFind2006,
is too sensitive to the parameters. Considering that it is &ellWalker, Reinhold, and Dendrograms) are applied to i-
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s of correct identifications of the algorithms gradually in-
crease. ClumpFind1994, ClumpFind2006, FellWalker, and
Dendrograms perform well when the sizes of clumps are
larger than three pixels, where the correct rate can reach
more than 9%. GaussClumps exhibits lower correct rate
compared to its performance presented in Section 3.2. One
possible reason is that the brightness profile of simulat-
ed clumps obeys power law in the spatial dimensions.
When the number of consecutive failures of fitting suc-
ceeds the designated one, which is appointed by param-
eter GaussClumps.MaxSkip, the iterative fitting process of
Fig.4: Simulated clumps with the signal-to-noise ratiosGaussClumps is terminated.
distributing randomly from 1 to 21. When a simulated clump is identified more than once,
the clump closest to the simulated position is marked as
dentify the clumps. The configuration parameters of eacla matching output and the other clumps are recorded as
algorithm are displayed in Appendix A and their perfor-repeated results. Figure 2b shows the number of repeat-

mance are presented in Sections 3.1-3.3. ed identification for different algorithms. The percentage
of repeated results for all algorithms are lower than 10%
3 RESULTS when the sizes of the input clumps are smaller than two
pixels. Figure 2c shows the number of erroneous identifica-
3.1 Test 1: Performance of the Algorithms in tions for the six algorithms. FellWalker and GaussClumps
Identifying Clumps of Different Sizes almost never erroneously identify the fluctuation of noise

. . . . . to be a clump. As the clumps become more extended,
To investigate the performance of different algorithms in . e
the numbers of repeated and erroneous identifications of

|dent|fy|ng clumps O.f different sizes, W? ggnerated 1000the Dendrograms, ClumpFind1994, and ClumpFind2006
clumps with clump sizes (FWHM: 2r,) distributing ran- radually increase
domly from 1 to 11 pixels. The data are designed to beg Y ) ’ )
1000x 1000~ 1000 array (Fig. 1). In this case, very few Tp estimate the _compr_ehenswe performance_ of each
clumps would overlap. The above six algorithms are ap@/90rithm, we establish a simple scoring mechanism. The
plied to identify the clumps in the simulated data so thaftlgorithm scores 1 point when |_t correctly identifies a sim-
the performance of each algorithm can be unbiasedly estflated clump, scores —1 when it outputs a false result, and
mated. score —0.5 when it finds duplicate clumps. We show the
In test 1 we focus on the performance of the algorithm$core for each algorithm in Figure 2d. As shown in the
to detect different sizes of clumps. To reduce the influenc§¢0MNg results, Fellwalker exhibits the best performance
of peak brightness, the peak brightness of the clumps ifomPared with the other algorithms. ClumpFind1994,
fixed to be 10 times the one sigma noise value. We preseftUMPFind2006, and Dendrograms receive low marks be-
the completeness and accuracy of the parameters of the §gUS€ they conduct a lot of repeated and erroneous identi-
algorithms in Sections 3.1.1 and 3.1.2. fications.

3.1.1 Completeness of the algorithms 3.1.2 Accuracy of the retrieved parameters

When estimating the advantages and disadvantages of &vhen an algorithm is used to automatically search for the
algorithm, the primary criterion is the completeness ofclumps, the output parameters of the clumps will be used
the output clumps. Here the term “completeness” meanto calculated the physical parameters, so accurately tepro
s a high percentage of correctly identified clumps, andlucing the clump parameters is an important aspect of an
at the meantime a low percentage of false or repeated &algorithm. To compare the comprehensive performance of
dentification. When the spatial scale of an output clumpeach algorithm in the aspect of accuracy of retrieved pa-
is smaller than the simulated clump along all the threeameters, we calculated the average deviation of the posi-
axes, then we mark this clump as a correctly identifiedion (E(AX])), size (EAS)), velocity dispersion (EV)),
clump. Figure 2a shows the numbers of correct identifipeak brightness (El)), and total flux (EQAflux)) of the
cations for different algorithms when identifying clump- output results of each algorithm. The|E&K]), E(AS),

s of different sizes. It can be seen that when the sizes d(AV), and EQAI) are obtained through subtracting the
clumps are smaller than two pixels, most of the algorithm-output parameters from the input ones and then averaging
s perform poorly. As clumps become larger, the numberever the correctly identified clumps. The &f{ux) is the
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Fig. 5: Frequency distributions of the correct identifioas (a), repeated identifications (b), erroneous identidica (c),
and the score points (d) of the six algorithms in identifyghgmps with data of different signal-to-noise ratios.
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Fig. 6: The average error of position (a), sizelid line) and velocity dispersiondashed line) (b), peak brightness (c),
and total flux (d) of six algorithms in identifying clumps Wwitlata of different signal-to-noise ratios.

ratio between the deviation of the total flux and the inputror in clump position for Dendrograms is about 0.5 pix-
el, while the deviations for other algorithms are more than

+ Clumpfind1994

© Gaussclumps
A Fellwalker
O Reinhold
X Dendrograms

-2

14 16 18 20

0O 2 4 6 8 10 12 14 16 18 20
SNR

(©

flux sum averaged over the correctly identified clumps.

E(AS) & E(AV) [voxel]

E(aflux) [%]

-60

-80

-100

0.5

size of clumps are smaller than five pixels, the average er-

0O 2 4 6 8 10 12 14 16 18 20

SNR

(b)

o

I R - - - -
4 6 8 10 12 14 16 18 20
SNR

RN

(d)

pixel. The average deviation in clump position shows
The average deviations in clump position, size, peako trend with the size of clumps for all algorithms. The

brightness, and the total flux as a function of input clumpaverage errors in clump size and velocity dispersion for

size are shown in Figure 3. It can be seen that when thgach algorithm gradually increase as the size of clumps in-
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creases. As shown in Figure 3b, the average error in clumgetect clumps with peak brightness around the noise lev-
velocity dispersion is generally less than the error in sizeel. When the SNR of clumps is less than 3, all algo-
for most of the algorithms. However, the relative errors ofrithms exhibit poor performance. When the SNR reach-
the size are similar to the errors of velocity dispersiom(sees 5, the numbers of correct identifications for all the
Table 3). The largest errors in clump size, velocity dispersix algorithms except GaussClumps and Reinhold are al-
sion, and peak brightness for all algorithms are about + higher than 75%. Reinhold and GaussClumps exhibit
9 pixels (ClumpFind2006), —3 pixels (GaussClumps), andower completeness than the other algorithms when SNR
2.5 times of the noise (FellWalker), respectively. As theis lower than 5. However, as the SNR increases, the ac-
clump becomes larger, the error in peak brightness decreasdracy of Reinhold and GaussClumps increases. The ac-
es to about 1.7 times the noise for all algorithms. Excepturacy of GaussClumps reaches more than 90% when
for Fellwalker, all algorithms return clump sizes that arethe SNR reaches 11. The accuracy of Reinhold reaches
smaller than the input clump sizes. The clump peak bright20% only when the SNR is as large as 17. Therefore,
ness retrieved by all algorithms is higher than the inpuReinhold and GaussClumps are only suitable for search-
parameters. The total flux of a clump is the sum of brighting for clumps with high brightness. Figure 5b shows the
ness at all pixels within the boundary of the clump. For amumber of repeated identifications for different algorithm
optically thin clump, this parameter is proportional to theThe ClumpFind2006 and ClumpFind1994 algorithms ex-
clump mass. As shown in Figure 3d, FellWalker exhibitshibit the highest repetitive rates. Duplicate identifioas

the best performance compared to the other algorithms iof FellWalker, Reinhold, and GaussClumps are fewer than
the aspect of total flux, with about 60% of the total flux other algorithms.

of the simulated clump being retrieved. For the other algo-  The numbers of erroneous identifications of differ-
rithms, the output total fluxes are lower than 40% of thegpy algorithms are presented in Figure 5c. Surprisingly,
simulated clumps. A reasonable explanation of this larggs the SNR of the simulated clumps increases, the num-
error in clump total flux is the large error in the clump size, pers of false clumps returned by ClumpFind1994 and
i.e., only a small fraction of the clump total flux is counted. ClumpFind2006 increase. The other algorithms almost do
Another possible reason is the omission of part of the flux, ¢ erroneously count the fluctuation of the noise as a
by the algorithms. When the algorithms perform clump i-¢jymp. As in Section 3.1.1, we establish a simple scor-
dentification, the voxels with brightness belowadesignatmg mechanism to evaluate the overall performance of
ed value, which is adopted to be three times the noise levgl, - algorithm. The scores of the algorithms are shown
in our tests, are considered to be noise and are ignored. i, Figure 5d. It can be seen that FellWalker, Dendrograms,
and GaussClumps are the best algorithms. ClumpFind1994

3.2 Test 2: Performance of the Algorithms with Data and ClumpFind2006 score low due to their many false i-
of Different Signal-to-Noise Ratios dentifications.

In addition to the fact that the size of the input clumps has

a significant impact on the clump identification results, the3-2.2 Accuracy of the retrieved parameters

performance of an algorithm in identifying clumps with

data of different peak brightness is also an important issuéVe calculated the average errors of the positiof4&()),

In the 1000« 1000x 1000 array, we generated 1000 clump-Sizé (EQS)), velocity dispersion (EV)), peak bright-

s with signal-to-noise ratio (SNRs) distributing randomly "€ss (EQ1)), and total flux (E(flux)) for each algorithm.
from 1 to 21 (Fig. 4). As in Section 3.1, the six algorithm- These average errors as a function of different SNRs are
s are used to search the simulated clumps to estimate t§80Wn in Figure 6. It can be seen that as the SNR of the
performance of different algorithms. We set the size of théflumps increases, the errors in the clump position and peak
clumps (FWHM) to be five pixels. In Section 3.1.1 it can brightness gradually decrease. The average errors in clump
be seen that when the size of clumps is larger than fiveize for each algorithm gradually increase as the SNR of
pixels, most of the algorithms perform well in the aspectclumps increases, while the average errors in clump veloc-
of completeness. In current test the influence of size antly dispersion remain nearly constant. The overall perfor-
crowdedness are reduced as much as possible. We focugBgnce of FellWalker in reproducing the clump parameters
on the performances of the algorithms when the SNRs o still good. As shown in Figure 6d, FellWalker exhibit the

the data are changed. best performance among the six algorithms in the aspect of
total flux, with more than 40% of the total flux being ex-
3.2.1 Completeness of the algorithms tracted to output when the SNR reaches 20. Reinhold ex-

hibits the biggest total flux deviation compared to the oth-
Figure 5a shows the number of correct identifications foters. FellWalker and Dendrograms perform better than oth-
all algorithms. It can be seen that all algorithms cannotr algorithms in retrieving the parameters. Most of the al-
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gorithms return a smaller size and velocity dispersion and aright sources into multiple clumps (Enoch et al. 2006).
higher peak brightness than the simulated data, and the t&ellWalker does not produce duplicate clumps, which is
tal fluxes of the output are always lower than the simulate@n important advantage compared to other algorithms.

clumps. Figure 8c shows the numbers of erroneous identifica-
tions of different algorithms. It can be seen that 2000%—

3.3 Test 3: Performance of the Algorithms in 9000% false clumps are outputted from ClumpFind1994
Identifying Clumps with Different Crowdedness and ClumpFind2006. Fellwalker almost never identifies

. ] the fluctuation of the noise to be a clump.
It has long been realized that automated algorithms tend

to_interpolate clgmps at yarious peak values and break th§'3.2 Accuracy of the retrieved parameters
bright sources into multiple clumps (Enoch et al. 2006).
Therefore, the automated algorithms are susceptible to thehe average deviations of the corresponding retrieved pa-
crowdedness of the clumps. In order to investigate the perameters from the six algorithms in different crowdedness
formance of different algorithms in the identification of are shown in Figure 9. It can be seen that in the most sparse
clumps with different crowdedness, we create 100 clumpsgase ([200, 200, 200]), the best algorithm for extracting
in 200x200%x 200, 150<150x 150, and 108:100x 100 ar-  the position parameter is GaussClumps, with Dendrograms
rays, respectively (Fig. 7). In the 28@00x 200 array, few and ClumpFind2006 being the next. As the clumps get
clumps are overlapped. In the 16050x150 array some more crowded, the average errors in position and peak
clumps overlaps at their edges. In the most crowded cassrightness gradually increase. GaussClumps performs well
(100x100x 100), many clumps overlap. We identify the in size and intensity extraction. For the peak brightness pa
clumps with the six algorithms so that their performancerameter, all of the algorithms return values higher than the
can be unbiasedly estimated. simulated data. The largest deviation in peak brightness a-

We set the peak brightness of the clump to be 10 timegong the six algorithms is about 8 times the one sigma
the noise value, and the size to be five pixels. In this caseoise which occurs in the most crowded case. In the most
the influence of brightness and size is reduced as much agowded case ([100, 100, 100]), the output total flux of
possible. We focus on the performance of the algorithmsellwalker, GaussClumps, and ClumpFind1994 exceeds
with different crowdedness. The completeness and accurghe input data, which may be caused by the merge of mul-
cy of retrieved parameters from all the six algorithms aretiple clumps into a new clump.
presented in Sections 3.3.1 and 3.3.2.

4 DISCUSSION

3.3.1 Completeness of the algorithms

) _ - 4.1 The Bias of the the Algorithms in Estimation of
Figure 8a shows the numbers of correct identifications of 16 virial Parameter

different algorithms. It can be seen that as the clumps
become more crowded, the completeness of FellWalkeFhe clumps which are in gravitationally unstable will
gradually decreases. ClumpFind1994, ClumpFind2006ollapse and are expected to evolve into protostars.
Dendrograms, and GaussClumps perform better thalhe virial parameterv,;,, which is defined asy,;, =
Reinhold and FellWalker in the aspect of complete-56%R./(GM.) ~ Eiin/E, (Bertoldi & McKee 1992), is
ness. In the case of [150, 150, 150], some clumpa crucial parameter to understand the dynamics of a clump.
s overlap at their edges and the brightness and bounéiere,E\;, andE, are the kinematic and gravitational ener-
ary of the clumps are influenced by the ambien-gy of the clump, respectively/. andR, indicate the mass
t clumps. Accordingly, ClumpFind1994, ClumpFind2006, and radius of the clumgy is the gravitational constant, and
Dendrograms, and GaussClumps get more output nunais the velocity dispersion. In the absence of external pres-
bers, repeated, and erroneous identifications than in treure or magnetic fields for an isothermal sphere, the clump
[200, 200, 200] arrays. Due to that many clumps overlap owill collapse if i, < 1 (Tan et al. 2014). When the re-
merge into a new clump in the most crowded ([100, 100gion is under external pressure, this pressure will work to-
100]) case, the accuracy of all the algorithms fall down towards compressing the clump, and it could collapse even if
20%-100%. avir > 1. Several surveys revealed a relationship between
Figure 8b shows the numbers of repeated identificae;; and the mass of the clumps, indicating that the massive
tions of different algorithms in the detection of clump- clumps tend to be more gravitationally unstable (Urquhart
s. Although ClumpFind1994 and ClumpFind2006 presenet al. 2014, 2018; Traficante et al. 2018). Howeverihe
good performance in accuracy, at the same time they rederived from the six algorithms can be influenced by the
peatedly identified 600%—1200% clumps. This may be dubias of the returned parameters. Here, we assume that the
to the fact that the ClumpFind algorithm tends to break thenass of the clump is proportional to the total flux of the
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Fig. 7: Distributions of 100 simulated clumps in 20000x 200 (eft), 150x 150x 150 (middle), and 100<100x 100 arrays
(right), respectively.
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Fig. 8: Frequency distributions of the correct (a), repgéltd, erroneous identifications (c), and the score pointef(the
six algorithms in identifying clumps with different crowdleess.

clump (M. ~ flux). The ratio between the output virial mission toward the RMC region with a sky coverage of
parameter d,,) derived from the six algorithms and the 3.5 x 2.5 square degrees (Fig. 11). The spatial pixel of the
input virial parameterd;,,) is displayed in Figure 10. FITS data cube has a size of"3& 30" and the effective
As shown in Figure 10, the six algorithms almostspectral resolutionis 61.0 kHz, corresponding to a veyocit
return a virial parameter close to the input virial value.resolution of 0.16 kms' at the 115 GHz frequency of the
The output virial parameter shows no trend with the size}°CO.J = 1 — 0 line. The sensitivity of the observation is
SNR, and crowdedness of the clumps. ClumpFind1994 an@stimated to be around 0.5 K for th&CO J = 1—0 emis-
Dendrograms return more accurate virial parameter thagion and around 0.3 K for thHéCO and C®0J = 1—0e-

the other algorithms. mission. We apply the six algorithms in identifying clumps
in the RMC, and the results are presented in Figures 12—13.
4.2 The Performance of the Algorithms in Identifying Figure 12a presents the output number for each
Clumps in the Rosette Molecular Cloud algorithm in identifying clumps of'*CO, '*CO, and

C!®0 emission. It shows that ClumpFind2006 and
Using the PMO-13.7m millimeter telescope at Delingha inClumpFind1994 get the most clumps in the RMC.
China, Li et al. (2018) have conducted a large-scale simulAs shown in the above simulated tests (Sect. 3),
taneous survey of?CO, 13CO, and C80 J = 1 — 0e- ClumpFind2006 and ClumpFind1994 always get much
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Table 1: Cross-matching 6fCO, 3CO, and GO Clumps

Algorithm 2co 13co c'so Bcof2co c'®0/'3co
@) 2 3 4 ®) (6)
ClumpFind1994 5653 969 44 76 55%
ClumpFind2006 8080 1480 75 74 3%
GaussClumps 646 611 4 &7 100%
FellWalker 1243 370 22 8% 91%
Reinhold 247 68 0 1% -
Dendrograms 2726 727 36 @ 0%

Notes: Columns (2)—(4) give the output number of the clun@mumns (5)—(6) give the percentage of
the 13CO clumps that coincide with>CO clumps and the percentage of thE®O clumps that coincide
with 13CO clumps, respectively.

Table 2: General Performance of the Algorithms in Complessn

Algorithm Correct Rate Repetitive Rate Erroneous Rate
ClumpFind1994 high (108) very high « 10000%) very high < 15000%)
ClumpFind2006 high (108) very high « 12000%) very high (< 20000%)
GaussClumps intermediate0%% — 100%) low (< 10%) intermediate € 70%)
Fellwalker high 00% — 100%) very low (07%) very low (07%)
Reinhold low & 10% when clump peak brightness (SNR) lower than 15) very |o$%)0 very low (07%)
Dendrograms high100%) high (< 1000%) high (< 2000%)

more repeated and erroneous identifications than the nurthe computer CPU consuming time for the six algorithms
ber of input simulated clumps, producing more outputin identifying '2CO, '3CO, and ¢30 clumps. Reinhold
clumps than other algorithms. Reinhold gets the leastakes the least time and the least clumps are identified.
clumps in the RMC due to that it can only find clump- Among the six algorithms, FellWalker is the most efficient
s when the peak brightness is higher than 12 times thalgorithm in terms of the number of identified clumps and
noise level (see Sect. 3 and Fig. 13c). GaussClumps geGPU time. Due to the iterative Gaussian fitting process, the
s relatively fewer clumps of2CO, for which one pos- time cost by GaussClumps is much more than the other al-
sible reason is that?’CO emission is usually optically gorithms. The dominant frequency of the computer CPU in
thick and the velocity profiles of?CO clumps do not our testing is 2.2 GHz. The memory size of the computer
obey Gaussian profile well. The iterative fitting processis 16 GB and the memory speed is 1600 MHz.

of GaussClumps is terminated when more than designated Table 1 presents the cross-matching results between
consecutive clumps cannot be fitted with Gaussian profilé2CO, 13CO, and G20 clumps. Due to the difference in
successfully. For Dendrograms, it rarely finds false clumpsptical depth between th&CO, '*CO, and C30 emis-

in the simulated data (see Sect. 3). However, we find thagion, it is usually expected th&tCO clumps have good
more than 100 false clumps are identified by Dendrogramsssociation with'?CO clumps and €O clumps in the

but these clumps are distributed at the edge of observatiosame way have good association witlcO clumps. From
al'2C0,¥CO0, and C80 data arrays. The numbers shownTable 1 it can be seen that theCO and C®O clumps

in Figure 12a and Table 1 do not include the false clump$rom GaussClumps and FellWalker exhibit the best asso-
located at the edges of the data arrays. Figure 12b presemtigtion. However, GaussClumps identifies only fodfG
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Table 3: Average Errors of the Algorithms in Extracting Paeters

Algorithm E(AX]) E(AS) EQAV) E(Al) E(Aflux)
(pixel) (rms)

1) 2 3 () 5) (6)
ClumpFind1994 1.1 —38% —38% 1.3 —70%
ClumpFind2006 1.1 —57% —40% 1.3 —83%
GaussClumps 1.1 —65% —58% 1.5 —78%
FellWalker 0.9 —7% —43% 1.8 —19%
Reinhold 1.8 —88% —-53% 2.9 —-93%
Dendrograms 0.4 —25% —42% 1.3 —65%

Notes: The average errors of the algorithms in extractimampaters are derived from the
(1000+1000+300) clumps in Sections 3.1-3.3. Columns (&) &phrepresent the average devi-
ation of the position (BEAX])) and peak brightness (B()). Columns (3), (4), and (6) give the
relative errors of the size (E(S)), velocity dispersion (E{V)), and total flux (EQAflux)).

clumps, which is much fewer than the number identified byer algorithms, which is consistent with the test results in

eye. For ClumpFind1994, ClumpFind2006, Reinhold, andSection 3.2 that only clumps with high brightness can be

Dendrograms, the association between'#@0 and C®0O  identified by GaussClumps and Reinhold. The distribution

clumps is relatively low, which implies that their identifi- of the total flux of'3CO clumps is presented in Figure 13d.

cations deviate somewhat from the actual situation. Due to that FellWalker returns a larger and more accurate
Figure 13 shows the distributions of the size, velocityclump total flux than the other algorithms, GaussClumps

dispersion, peak brightness, and total fluXt€O clump- and Reinhold tend to miss the clumps with low brightness,

s, respectively. It can be seen that the clump size identit can be seen that the total flux extracted by Reinhold,

fied by FellWalker is larger than that from the other algo-GaussClumps, and FellWalker are higher than that by the

rithms. The most likely reason is that FellWalker return-other algorithms.

s the larger and more accurate clump size than the other

algorithms (see Sect. 3). The clump velocity dispersion i syMMARY

dentified by Dendrograms is significantly larger than that

from the other algorithms. As shown in Figure 13c, mostUsing simulated clumps, we have tested the performance

of the clumps identified by GaussClumps and Reinholdf the GaussClumps, ClumpFind1994, ClumpFind2006,

have higher peak brightness than the clumps from the othellWalker, Reinhold, and Dendrograms algorithms in i-
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aspects. For the six algorithms, the minimum FWHM andAppendix A ALGORITHMS CONFIGURATION

AV of the identifying clumps are set to be two pixels and
two channels, respectively. The minimum peak value pa-
rameter is set to be five times the one sigma noise level
and the number of voxels of an output clump is required to
be above 16. We summarize our results as follows.

1. Inthe aspect of detection completeness, FellWalker,
Dendrograms, and GaussClumps are the first, second, and
third best algorithms, respectively. The numbers of cdrrec
identifications of the six algorithms gradually increase as
the size and SNR of the simulated clumps increase and they
decrease as the crowdedness increases. The repetitive and
erroneous rates of ClumpFind increase as the clump size
and SNR increase. Reinhold is only suitable for searching
for clumps with peak brightness (SNR) higher than 10. The
general performance of the six algorithms is summarized
in Table 2.

2. In the aspect of the accuracy of retrieved parame-
ters, the average errors in clump parameters gradually in-
crease as the clump size, SNR, and crowdedness increase.
The average errors of the algorithms in extracting param-
eters of the clumps in Sections 3.1-3.3 are presented in
Table 3. As Table 3 shows, the algorithms best perform-
ing in extracting parameters are Dendrograms in retrieving
clump position (E(AX])=0.4 pixels) and peak brightness
(E(A)=1.3 RMS), FellWalker in size (EAS)=—7%) and
total flux (EATflux) =—19%), and ClumpFind1994 in ve-
locity dispersion (EQAV)=-38%). All in all, FellWalker,
Dendrograms, and GaussClumps exhibit better perfor-
mance in extracting clump parameters than the other algo-
rithms. Except for FellWalker, the other algorithms exhibi
significant deviation in extracting the total flux of clumps.

3. The ratios between the output virial parameter
(aout) derived from the six algorithms and the input viri-
al parameterd;,) show no trend with the size, SNR, and
crowdedness of the clumps. For the simulated clumps, the
six algorithms almost return virial parameters similatte t
input virial parameterso(y,t /iy = 0.5 — 1.5).

4. When applying the six algorithms to clump iden-
tification for the RMC, GaussClumps, ClumpFind1994,
ClumpFind2006, Fellwalker, and Reinhold exhibit perfor-
mance that is consistent with the results from the simulated
test. Dendrograms finds more than 100 false clumps at the
edge of observational data arrays.

PARAMETERS

Table A.1: GaussClumps Parameters

GAUSSCLUMPS.EXTRACOLS=0
GAUSSCLUMPS.FWHMBEAM=2
GAUSSCLUMPS.MAXBAD=0.05
GAUSSCLUMPS.MAXCLUMPS=2147483647
GAUSSCLUMPS.MAXNF=100
GAUSSCLUMPS.MAXSKIP=10
GAUSSCLUMPS.MAXWF=1.1
GAUSSCLUMPS.MINPIX=3
GAUSSCLUMPS.MINWF=0.8
GAUSSCLUMPS.MODELLIM=3
GAUSSCLUMPS.NPAD=10
GAUSSCLUMPS.NPEAK=9
GAUSSCLUMPS.NSIGMA=3
GAUSSCLUMPS.NWF=10
GAUSSCLUMPS.S0=1
GAUSSCLUMPS.SA=1
GAUSSCLUMPS.SB=0.1
GAUSSCLUMPS.SC=1
GAUSSCLUMPS.THRESH=5
GAUSSCLUMPS.VELORES=2
GAUSSCLUMPS.WMIN=0.05
GAUSSCLUMPS. . WWIDTH=2

Table A.2: ClumpFind1994 Parameters

CLUMPFIND.ALLOWEDGE=0
CLUMPFIND.DELTAT=2*RMS
CLUMPFIND.FWHMBEAM=2
CLUMPFIND.IDLALG=0
CLUMPFIND.MAXBAD=0.05
CLUMPFIND.MINPIX=16
CLUMPFIND.NAXIS=3
CLUMPFIND.Noise=2*RMS
CLUMPFIND.TLOW=3*RMS
CLUMPFIND.VELORES=2

Table A.3: ClumpFind2006 Parameters

CLUMPFIND.ALLOWEDGE=0
CLUMPFIND.DELTAT=2*RMS
CLUMPFIND.FWHMBEAM=2
CLUMPFIND.IDLALG=1
CLUMPFIND.MAXBAD=0.05
CLUMPFIND.MINPIX=16
CLUMPFIND.NAXIS=3
CLUMPFIND.Noise=2*RMS
CLUMPFIND.TLOW=3*RMS
CLUMPFIND.VELORES=2
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Table A.4: FellWalker Parameters
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FELLWALKER.ALLOWEDGE=1
FELLWALKER.CLEANITER=1
FELLWALKER.FLATSLOPE=1*RMS
FELLWALKER.FWHMBEAM=2
FELLWALKER.MAXBAD=0.05
FELLWALKER.MAXJUMP=4
FELLWALKER.MINDIP=3*RMS
FELLWALKER.MINHEIGHT=5*RMS
FELLWALKER.MINPIX=16
FELLWALKER.NOISE=3*RMS
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Table A.5: Reinhold Parameters

REINHOLD.CAITERATIONS=1
REINHOLD.CATHRESH=26
REINHOLD.FIXCLUMPSITERATIONS=1
REINHOLD.FLATSLOPE=1*RMS
REINHOLD.FWHMBEAM=2
REINHOLD.MINLEN=4
REINHOLD.MINPIX=16
REINHOLD.NOISE=3*RMS
REINHOLD.THRESH=5*RMS
REINHOLD.VELORES=2

Table A.6: Dendrograms Parameters

MIN _VALUE=3*RMS
MIN_DELTA=2*RMS
MIN_NPIX=16
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