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Abstract Quantum electrodynamics (QED) effects may be included yrsjglal processes of magnetar and
pulsar magnetospheres with strong magnetic fields. Inngltie quantum corrections, Maxwell electro-

dynamics is modified to nonlinear electrodynamics. In thiskywe study the force-free magnetosphere
in nonlinear electrodynamics in a general framework. THegrtequation describing a steady and axisym-
metric magnetosphere is derived, which now admits solstisith corrections. We derive the first-order

nonlinear corrections to the near-zone dipole magnetosghesome popular nonlinear effective theories.
The field lines of the corrected dipole tend to converge orrakegional axis so that the fields in the polar

region are stronger compared to the pure dipole case.
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1 INTRODUCTION tort the blackbody spectra of the surface thermal radiation
and can be tested with future precise observations of the
Itis inferred that pulsars and magnetars possess verygstroRpectra and the polarizations (Wadiasingh et al. 2019; Hu
magnetic fields. The field strength can even exceed the crigt al. 2019), which meanwhile provides information on the
ical value Bg = m2c®/he ~ 4.4 x 10'* G, above which  surface magnetic fields in the magnetar magnetospheres.
quantum electrodynamics (QED) effects should not be ig-  Thus, the strength and geometry of the magnetic fields
nored. are crucial in these QED processes. Itis expected that these
QED effects will affect the polarization and spec- processes work more effectively at low altitudes where the
tra of thermal radiation from the surface of magnetargnagnetic fields are higher. In the near-zone regions, the
and pulsars with strong magnetic fields. In the magnetogeometry of the pulsar magnetospheres is usually taken
spheres, the photon polarizations can be decomposed into be that of a force-free dipole structure. When includ-
two modes according to the propagating direction and théng the QED corrections, Maxwell electrodynamics should
local magnetic field direction. Due to resonance betweelve modified with additional nonlinear terms and the dipole
the vacuum and plasma birefringence, one of the polamagnetosphere must be corrected with nonlinear contribu-
ization modes of an X-ray photon can be converted intdions, as analyzed in previous works (Heyl & Hernquist
the other. This gives rise to an energy-dependent polad997; Ptri 2016; Xiong et al. 2016).
ization signature for the observed quiescent non-thermal In this work, we consider the force-free magneto-
X-ray emission (Lai & Ho 2003; Denisov & Svertilov sphere in general nonlinear electrodynamics. In contoast t
2003; Harding & Lai 2006; van Adelsberg & Lai 2006; previous treatments (Freytsis & Gralla 2016; Petri 2016),
Fernandez & Davis 2011; Kaspi & Beloborodov 2017;we shall follow the traditional approach to do so. We first
Krawczynski et al. 2019). Magnetar magnetospheres aréerive the pulsar equation, describing the steady and ax-
opaque to high energy photons due to attenuation by magsymmetric magnetospheres, in nonlinear electrodynamics
netic photon splitting (below the energy thresh2id.c?)  We then obtain the corrected dipole magnetosphere to lead-
and pair production (above the threshold). This will dis-ing order from the pulsar equation in some popular nonlin-
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ear effective theories, like the Euler-Heisenberg (EH)} the3 THE FORCE-FREE CONDITION

ory, Born-Infeld (BI) theory and Logarithmic theory. o ) _ )
The derivative of the Lagrangian with respect to the metric

yields the energy-momentum tensor of EM fields

1 ~
pvo JT niXe [T nl e S 1 2
The action of general electrodynamics takes the form Tew = A [SF/GF" + PFILF 9" Lem]. (14)

2 NONLINEAR ELECTRODYNAMICS

1 The tensor satisfies
S= [ V77| tenton) + A | s, (@ L -
V. TEg = J . 15

whereLew (s, p) is the general Lagrangian of the electro- Equation (15), relating the divergence of the EM energy-

magnetic (EM) fields with momentum to the Lorentz force, takes the same form as in
1 1, ) the Maxwell theory. It determines the change of the mo-
s=-F"F,, =—-(B°—E), 2 . .
4 H 2 menta of the charged particles in the system.

It is usually assumed that, in a steady magnetosphere

p= lﬁl“’ij — E.B. (3) filled with plasma, the charged particles in the magneto-

4 spheres with strong EM fields should feel no net force (at

The dual field strengtfi*” = (1/2)e"?7 F,,. least in most regions). This means that the Lorentz force in

The equations of motion can be derived from the acEquation (15) should vanish
tion. It is obvious that the Bianchi identity is automatlgal

Hy o _
satisfied J = 0. (16)

V" = 0. (4)  This is the force-free condition in general nonlinear elec-
In Minkowski spacetime, the equation can be decomposetcEOdynamICS’ Whlch also _h.as the same form as in the
into Maxwell theory. This condition also says that the dynam-
. ics of the energy density in the system is dominated by the

VxE=-B, (5) EM fields and that the inertia of the plasma in the system

V.B-—o. ® can be ignored. That iy, can be approximately taken as
the energy-momentum density of the whole system so that
The relation between the current and fields is given by it is conserved.
In components, the force-free equation is decomposed
V,.G* =4nJ”, (7)  into

j-E=0, pE+jxB =0, 17
whereJ" is the conserved current and J r J 7

_ which implies
Gt = SFW + PFH, (8) p=E-B=0, (18)

with so we simply have€ey (s, p) = Lem(s) andGH = SFH
S=0,Cems P =0,Lem. ) under the force-free condition.

WhenS = —1 and P = 0, the equation reduces to the 4 THE PULSAR EQUATION

Maxwell theory case. In Minkowski spacetime, the equa- » ) L
. Under the force-free condition, the equations describing
tion can be re-expressed as

a force-free magnetosphere can be derived. As usual, we

V.D = drp, (10) consider the simplest case: axisymmetric and steady mag-
netospheres in Minkowski spacetime. In spherical coordi-
V x H = 47j + D, (11) nates, the force-free condition in Equation (16) reads
where 0, AgJ" + 99 AgJ? =0, (19)
D=-SE + PB, (12) 8TA0JO + FTGJH + 3TA¢J¢ _ 07 (20)

H=-5SB- PE. (13) DpAgJ® — FrgJ" + 0gAgJ? =0, (21)
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OrAgJ" + g Ay J? = 0. (22)  Specifically, the equation in spherical coordinates can be

. . . written as
For convenience, let us define the Poisson bracket asin

Petrova & Flanchik (2018) (and also Compre et al. 2016)

[A,B] = LB = 0,A0yB — 99 A0, B,  (23)

where the tangent vect@t = 0, A0y — 0y AD,.. The nec-
essary condition that is a function ofB (or vice versa) is
that[A, B] = 0.

From Equations (19) and (22), we can find that

[Ao, Ag] =0, (24)
s0 Ay should be a function ofl,. We can define
dAy = —Q(Ay)dA,. (25)

As is known (2 is the angular velocity of a magnetic field

line. It is constant along the magnetic field line.

Terms in the Maxwell equation, Equation (7), with

nonlinear corrections are expressed as

JO = —iv - (SVAy), (26)
I = _Wlsmeaf’ (sin6SFp), @7)
J? = mar(sm 0SFE,q), (28)

%(1 2 sin? 6002) [r250,(50,40) + S05(S091)]
— sin? 0QQ' S [12(9,4)? + (99))?

— 2rsin” 00%5%0,4
1
— — (1477 sin® 09%) cot 05 0pp = —11".
,
(35)
When S = -1, this reduces to the pulsar equation in

Maxwell’s theory.
The EM fields in the unit basis of spherical coordinates
are expressed as

D= —SE= 22 (:o.,006,0),  (36)
2mr

1

H--SB= ——
5 2mr2 sin 6

(=SS0, SO, rI). (37)

With them, we have
1
821 sin? 0

S+ (= 70902 0,07+ (0w |

2
— g { g (- PN + @071
(38)
which must be non-negative. The expression in cylindrical
coordinates{ = rsinf andz = rcos#) written in the
second line indicates that the translational symmetryglon
the rotation axis remains in nonlinear electrodynamies, i.

From Equations (19), (22), (27) and (28), we find thatthe action and the equations are invariant with respect to

[Ag, sinOSF,g] = [Ay, sin0SF,q] = 0. (30)

So,sin S F, is also a function of4,. Let us denote

Y =2mwAy, I(Y) = —2msinfSFg. (31)

Then the charge density is expressed as

1
JO = _—V-(5QVY). (32)
872
From Equation (20) or (21), we have
!

J?=0J° — il (33)

. 9
872r2 in? 65

where the prime denotes the derivative with respegt.to

By comparing Equations (29) and (33), we can deriveTheory

the general pulsar equation

r

SV ) —SQV-(SQVY) = S 3.

SV —— 34
(r2s1n29 (34)

r2sin? 0

the transformation: — 2’ = 2 + e.
The spin-down rate is obtained

L= [s-ds=—o [100we,  @9)
8m
where the Poynting flux is

S— LExH (40)
47

So, the torque takes the same form as in the Maxwell the-
ory.

5 THE NEAR-ZONE DIPOLE
MAGNETOSPHERES

The pulsar equation is hard to solve even in the Maxwell
so it is expected that numerical methods are need-
ed to solve Equation (34) in nonlinear electrodynamics.
However, here we do not need to search for the global solu-
tions. We only need to focus on the magnetosphere at low
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05 5.1 TheBI Theory
0.4 The BI effective theory is a well-regularized nonlinear-the
ory, leading to finite self-energy of point-like charge and
03 absence of birefringence. It also arises from the world-
02 volume action of D-branes in string theory. Some aspect-
s of pulsar magnetospheres in Bl effective theory were
01 discussed previously in Denisov & Svertilov (2003) and
Pereira et al. (2018). Here, we consider the corrected
N 0.0 dipole geometry in the theory.
The Lagrangian of EM fields in the Bl effective theory
-0.1 takes the form
0.2 Lem(s,p) = b <1 —/1+ s 7’—2> (43)
’ b2 bt )7
-0.3 . . .
where the only parameter is of dimension of mass squared:
04 b = M?. The lower bound of\/ is constrained to be
4 x 10~*GeV by PVLAS (Della Valle et al. 2014) and
05 1 1] 100 GeV by ATLAS in the Large Hadron Collider (LHC)
00 01 02 03 04 05 (Ellis et al. 2017; Pereira et al. 2018).
X From the Lagrangian, we can obtain the expression of

Fig.1 Magnetic field lines based on Eq. (48) with different S
The radius of the star is, = 0.1.

g2 _ r?(4m?b%r? sin? 0 — I?)
4m2b2r4 sin? 0 + (1 — 72 sin? 092)[r2(9,4)2 + (9p10)?]
altitudes where the EM fields are strong and the nonlinear (44)
corrections may be important.

As is done in the Maxwell theory, the near-zone mag-At large distancer, S* — 1 and so the pulsar equation
netospheres on pulsars are usually regarded as a dipdRcovers the one in Maxwell’'s theory. Inserting it into the
structure, which serves as the inner boundary condition iffonlinear pulsar described by Equation (35), we can basi-
numerical simulations of pulsar magnetospheres (Michegally derive solutions, but it is difficult to do so. There do
1973; Contopoulos et al. 1999; Gruzinov 2005). This struchot even exist solutions that are only dependent @iike
ture can be obtained from the pulsar equation-at>  Michel's monopole solution in the Maxwell theory).

0, where the rotational velocities of the magnetic field  Let us take the near-zone limit with approximate-
lines are much less than the speed of light and the eledy vanishing 2 and 7, for which Equation (35) with
tric current is negligible by setting = 0. In this limit, ~ Equation (44) is simplified to
Equation (35) withS = —1 reduces to , -
89’!/) —cot00py) + 1 8T1/) + m

X [F(00)2030 + 1(9p)20%0 + r2(9,0)° (45)
— 2r9,1p 010t + 20,10(Dprp)?] = 0.

D31h — cot 00p1) + 120 = 0. (41)

The equation is solved by the general form

There exist exact solutions that are independent of the pa-
Y =19_n(@)r ", (42)  rameten: 1 = cosf (n = 0),9Y = rcosf (n = 1) and
. ) ¢ = r?sin? 6 (n = 2), which are also solutions to the pul-
wher_ew_n(e). is related to the asso.mated Legendre pOIy'sar equation in the Maxwell theory. So, the nonlinear terms
nomials for different. Forn = 0, itis a monopole, and, -y, ot aiter the non-rotating monopole solution.
forn = 1, itis a pure dipole) = sin” §/r. The rotational
effects in outer regions just deform this basic dipole geom
etry.
In what follows, we determine the force-free magneto-
spheres in the near regions in different nonlinear theories Y =90 4O @ 4. (46)

For the dipole solution, the situation is different. From
the above equation, we can determine that the solution can
be expanded in powers of2
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The zero-th order part’). = msin?6/r is the pure also takes the same form as Equation (47). So, the geome-
dipole solutionz)(!) is the first order correction at the or- tries of the field lines are the same and the solutions cannot
der O(b=2). Inserting the expression into Equation (45), be discriminated in the two theories up to first order.

we get the leading order equation

_ 3m? sin? (1 + cos? 6) (47) " The various QED effects on the physical processes in
B 4227 ' magnetar magnetospheres, including the vacuum birefrin-
Thus, the dependence of") on+ should be of the form 9€nce, photon splitting and pair production, were most-
~ r=7. Up to first order, the final solution is ly discussed based on the EH effective theory (Euler &

. Kockel 1935; Heisenberg & Euler 1936). In the weak field
= 12 0 {1 N <1 _9 sin? 9> 4. } , (48) limit, the Lagrangian expanded to leading orders is
.

where the first-order characteristic distance Lem(s,p) = —s+ B (45 +Tp*) +---, (52)

1

- ( m >§ . (49) where = e?/(45heB%) with B, = m2¢?/(he). So, the
V3371 leading order terms are the same as in the Bl (Eq. (43)) and

So, the correction becomes unimportantsharplyat ;. the Logarithmic (Eq. (50)) Lagrangians under the force-
The first-order corrected part)) becomes important for free condition, just with different parametérand3. The
r1 > r > 1, Wherer, is the characteristic distance of first-order corrected dipole geometry should be also the
1@ (not derived here since the surface fields on neutrogame as displayed in Figure 1. So, within the characteris-
stars are not so strong that the higher order correctiortic distance, the dipole structure assumes a multipoke-lik
are important). The distribution of the magnetic field linesstructure, consistent with the corrected dipole structare
from the solution is displayed in Figure 1. Compared withleading orders in the EH theory (Heyl & Hernquist 1997;
the dipole magnetosphere, the field lines aroung r;  Ptri 2016).
tend to converge on the rotation axis. The curvature of the
field lines becomes larger at a distance less than but ner CONCLUSIONS

the characteristic distaneg. L . .
o€ The pulsar equation in general nonlinear electrodynamics

With the solution, it is easy to check that the strenf§th . . . . .
y ng is derived. The corrected dipole solutions in some popu-

HAV / 2 2
and the energy density”/4m)(y/1 + B*/b 1) of the lar nonlinear effective theories are obtained and disclisse

magnetic field become larger than in the Maxwell theor . i
casi g yThese solutions take the same form up to the first order,

which indicates that the field lines tend to converge on the
rotation axis. So, the fields are stronger in the polar region
and have larger curvature within the characteristic disgan

In the Logarithmic theory (e.g., see Gaete & Helayel-Netdhan in the pure dipole magnetosphere. This discrepancy
2014; Guo et al. 2018), the self-energy of a point-likeshould be taken into account when considering the quan-
charge is finite and the birefringent phenomenon appeartum effects in the radiative transfer process of the surface

5.2 TheLogarithmic Theory

Its action takes a logarithmic form emission.
2 s P’
Lem(sp) = —b"In (1 TR ﬁ) - (0 Acknowledgements This work is supported by the
Equation (35) withl = Q = 0 reduces to Yunnan Natural Science Foundation (2017FB005 and
] 2014FB188).
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