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Abstract Quantum electrodynamics (QED) effects may be included in physical processes of magnetar and
pulsar magnetospheres with strong magnetic fields. Involving the quantum corrections, Maxwell electro-
dynamics is modified to nonlinear electrodynamics. In this work, we study the force-free magnetosphere
in nonlinear electrodynamics in a general framework. The pulsar equation describing a steady and axisym-
metric magnetosphere is derived, which now admits solutions with corrections. We derive the first-order
nonlinear corrections to the near-zone dipole magnetosphere in some popular nonlinear effective theories.
The field lines of the corrected dipole tend to converge on therotational axis so that the fields in the polar
region are stronger compared to the pure dipole case.
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1 INTRODUCTION

It is inferred that pulsars and magnetars possess very strong
magnetic fields. The field strength can even exceed the crit-
ical valueBQ = m2

ec
3/~e ≃ 4.4 × 1013 G, above which

quantum electrodynamics (QED) effects should not be ig-
nored.

QED effects will affect the polarization and spec-
tra of thermal radiation from the surface of magnetars
and pulsars with strong magnetic fields. In the magneto-
spheres, the photon polarizations can be decomposed into
two modes according to the propagating direction and the
local magnetic field direction. Due to resonance between
the vacuum and plasma birefringence, one of the polar-
ization modes of an X-ray photon can be converted into
the other. This gives rise to an energy-dependent polar-
ization signature for the observed quiescent non-thermal
X-ray emission (Lai & Ho 2003; Denisov & Svertilov
2003; Harding & Lai 2006; van Adelsberg & Lai 2006;
Fernandez & Davis 2011; Kaspi & Beloborodov 2017;
Krawczynski et al. 2019). Magnetar magnetospheres are
opaque to high energy photons due to attenuation by mag-
netic photon splitting (below the energy threshold2mec

2)
and pair production (above the threshold). This will dis-

tort the blackbody spectra of the surface thermal radiation
and can be tested with future precise observations of the
spectra and the polarizations (Wadiasingh et al. 2019; Hu
et al. 2019), which meanwhile provides information on the
surface magnetic fields in the magnetar magnetospheres.

Thus, the strength and geometry of the magnetic fields
are crucial in these QED processes. It is expected that these
processes work more effectively at low altitudes where the
magnetic fields are higher. In the near-zone regions, the
geometry of the pulsar magnetospheres is usually taken
to be that of a force-free dipole structure. When includ-
ing the QED corrections, Maxwell electrodynamics should
be modified with additional nonlinear terms and the dipole
magnetosphere must be corrected with nonlinear contribu-
tions, as analyzed in previous works (Heyl & Hernquist
1997; Ptri 2016; Xiong et al. 2016).

In this work, we consider the force-free magneto-
sphere in general nonlinear electrodynamics. In contrast to
previous treatments (Freytsis & Gralla 2016; Petri 2016),
we shall follow the traditional approach to do so. We first
derive the pulsar equation, describing the steady and ax-
isymmetric magnetospheres, in nonlinear electrodynamics.
We then obtain the corrected dipole magnetosphere to lead-
ing order from the pulsar equation in some popular nonlin-
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ear effective theories, like the Euler-Heisenberg (EH) the-
ory, Born-Infeld (BI) theory and Logarithmic theory.

2 NONLINEAR ELECTRODYNAMICS

The action of general electrodynamics takes the form

S =

∫ √
−g
[
1

4π
LEM(s, p) +AµJ

µ

]
d4x, (1)

whereLEM(s, p) is the general Lagrangian of the electro-
magnetic (EM) fields with

s ≡ 1

4
FµνFµν =

1

2
(B2 −E2), (2)

p ≡ 1

4
F̃µνFµν = E ·B. (3)

The dual field strength̃Fµν = (1/2)ǫµνρσFρσ.

The equations of motion can be derived from the ac-
tion. It is obvious that the Bianchi identity is automatically
satisfied

∇µF̃
µν = 0. (4)

In Minkowski spacetime, the equation can be decomposed
into

∇×E = −Ḃ, (5)

∇ ·B = 0. (6)

The relation between the current and fields is given by

∇µG
µν = 4πJν , (7)

whereJν is the conserved current and

Gµν = SFµν + PF̃µν , (8)

with

S ≡ ∂sLEM, P ≡ ∂pLEM. (9)

WhenS = −1 andP = 0, the equation reduces to the
Maxwell theory case. In Minkowski spacetime, the equa-
tion can be re-expressed as

∇ ·D = 4πρ, (10)

∇×H = 4πj+ Ḋ, (11)

where

D = −SE+ PB, (12)

H = −SB− PE. (13)

3 THE FORCE-FREE CONDITION

The derivative of the Lagrangian with respect to the metric
yields the energy-momentum tensor of EM fields

T µν
EM = − 1

4π
[SFµ

αF
να + PF̃µ

αF
να − gµνLEM]. (14)

The tensor satisfies

∇µT
µν
EM = JµF

µν . (15)

Equation (15), relating the divergence of the EM energy-
momentum to the Lorentz force, takes the same form as in
the Maxwell theory. It determines the change of the mo-
menta of the charged particles in the system.

It is usually assumed that, in a steady magnetosphere
filled with plasma, the charged particles in the magneto-
spheres with strong EM fields should feel no net force (at
least in most regions). This means that the Lorentz force in
Equation (15) should vanish

JµF
µν = 0. (16)

This is the force-free condition in general nonlinear elec-
trodynamics, which also has the same form as in the
Maxwell theory. This condition also says that the dynam-
ics of the energy density in the system is dominated by the
EM fields and that the inertia of the plasma in the system
can be ignored. That is,T µν

EM can be approximately taken as
the energy-momentum density of the whole system so that
it is conserved.

In components, the force-free equation is decomposed
into

j · E = 0, ρE+ j×B = 0, (17)

which implies

p = E ·B = 0, (18)

so we simply haveLEM(s, p) = LEM(s) andGµν = SFµν

under the force-free condition.

4 THE PULSAR EQUATION

Under the force-free condition, the equations describing
a force-free magnetosphere can be derived. As usual, we
consider the simplest case: axisymmetric and steady mag-
netospheres in Minkowski spacetime. In spherical coordi-
nates, the force-free condition in Equation (16) reads

∂rA0J
r + ∂θA0J

θ = 0, (19)

∂rA0J
0 + FrθJ

θ + ∂rAφJ
φ = 0, (20)

∂θA0J
0 − FrθJ

r + ∂θAφJ
φ = 0, (21)
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∂rAφJ
r + ∂θAφJ

θ = 0. (22)

For convenience, let us define the Poisson bracket as in
Petrova & Flanchik (2018) (and also Compre et al. 2016)

[A,B] ≡ LTB = ∂rA∂θB − ∂θA∂rB, (23)

where the tangent vectorT = ∂rA∂θ − ∂θA∂r. The nec-
essary condition thatA is a function ofB (or vice versa) is
that[A,B] = 0.

From Equations (19) and (22), we can find that

[A0, Aφ] = 0, (24)

soA0 should be a function ofAφ. We can define

dA0 = −Ω(Aφ)dAφ. (25)

As is known,Ω is the angular velocity of a magnetic field
line. It is constant along the magnetic field line.

Terms in the Maxwell equation, Equation (7), with
nonlinear corrections are expressed as

J0 = − 1

4π
∇ · (S∇A0) , (26)

Jr = − 1

4πr2 sin θ
∂θ(sin θSFrθ), (27)

Jθ =
1

4πr2 sin θ
∂r(sin θSFrθ), (28)

Jφ =
1

4π
∇ ·
(
S∇Aφ

r2 sin2 θ

)
. (29)

From Equations (19), (22), (27) and (28), we find that

[A0, sin θSFrθ] = [Aφ, sin θSFrθ] = 0. (30)

So,sin θSFrθ is also a function ofAφ. Let us denote

ψ ≡ 2πAφ, I(ψ) ≡ −2π sin θSFrθ. (31)

Then the charge density is expressed as

J0 =
1

8π2
∇ · (SΩ∇ψ) . (32)

From Equation (20) or (21), we have

Jφ = ΩJ0 − II ′

8π2r2 sin2 θS
, (33)

where the prime denotes the derivative with respect toψ.

By comparing Equations (29) and (33), we can derive
the general pulsar equation

S∇·
(

S∇ψ
r2 sin2 θ

)
−SΩ∇· (SΩ∇ψ) = − II ′

r2 sin2 θ
. (34)

Specifically, the equation in spherical coordinates can be
written as

1

r2
(1 − r2 sin2 θΩ2)

[
r2S∂r(S∂rψ) + S∂θ(S∂θψ)

]

− sin2 θΩΩ′S2[r2(∂rψ)
2 + (∂θψ)

2]

− 2r sin2 θΩ2S2∂rψ

− 1

r2
(1 + r2 sin2 θΩ2) cot θS2∂θψ = −II ′ .

(35)
When S = −1, this reduces to the pulsar equation in
Maxwell’s theory.

The EM fields in the unit basis of spherical coordinates
are expressed as

D = −SE =
SΩ

2πr
(r∂rψ, ∂θψ, 0) , (36)

H = −SB =
1

2πr2 sin θ
(−S∂θψ, rS∂rψ, rI) . (37)

With them, we have

s =
1

8π2r4 sin2 θ

×
{
r2I2

S2
+ (1− r2 sin2 θΩ2)[r2(∂rψ)

2 + (∂θψ)
2]

}

=
1

8π2x2

{
I2

S2
+ (1− x2Ω2)[(∂xψ)

2 + (∂zψ)
2]

}
,

(38)
which must be non-negative. The expression in cylindrical
coordinates (x = r sin θ andz = r cos θ) written in the
second line indicates that the translational symmetry along
the rotation axis remains in nonlinear electrodynamics, i.e.,
the action and the equations are invariant with respect to
the transformation:z → z′ = z + ǫ.

The spin-down rate is obtained

L =

∫
S · ds = − 1

8π2

∫
I(ψ)Ω(ψ)dψ, (39)

where the Poynting flux is

S =
1

4π
E×H. (40)

So, the torque takes the same form as in the Maxwell the-
ory.

5 THE NEAR-ZONE DIPOLE
MAGNETOSPHERES

The pulsar equation is hard to solve even in the Maxwell
theory, so it is expected that numerical methods are need-
ed to solve Equation (34) in nonlinear electrodynamics.
However, here we do not need to search for the global solu-
tions. We only need to focus on the magnetosphere at low
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Fig. 1 Magnetic field lines based on Eq. (48) with differentr1.
The radius of the star isr∗ = 0.1.

altitudes where the EM fields are strong and the nonlinear
corrections may be important.

As is done in the Maxwell theory, the near-zone mag-
netospheres on pulsars are usually regarded as a dipole
structure, which serves as the inner boundary condition in
numerical simulations of pulsar magnetospheres (Michel
1973; Contopoulos et al. 1999; Gruzinov 2005). This struc-
ture can be obtained from the pulsar equation atr →
0, where the rotational velocities of the magnetic field
lines are much less than the speed of light and the elec-
tric current is negligible by settingI = 0. In this limit,
Equation (35) withS = −1 reduces to

∂2θψ − cot θ∂θψ + r2∂2rψ = 0. (41)

The equation is solved by the general form

ψ = ψ−n(θ)r
−n, (42)

whereψ−n(θ) is related to the associated Legendre poly-
nomials for differentn. Forn = 0, it is a monopole, and,
for n = 1, it is a pure dipoleψ = sin2 θ/r. The rotational
effects in outer regions just deform this basic dipole geom-
etry.

In what follows, we determine the force-free magneto-
spheres in the near regions in different nonlinear theories.

5.1 The BI Theory

The BI effective theory is a well-regularized nonlinear the-
ory, leading to finite self-energy of point-like charge and
absence of birefringence. It also arises from the world-
volume action of D-branes in string theory. Some aspect-
s of pulsar magnetospheres in BI effective theory were
discussed previously in Denisov & Svertilov (2003) and
Pereira et al. (2018). Here, we consider the corrected
dipole geometry in the theory.

The Lagrangian of EM fields in the BI effective theory
takes the form

LEM(s, p) = b2

(
1−

√
1 +

2s

b2
− p2

b4

)
, (43)

where the only parameter is of dimension of mass squared:
b = M2. The lower bound ofM is constrained to be
4 × 10−4 GeV by PVLAS (Della Valle et al. 2014) and
100 GeV by ATLAS in the Large Hadron Collider (LHC)
(Ellis et al. 2017; Pereira et al. 2018).

From the Lagrangian, we can obtain the expression of
S

S
2 =

r2(4π2b2r2 sin2 θ − I2)

4π2b2r4 sin2 θ + (1− r2 sin2 θΩ2)[r2(∂rψ)2 + (∂θψ)2]
.

(44)

At large distancer, S2 → 1 and so the pulsar equation
recovers the one in Maxwell’s theory. Inserting it into the
nonlinear pulsar described by Equation (35), we can basi-
cally derive solutions, but it is difficult to do so. There do
not even exist solutions that are only dependent onθ (like
Michel’s monopole solution in the Maxwell theory).

Let us take the near-zone limit with approximate-
ly vanishing Ω and I, for which Equation (35) with
Equation (44) is simplified to

∂2θψ − cot θ∂θψ + r2∂2rψ +
1

4π2b2r3 sin2 θ

× [r(∂rψ)
2∂2θψ + r(∂θψ)

2∂2rψ + r2(∂rψ)
3

− 2r∂rψ∂θψ∂r∂θψ + 2∂rψ(∂θψ)
2] = 0.

(45)

There exist exact solutions that are independent of the pa-
rameterb: ψ = cos θ (n = 0), ψ = r cos θ (n = 1) and
ψ = r2 sin2 θ (n = 2), which are also solutions to the pul-
sar equation in the Maxwell theory. So, the nonlinear terms
do not alter the non-rotating monopole solution.

For the dipole solution, the situation is different. From
the above equation, we can determine that the solution can
be expanded in powers ofb−2

ψ = ψ(0) + ψ(1) + ψ(2) + · · · . (46)
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The zero-th order partψ(0) = m sin2 θ/r is the pure
dipole solution.ψ(1) is the first order correction at the or-
der O(b−2). Inserting the expression into Equation (45),
we get the leading order equation

∂2θψ
(1) − cot θ∂θψ

(1) + r2∂2rψ
(1)

=
3m3 sin2 θ(1 + cos2 θ)

4π2b2r7
.

(47)

Thus, the dependence ofψ(1) on r should be of the form
∼ r−7. Up to first order, the final solution is

ψ =
m sin2 θ

r

[
1 +

r61
r6

(
1− 9

16
sin2 θ

)
+ · · ·

]
, (48)

where the first-order characteristic distance

r1 =

(
m√
33πb

) 1

3

. (49)

So, the correction becomes unimportant sharply atr ≫ r1.
The first-order corrected partψ(1) becomes important for
r1 & r ≫ r2, wherer2 is the characteristic distance of
ψ(2) (not derived here since the surface fields on neutron
stars are not so strong that the higher order corrections
are important). The distribution of the magnetic field lines
from the solution is displayed in Figure 1. Compared with
the dipole magnetosphere, the field lines aroundr ∼ r1
tend to converge on the rotation axis. The curvature of the
field lines becomes larger at a distance less than but near
the characteristic distancer1.

With the solution, it is easy to check that the strengthB

and the energy density(b2/4π)(
√
1 +B2/b2 − 1) of the

magnetic field become larger than in the Maxwell theory
case.

5.2 The Logarithmic Theory

In the Logarithmic theory (e.g., see Gaete & Helayel-Neto
2014; Guo et al. 2018), the self-energy of a point-like
charge is finite and the birefringent phenomenon appears.
Its action takes a logarithmic form

LEM(s, p) = −b2 ln
(
1 +

s

b2
− p2

2b4

)
. (50)

Equation (35) withI = Ω = 0 reduces to

∂2θψ − cot θ∂θψ + r2∂2rψ +
1

8π2b2r4 sin2 θ

× [r2(∂rψ)
2(∂2θψ + cot θ∂θψ + 2r∂rψ − r2∂2rψ)

− (∂θψ)
2(∂2θψ − cot θ∂θψ − 4r∂rψ − r2∂2rψ)

− 4r2∂rψ∂θψ∂r∂θψ] = 0.

(51)

It is interesting that the equation has the same three exac-
t solutions as Equation (45). The first order solutionψ(1)

also takes the same form as Equation (47). So, the geome-
tries of the field lines are the same and the solutions cannot
be discriminated in the two theories up to first order.

5.3 The EH Theory

The various QED effects on the physical processes in
magnetar magnetospheres, including the vacuum birefrin-
gence, photon splitting and pair production, were most-
ly discussed based on the EH effective theory (Euler &
Kockel 1935; Heisenberg & Euler 1936). In the weak field
limit, the Lagrangian expanded to leading orders is

LEM(s, p) = −s+ β
(
4s2 + 7p2

)
+ · · · , (52)

whereβ = e2/(45hcB2
K) with Bk = m2

ec
3/(~e). So, the

leading order terms are the same as in the BI (Eq. (43)) and
the Logarithmic (Eq. (50)) Lagrangians under the force-
free condition, just with different parametersb andβ. The
first-order corrected dipole geometry should be also the
same as displayed in Figure 1. So, within the characteris-
tic distance, the dipole structure assumes a multipole-like
structure, consistent with the corrected dipole structureto
leading orders in the EH theory (Heyl & Hernquist 1997;
Ptri 2016).

6 CONCLUSIONS

The pulsar equation in general nonlinear electrodynamics
is derived. The corrected dipole solutions in some popu-
lar nonlinear effective theories are obtained and discussed.
These solutions take the same form up to the first order,
which indicates that the field lines tend to converge on the
rotation axis. So, the fields are stronger in the polar region
and have larger curvature within the characteristic distance
than in the pure dipole magnetosphere. This discrepancy
should be taken into account when considering the quan-
tum effects in the radiative transfer process of the surface
emission.
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