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Abstract There are plentiful asteroids moving periodically around their central primaries, such as the
Sun. Due to the perturbation of the central primary, the gravitational force of the perturbed asteroid system
varies periodically. In this paper, based on the idea of integrating the solar gravitational force as a part of the
system instead of treating it as perturbation, the parametric resonance response is investigated. A novel type
of stable parametric resonance orbits has been detected. It is found that the steady-state motion amplitude
of parametric resonance orbit is determined by the frequency-response equation. The stability of the novel
orbits has also been demonstrated. The new type of orbits may contribute to possible asteroid exploration
missions.
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1 INTRODUCTION

Irregular asteroids are quite common in the solar system
and extrasolar systems. It has been recognized that explo-
ration missions to asteroids can provide key information in
the study of the origin of our solar system, the evolution
of planets and human beings. Some well-known missions
include NEAR Shoemaker which orbited Eros (Prockter
et al. 2002), the extension mission of Chang’e-2 which
made a flyby to Toutatis (Huang et al. 2013), Hayabusa
which landed on Itokawa (Nardi et al. 2019), and OSIRIS-
Rex which successfully orbited Bennu (Lauretta et al.
2019). Particularly, the stable periodic orbits in design have
drawn great attention (Jiang et al. 2017; Liu et al. 2012;
Zeng & Alfriend 2017). The investigation of periodic
orbits yields essential information when a non-integrable
dynamical system is treated (Jiang et al. 2015c).

The dynamic environment for the irregular asteroid
is perhaps the most strongly perturbed astrodynamics
environment found in the solar system. The combination
of familiar factors may propose new challenges, including
strongly non-spherical body shapes, the arrangement of
spin states and rates, gravitational perturbations and solar
radiation pressures (Scheeres 2012; Jiang & Baoyin 2016;
Li et al. 2018). Consequently, the problem of stable

periodic orbits for irregular asteroids is more challenging
compared to planets.

A lot of work has been devoted to the mechanical
explanation of stable periodic orbits, by both analytical
and numerical methods. The analytic framework of all this
work is usually the classical three-body problem in the
planar (both elliptic and circular) cases in the asteroid’s
body-fixed frame based on the simplified segment model
(Eros & Elipe 2004; Bartczak & Breiter 2003) and dipole
model (Zeng & Alfriend 2017; Zeng et al. 2016, 2018).
Analytical periodic orbits can be obtained in the vicinity
of the asteroids’ libration points or about the asteroids.
The numerical integration method has been used to ensure
the accuracy by forcing the end-points of an orbit to
coincide with the start-point. If one periodic orbit is
located, other orbits from this family may be found via
the continuation method by varying some parameters,
such as Jacobi constant or orbit period. Scheeres et al.
(1996) found some families of periodic orbits around 4769
Castalia, using a gravitational model of a polyhedron. The
periodic orbit, in resonance conditions, has been studied
by Scheeres et al. (2000). Shi et al. (2019) apply the
numerical method to the binary asteroid (66391) 1999
KW4 to solve the periodic orbits in the vicinity. Recently,
the hierarchical grid searching method was proposed by
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Yu & Baoyin (2012) which can be used to find periodic
orbits. Jiang et al. (2017) found five different types of
stable periodic orbits around minor celestial bodies, using
the topological classifications of periodic orbits and the
grid search method. This method makes the global search
for 3D periodic orbits around irregular bodies possible.

The aforementioned works have shown the complexity
and variety of periodic orbits in irregular gravitational
fields, which are definitely beneficial to the understanding
of close proximity dynamics. It is noticed that most studies
focus on computing specific periodic families around the
asteroid’s or system’s equilibrium points (Jiang et al.
2015a; Bellerose & Scheeres 2007; Shi et al. 2018),
their stability properties (Chanut et al. 2014; Wang & Xu
2014; Wang & Xu 2013), bifurcation characteristic (Jiang
et al. 2015b), and the existence of inherent relationship
between these periodic families (Hou et al. 2018) only
with consideration of the central gravitational attraction
and the non-spherical gravitation. Other studies focus on
how the orbital secular dynamics will evolve over time due
to the non-spherical gravitation (Lei et al. 2019) and solar
radiation pressures (Feng & Hou 2019).

However, if the spacecraft is not sufficiently near
the surface of an irregular asteroid, the solar gravitation
and pressure to the particle has to be considered, which
can be found in Scheeres (2012). It is known that the
solar radiation pressure behaves as external excitations,
in which the excitations appear as inhomogeneities in
the governing differential equations (Feng & Hou 2019).
However, the solar gravitational perturbation excitations
always appear as coefficients in the governing differential
equations (terms include x and y). Such terms lead to
differential equations with time-varying coefficients, just
like the famous Hill equation and Mathieu equation. These
excitations are called parametric excitations. Moreover, in
contrast with the case of solar radiation pressure external
excitations in which a small excitation cannot produce a
large response unless the frequency of the excitation is
close to one of the natural frequencies of the system, a
small solar gravitational perturbation parametric excitation
can produce a large response when the frequency of the
excitation is close to twice of the natural frequencies of
the system. Generally, those two kinds of resonance cannot
happen at the same time (Nayfeh & Mook 1995).

In this study, we focus on the parametric excitations
caused by solar gravitational perturbation. Innovated by
this point, an interesting question arises: with the solar
gravity, under what conditions a spacecraft will be able
to stay bound to an asteroid in the presence of these
additional forces? Can we utilize the solar gravitation force

to generate stable periodic orbits instead of overcoming the
solar gravitation force as perturbation? The answer is yes.
According to the nonlinear oscillation theory (Nayfeh &
Mook 1995), there exist stable periodic orbits caused by
parametric resonance.

As is well known, if a parametric excitation system
is truly linear, the amplitude grows boundlessly when
the parametric resonance occurs. A confirmatory and
observable experiment conducted by Mandelstam (1934)
showed that the amplitude of a specially designed linear
oscillation circuit grew until the insulation was destroyed
by an excessive voltage. The parametric resonance
conditions can be obtained analytically by the perturbation
technique. Representative works can be found in Alfriend
& Rand (1968) who studied the resonance conditions
for infinitesimal motions in the non-autonomous elliptic
restricted three-body problem. Similarly, the conditions
for the principal parametric resonance are obtained
analytically by Qian et al. (2018a) for the non-autonomous
bicircular four-body problem. The linear theory is useful in
determining the initial growth or decay, which can be used
in finding the parametric resonance condition. It becomes
inadequate if the system possesses any nonlinearity and
cannot be used to find stable periodic orbits for trajectory
design.

The nonlinearity cannot be neglected in the engineer-
ing field, which comes into play as soon as the amplitude
of the motion becomes higher. The nonlinear effect appears
with a growing amplitude, resulting in limit cycles. One
example is the specially designed nonlinear oscillation
circuit by Mandelstam (1934). Similarly, Hsu (1974)
determined analytical solutions in Jacobi elliptic function
for a nonlinear Hill equation. Strong nonlinearities may
lead to other non-periodic responses (Jafari Nadoushan &
Assadian 2015).

Thus, based on the idea of utilizing the solar
gravitational force as part of the system instead of treating
it as perturbations, the concept of parametric resonance
from nonlinear oscillation theory is adopted in this study to
design the stable parametric resonance orbits for asteroids.
In order to consider the non-spherical gravitation and solar
gradational force, a perturbed particle-linkage model is
used.

This study expands a set of existing periodic orbits
for asteroid systems. The contributions of this study can
be summarized as: (1) the boundary of the region where
the parametric resonance periodic orbit can exist is shown;
(2) the amplitude of the steady-state is determined by a
frequency-response equation; and (3) the stable steady-
state solution for parametric resonance orbits are found.
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Fig. 1 Perturbed particle-linkage model.

The structure of this paper is as follows. First, the
perturbed particle-linkage model is described in Section 2.
In Section 3, the region in which the parametric resonance
can exist is computed analytically. In Section 4, the method
of multiple scales is used to obtain a stable steady-state
solution for parametric resonance orbits. Furthermore,
illustrative numerical simulations are performed to demon-
strate the proposed orbits in Section 5. The paper ends with
the conclusions in Section 6.

2 DYNAMICAL MODEL

Since parametric excitations caused by solar gravitational
perturbation are focused, a perturbed particle-linkage
model is enough to model the gravity caused by the
irregular minor celestial bodies.

The perturbed particle-linkage model is composed of
three primariesm1,m2 andm3, separated by two massless
rods, and their barycenter is moving in a circular orbit
around a large body M4. All bodies move in a plane.
The distance from M4 to the asteroid is much greater
than the distances between every two primaries inside the
asteroid. The total system mass of the asteroid is M where
M = m1 +m2 +m3. It is assumed that m3 ≥ m1 = m2,
and the three primaries are formed as an isosceles triangle
configuration. The distance between m2 and m3 is defined
as L, and the distance from m3 to the rod connecting m2

and m3 is h.
A schematic map of this system is conveniently

described in the asteroid’s body-fixed coordinate system
(O − xyz), centered at the mass center of the asteroid
shown in Figure 1. The axis Oz is aligned with the angular
velocity of the asteroid Ω, axis Ox is parallel to the line

connecting the two primaries pointing from m1 to m2,
and axis Oy is determined by the right-handed frame.
The massless spacecraft moves under the gravitational
attractions of all primaries in this system, but the motions
of the primaries are assumed to be not affected by the
spacecraft.

The non-dimensionalization is applied in the following
study, such that the length unit is the distance L between
m1 and m2, the time unit is Ω−1 and the mass unit is M .
We introduce µ = m1/M as the mass parameter of the
system, then the dimensional masses for m1, m2, m3 and
M4 can be expressed as

µ1 = µ, µ2 = µ, µ3 =
m3

M
= 1− 2µ, µs =

M4

M
.

(1)
Further, we introduce the length ratio σ = h/L. The
σ is positive when m3 is above the mass center of
the asteroid, and is negative alternatively. The positions
of three primaries can be written as (−0.5,−(1 −
2µ)σ), (0.5,−(1 − 2µ)σ), (0, 2µσ), respectively. Since
the barycenter of the asteroid moves in a circular orbit
around M4 with constant distance Lso, the position of
M4 can be written as (Lso cos θ, Lso sin θ) where θ is the
counterclockwise measured angle between the x axis and
the line connecting M4 and asteroid’s barycenter, O.

With the definition above, the equations governing the
orbits of the spacecraft are obtained in O − xy as:

ẍ− 2ẏ = x−

k

(
3∑
i=1

µi (x− xi)

r3i
+
µs

r34
(x− Lso cos θ) +

µs

L2
so

cos θ

)
,

ÿ + 2ẋ = y−

k

(
3∑
i=1

µi (y − yi)

r3i
+
µs

r34
(y − Lso sin θ) +

µs

L2
so

sin θ

)
,

(2)

where k is the dimensionless parameter which represents
the ratio between the gravitational force and the centrifugal
force, and can be expressed as

k =
GM

Ω2L3
, (3)

and r1, r2, r3, r4 are the distances from m1, m2, m3, M4

to the spacecraft, respectively.
Since spacecraft motion surrounds the asteroid, we can

expand 1/r3
4 as follows,

1

r3
4

≈ L−3
so

[
1 + 3

(x cos θ + y sin θ)

Lso

]
, (4)

where r =
√
x2 + y2 is the distance from spacecraft to the

barycenter O. Defining

β = µs/L
3
so, (5)
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as the fourth body’s characteristic parameter and omit-
ting nonlinear excitation terms, the equation of motion
Equation (2) can be further reduced to

ẍ− 2ẏ =

(
1 +

1

2
kβ

)
x− kµ (x− x1)

r3
1

− kµ (x− x2)

r3
2

− k(1− 2µ) (x− x3)

r3
3

+
3

2
kβ(x cos 2θ + y sin 2θ),

ÿ + 2ẋ =

(
1 +

1

2
kβ

)
y − kµ (y − y1)

r3
1

− kµ (y − y2)

r3
2

− k(1− 2µ) (y − y3)

r3
3

+
3

2
kβ(x sin 2θ − y cos 2θ).

(6)
It is clear that M4’s gravitational force consists of two

parts: the direct constant gravity part due to the average
gravitational force that presents in the linear stiffness terms
as 1/2kβx and 1/2kβy, and the parametric excitation part
due to the periodic variation of the fourth body’s position.
Correspondingly, we can divide the system into two parts,
just like the famous Mathieu equation: the unperturbed
system, which is expressed as

ẍ− 2ẏ =
∂V

∂x
, ÿ + 2ẋ =

∂V

∂y
, (7)

where effective potential V is written as

V =

(
1 +

1

2
kβ

)
x2 + y2

2
+ k

(
µ

r1
+
µ

r2
+

(1− 2µ)

r3

)
,

(8)
and the parametric excitation part, which contains the
terms with the non-autonomous sine and cosine functions.
Note that, the unperturbed system is different from the
classical particle-linkage model system. The system’s stiff-
ness terms are altered by the fourth body’s characteristic
parameter β in Equation (6) which will finally affect the
natural frequencies of the system.

The equilibrium points (x0, y0) are relevant to the
mass parameter µ, length ratio σ, the dimensionless
parameter k, and the fourth body’s characteristic parameter
β. With given parameters µ, σ, k, β we can generate the
zero-value contours of Vx = ∂V/∂x and Vy = ∂V/∂y in
the x − y plane, from which the positions of intersection
points can be assumed. The Newton-Raphson method is
adopted to calculate the accurate locations of equilibrium
points (Lei & Xu 2015). When β = 0, the system recovers
to the classical particle-linkage model. The values of µ, σ,
k for a known asteroid can be computed by the method in
Yang et al. (2018). With given µ, σ, k, β two examples are
denoted as blue dots and shown in Figure 2. There are four
outside equilibrium points for both examples.

In order to analyze the system’s parametric resonance
orbit in Equation (2), it is necessary to move the origin

µ = 0.0019, σ = 0.8, k = 0.9, β = 0.1

Vesta: µ = 0.01, σ = 0.0201, k = 0.8631, β = 0

Fig. 2 Distributions of equilibrium points with variations
of parameters

of the coordinate system from the mass center of the
asteroid to its corresponding unperturbed system’s stable
equilibrium point. In addition, the unit of length is rescaled
as the distance γ0 between the equilibrium point and its
closest primary (m1, m2 or m3 ). In the following study,
without loss of generality, we choose equilibrium point L0

as a typical example. Note that, L0 can be any stable point
obtained in Section 2.2.

In the new coordinate system, named as L0 − ξη,
the directions of the ξ-, and η- are in parallel with those
of the asteroid’s body-fixed system, referred to Figure 1.
The relationship between the L0 − ξη and O − xy

can be expressed as (ξ, η)T = (x − x0, y − y0)T /γ0,
where (x0, y0) are the position of corresponding stable
equilibrium point in the asteroid’s body-fixed system.
Then, the term 1/ri appearing in the effective potential V
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in Equation (8) can be expanded as

1

ri
=

1

γ0

1√
(ξ − Ei)2

+ (η − Fi)2
, i = 1, 2, 3 (9)

Then, the linear part of Equation (6) can be rewritten as

ξ̈ − 2η̇ − V 0
ξξξ − V 0

ξηη = E0 +
3

2
kβξ cos 2θ +

3

2
kβη sin 2θ,

η̈ + 2ξ̇ − V 0
ξηξ − V 0

ηηη = F0 +
3

2
kβξ sin 2θ −

3

2
kβη cos 2θ,

(10)

where

V 0
ξξ =

(
1 +

kβ

2

)
+

3∑
i=1

µik
(
2E2

i − F 2
i

)
γ3

0D
5
i

,

V 0
ηη =

(
1 +

kβ

2

)
+

3∑
i=1

µik
(
2F 2

i − E2
i

)
γ3

0D
5
i

,

V 0
ξη =

3∑
i=1

3µikEiFi
γ3

0D
5
i

, Ei =
xi − x0

γ0
,

Fi =
yi − y0

γ0
, D2

i = E2
i + F 2

i ,

E0 =

(
1 +

βk

2

)
x0

γ0
+

3∑
i=1

µikEi
γ3

0D
3
i

,

F0 =

(
1 +

βk

2

)
y0

γ0
+

3∑
i=1

µikFi
γ3

0D
3
i

.

The partial derivatives of V are denoted by subscripts ξ
or η. The superscript 0 indicates that the derivatives are

to be evaluated at the equilibrium points. The over dots
denote derivatives with respect to the actual time. Due to
the symmetry of the system model in Figure 1, it is found
that, for L2 point and L4 point, D1 = D2, E1 = −E2,
E3 = 0, F1 = F2 and V 0

ξη = 0.
Note that, in Equation (10), such a system can be cast

into an autonomous system under a small time-dependent
perturbation by taking 3kβ/2 as the parametric excitation
amplitude.

3 PARAMETRIC RESONANCE REGION

In the following study, we try to find the region in which
the parametric resonance may exist. According to Nayfeh
& Mook (1995), there are two important preconditions.
Firstly, the analysis should be carried out in the vicinity
of the stable equilibrium points to ensure the possible
periodic solutions. Secondly, the parametric resonance
occurs when the parametric frequency is close to the twice
of the system’s natural frequencies. Combining these two
preconditions, the valid ranges of µ, σ, k, β for parametric
resonance to occur can be found.

3.1 Precondition I: Stable Equilibrium Point

For the ξ-η components, the characteristic equation for the linear part of system in Equation (10) is

λ4 +
(
4− V 0

ξξ − V 0
ηη

)
λ2 + V 0

ξξV
0
ηη −

(
V 0
ηξ

)2
= 0. (11)

The roots λ of the characteristic Equation (11) play a crucial role to determine the motions around equilibrium points. An
equilibrium point will be stable if the above Equation (11) has pure imaginary roots or complex roots with negative real
parts. This happens if the following conditions hold

4− V 0
ξξ − V 0

ηη > 0,(
V 0
ξξ + V 0

ηη − 4
)2

− 4

(
V 0
ξξV

0
ηη −

(
V 0
ξη

)2
)
> 0,

V 0
ξξV

0
ηη −

(
V 0
ξη

)2

> 0,

(12)

which presents the valid ranges of µ, σ, k, β for the existence of stable equilibrium points. Examples are shown in
Section 5.

3.2 Precondition II: Frequencies Relations

Based on Equation (11), the natural frequencies of the unperturbed particle-linkage model system around the L0 are
obtained as

iω1,2 =

√√√√√√(4− V 0
ξξ − V 0

ηη

)
∓

√(
V 0
ξξ + V 0

ηη − 4
)2

− 4

(
V 0
ξξV

0
ηη −

(
V 0
ξη

)2
)

2
. (13)
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In addition, the frequency Ωs for M4 moving around the mass center of the asteroid is a two-body problem and
satisfies Kepler’s third law. In an inertial coordinate, that is

Ωs =

√
µs
L3
so

=
√
β. (14)

Since θ is the angle between the x axis and the line from the barycenter to M4 in Figure 1, the frequency for θ rotating
respect to the x axis in the asteroid’s body-fixed coordinate system is

ω =

√
1

k
−
√
β. (15)

In this way, θ in Equation (10) can be rewritten as θ = ωt.
Generally, for a two-dimensional system, there are two natural frequencies ω1 and ω2 (assuming that ω2 > ω1)

denoting the long and the short period in orbit dynamics, respectively. Thus, two resonance types, named first and second
principal resonances, are theoretically possible phenomena. As known, when µ, σ, k and β satisfy the exact resonance
relations between the parametric frequency and the system’s natural frequencies that ω = 2ω1 or ω = 2ω2, the whole
system will definitely generate resonant responses. Even the values of µ, σ, k and β are close to the resonance relations, the
system may present resonant responses (Amer et al. 2016; Ghayesh & Amabili 2013). The studies about how to quantify
the deviation to the exact resonance relations have been investigated systematically and analytically in references (Qian
et al. 2018a; Qian et al. 2018b).

For brevity, the conclusions proposed by Qian et al. (2018a) are adopted here to quantify the deviation to the exact
resonance relations. According to equation (49) in Qian et al. (2018a) and Equation (10), the transition curves which
divide the resonance region and non-resonance region are obtained as

ω = 2ω1 ± 2
√
T 2

11 + T 2
12, ω = 2ω2 ± 2

√
T 2

21 + T 2
22, (16)

where T11, T12, T21, T22 are decided by the system’s parameters and can be found in the Appendix.
Based on Equation (16), the frequencies relation between the parametric frequency ω and the system’s natural

frequency ω1/ω2 can be determined, which shows the resonance region with two transition curves emanating from exact
resonance relations. For example, the resonance region can be numerically determined in the µ− β plane for given σ and
k.

4 PARAMETRIC RESONANCE ORBIT ANALYSIS

In the previous sections, we found the region in which the parametric resonance may exist by analyzing the linear part of
the system in Equation (10). In the absence of the nonlinearity, when the resonance occurs, energy will be pumped into
the system by parametric excitation leading to an infinite increase in the final orbit’s amplitude. However, when nonlinear
terms are considered, the motion will be bounded and the resonant periodic orbits can be constructed. In this section, the
local nonlinear dynamics of the system are examined, and the periodic response of the system is obtained, which can
further benefit the trajectory design in asteroid missions.

4.1 General Solution for Parametric Resonance Orbit

To exhibit the influence of nonlinearities, we consider the nonlinear parts of the system to the third order and omit
the higher order nonlinear parametric excitation terms in Equation (6). The equation of the nonlinear motion around
equilibrium points can be rewritten as

ξ̈ − 2η̇ − V 0
ξξξ − V 0

ξηη =M1η
3 +M2ξη

2 +M3ξ
2η +M4ξ

3 +M5ξ
2 +M6ξη +M7η

2

+ ε2 3

2
kβ(ξ cosωt+ η sinωt),

η̈ + 2ξ̇ − V 0
ξηξ − V 0

ηηη =N1η
3 +N2ξη

2 +N3ξ
2η +N4ξ

3 +N5ξ
2 +N6ξη +N7η

2

+ ε2 3

2
kβ(ξ sinωt− η cosωt),

(17)

where M1, ..., M7, N1, ..., N7 are nonlinear coefficients obtained by Legendre polynomial expansion of the effective
potential V in Equation (8), as listed in the Appendix. The bookkeeping device ε is used to indicate the small-order
parameters.
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To determine the combined effect of nonlinearities and parametric excitations on the amplitude and phase, the multiple
scales method is used and the solutions to Equation (17) are assumed as

ξ = εξ1 (T0, T2) + ε2ξ2 (T0, T2) + ε3ξ3 (T0, T2) ,

η = εη1 (T0, T2) + ε2η2 (T0, T2) + ε3η3 (T0, T2) ,
(18)

where T0 = t and T2 = ε2t. Then, the time derivative becomes, d/dt = D0 + ε2D2 + ..., Dn = ∂/∂Tn. Substituting
Equation (18) to Equation (17), expanding, and equating coefficients of ε1 ,ε2 and ε3 on both sides lead to:

ε1 : D2
0ξ1 − 2D0η1 − V 0

ξξξ1 − V 0
ξηη1 = 0

D2
0η1 + 2D0ξ1 − V 0

ξηξ1 − V 0
ηηη1 = 0

(19)

ε2 : D2
0ξ2 − 2D0η2 − V 0

ξξξ2 − V 0
ξηη2 = M5ξ

2
1 +M6ξ1η1 +M7η

2
1

D2
0η2 + 2D0ξ2 − V 0

ξηξ2 − V 0
ηηη2 = N5ξ

2
1 +N6ξ1η1 +N7η

2
1

(20)

ε3 : D2
0ξ3 − 2D0η3 − V 0

ξξξ3 − V 0
ξηη3 = −2D0D2ξ1 + 2D2η1 +

3

2
kβ (cosωtξ1 + sinωtη1)

+M1η
3
1 +M2ξ1η

2
1 +M3ξ

2
1η1 +M4ξ

3
1

+ (2M5ξ1 +M6η1) ξ2 + (M6ξ1 + 2M7η1) η2

D2
0η3 + 2D0ξ3 − V 0

ξηξ3 − V 0
ηηη3 = −2D0D2η1 − 2D2ξ1 +

3

2
kβ (sinωtξ1 − cosωtη1)

+N1η
3
1 +N2ξ1η

2
1 +N3ξ

2
1η1 +N4ξ

3
1

+ (2N5ξ1 +N6η1) ξ2 + (N6ξ1 + 2N7η1) η2.

(21)

It is easy to obtain the general solution of Equation (19) as

ξ1 = A1e
iω1T0 +A2e

iω2T0 + cc, η1 = Γ1A1e
iω1T0 + Γ2A2e

iω2T0 + cc, (22)

where cc denotes the complex conjugation of all the preceding terms of the right-hand side and

Γ1 =
−ω2

1 − V 0
ξξ

2iω1 + V 0
ξη

, Γ2 =
−ω2

2 − V 0
ξξ

2iω2 + V 0
ξη

. (23)

Note that A1 and A2 are considered as functions of the slow time T2 instead of being constants as in the corresponding
linear case.

Substituting ξ1 and η1 of Equation (22) into Equation (20), the solution to Equation (20) can be obtained. Then,
substituting both ξ1, η1 and ξ2, η2 back into Equation (21) yields

D2
0ξ3 − 2D0η3 − V 0

ξξξ3 − V 0
ξηη3 = (−2iω1 + 2Γ1)D2A1e

iω1T0 + (−2iω2 + 2Γ2)D2A2e
iω2T0

+
3kβ

4
Ā2

(
1− iΓ̄2

)
ei(ω−ω2)T0 +W11e

iω1T0 +W12e
iω2T0 + . . .+ cc,

D2
0η3 + 2D0ξ3 − V 0

ξηξ3 − V 0
ηηη3 = (−2iω1Γ1 − 2)D2A1e

iω2T0 + (−2iω2Γ2 − 2)D2A2e
iω2T0

−
(
i+ Γ̄2

) 3kβ

4
Ā2e

i(ω−ω2)T0 + S11e
iω1T0 + S12e

iω2T0 + . . .+ cc,

(24)

where the bar notations over A2 and Γ2 denote their conjugate complexes. S11, S12, W11, W12 are obtained by the
combination of coefficients and their expressions can be found in the Appendix.

The second-principal resonance is considered as an example in this study and the first-principal resonance can be
analyzed in a similar way. A detuning parameter τ is introduced as

ω = 2ω2 + ε2τ. (25)

To determine the solvability conditions of Equation (24), we seek a particular solution of ξ3 and η3 corresponding to
the term containing the factors exp(iω1T0) and exp(iω2T0) as

ξ3 = P1e
iω1T0 +Q1e

iω2T0 + cc, η3 = P2e
iω1T0 +Q2e

iω2T0 + cc. (26)
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By substituting Equation (26) into Equation (24), using (ω − 2ω2)T0 = ω2T0 + τT2 to eliminate the secular terms, and
equating the coefficients of exp(iω1T0) and exp(iω2T0) on both sides, we(

−ω2
1 − V 0

ξξ

)
P1 +

(
−2iω1 − V 0

ξη

)
P2 = W1(

2iω1 − V 0
ηξ

)
P1 +

(
−ω2

1 − V 0
ηη

)
P2 = W2(

−ω2
2 − V 0

ξξ

)
Q1 +

(
−2iω2 − V 0

ξη

)
Q2 = S1(

2iω2 − V 0
ηξ

)
Q1 +

(
−ω2

2 − V 0
ηη

)
Q2 = S2.

(27)

where
W1 = −2iω1D2A1 + 2Γ1D2A1 +W11,

W2 = −2iω1Γ1D2A1 − 2D2A1 + S11,

S1 = −2iω2D2A2 + 2Γ2D2A2 +W12e
iτT2 +

(
1− iΓ̄2

)
3kβ

4 Ā2e
iτT2 ,

S2 = −2iω2Γ2D2A2 − 2D2A2 + S12e
iτT2 −

(
i+ Γ̄2

)
3kβ

4 Ā2e
iτT2 .

(28)

Thus, the problem of determining the solvability conditions of Equation (24) is reduced to that of determining the
solvability conditions of Equation (27), which lead to

D2A1 = i 1
2Λ1

[
(R21 + iI21)A2

1Ā1 + (R31 + iI31)A1A2Ā2

]
,

D2A2 = i 1
2Λ2

[
(R1 + iI1) Ā2e

iτT2 + (R22 + iI22)A2
2Ā2 + (R32 + iI32)A1Ā1A2

]
,

(29)

where

Λ1 =

(
ω2

1 + V 0
ηη

)
ω1

(
4− 2ω2

1 − V 0
ξξ − V 0

ηη

) , Λ2 =

(
ω2

2 + V 0
ηη

)
ω2

(
4− 2ω2

2 − V 0
ξξ − V 0

ηη

) . (30)

The coefficients R1, R21, R31, R22, R32, I1, I21, I31, I22, I32 in Equation (29), which are all functions of system’s
nonlinear coefficients M1, ...,M7, N1, ..., N7 and can be found in the Appendix, represent the system’s nonlinearity.

Letting A1 and A2 in Equation (29) be in the polar form with real an, βn(n = 1, 2) as

A1 (T2) = 0.5a1e
iβ1T2 , A2 (T2) = 0.5a2e

iβ2T2 . (31)

Then, separating real and imaginary parts, and introducing

ϕ1 = β1, ϕ2 = τT2 − 2β2, (32)

we have
D2a1 = −Λ1I21

a31
8 − Λ1I31

a1a
2
2

8 ,

a1D2ϕ1 = Λ1R21
a31
8 + Λ1R31

a1a
2
2

8 ,

D2a2 = −Λ2I1
a2
2 cosϕ2 − Λ2R1

a2
2 sinϕ2 − Λ2I22

a32
8 − Λ2I32

a21a2
8 ,

a2D2ϕ2 = a2τ − Λ2R1a2 cosϕ2 + Λ2I1a2 sinϕ2 − Λ2R22
a32
4 − Λ2R32

a21a2
4 .

(33)

Equation (33) can be used to ascertain the influence of the nonlinearities. In this case, the nonlinear terms involving
(R1, R21, R31, R22, R32, I1, I21, I31, I22, I32) may not only affect the amplitude directly, but also affect the amplitude
indirectly through changing the phase ϕn(n = 1, 2). Therefore, we can present the first-order approximation for the
general solution Equation (22) as,

ξ1 = a1
2 e

i(ω1T0+ϕ1) + a2
2 e

i 12 (ωT0−ϕ2) + cc,

η1 = Γ1
a1
2 e

i(ωT0+ϕ1) + Γ2
a2
2 e

i 12 (ωT0−ϕ2) + cc.
(34)

Equation (34) is quite different from the linear solution of the system. The amplitude of the linear solution can be chosen
as any value. However, in Equation (34), the variations of an, ϕn(n = 1, 2) strictly follow Equation (33) which involves
both the transient motions and steady-state motions and an, ϕn are affected by the system’s nonlinearity.

It is worth mentioning that, among the general solution, the steady-state motion part is periodic. It is clear that,
considering the influence of nonlinear terms, the amplitudes in the resonance may no longer be unbounded. With the
periodic excitation from the M4, it is possible to find the parametric resonance orbit that will benefit the future orbit
design for asteroid exploration missions.
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4.2 Steady-state Motion for General Solution

According to Equation (33), when we consider the nonlinearity, the increase of amplitude is accompanied by a change in
the phase ϕn(n = 1, 2) when energy is pumped into the system by the parametric excitation. It is reasonable to consider
that, when the rate at which energy is being pumped into the system is exactly balanced by the rate at which is being
limited by the nonlinear effects, the system achieves a steady-station motion. Thereby, the amplitude and phase will be
restricted by the nonlinearity to finite and fixed values, which means a′1 = a′2 = 0 and ϕ′1 = ϕ′2 = 0 (Nayfeh & Mook
1995).

The a′1 = a′2 = 0 and ϕ′1 = ϕ′2 = 0 correspond to the singular points of Equation (33), where the amplitude and
phase do not change. Based on Equation (33), it is clear that a1 = 0 must be the steady-state motion for the first modal
motion (i.e., motion relevant to ω1). Then, the steady-state motions corresponding to the solutions of the second modal
motion (i.e., motion relevant to ω2) must be

D2a20 = L1 = −Λ2I1
a20
2 cosϕ20 − Λ2R1

a20
2 sinϕ20 − Λ2I22

a320
8 = 0,

a20D2ϕ20 = L2 = a20τ − Λ2R1a20 cosϕ20 − Λ2R22
a320
4 = 0,

(35)

where the subscript 0 denotes steady-state values.
For further discussion of these results, it is more direct to rearrange cosϕ20 and sinϕ20, where we find either the

trivial solution a20 = 0 or nontrivial solution,

Λ2
2

(
R2

22 + I2
22

)
a4

20 − 8Λ2R22τa
2
20 + 16τ2 − 16Λ2

2

(
R2

1 + I2
1

)
= 0. (36)

Here we express the steady-state amplitude of the response a20 as a function of detuning parameter τ . Recall that
Equation (36) also stands for the relation between steady-state amplitude and the frequency of parametric excitation
(τ = ω − 2ω2) which is named as frequency-response equation. Once the frequency of the excitation ω and system
parameters are given, the amplitude of the response a20 is determined.

Hence, we can present the steady-state solution as:

ξ1 =
a20

2
ei

1
2 (ωT0−ϕ20) + cc, η1 = Γ2

a20

2
ei

1
2 (ωT0−ϕ20) + cc, (37)

where ϕ20, a20 are given by Equation (35) and Equation (36), respectively.
Since the steady-state motion ϕ20 is a constant, we notice in Equation (37) the nonlinearity limits the motions to

finite-amplitude motions whose frequency is exactly one half the frequency of the excitation. It is a typical subharmonic
resonance.

4.3 Stability of Steady-state Motion for General Solution

Based on Equation (36), we find that it is possible for one detuning parameter τ to result in two values of steady-state
amplitude solution a20. It is necessary to evaluate the stability of the steady-state solution since only the stable value of
a20 can be chosen for orbit design.

Determining the stability of the steady-state solution is precisely the problem of determining the nature of singular
points of Equation (35). The Jacobi matrix for Equation (35) is

[A] =

[
∂L1

∂a20
∂L1

∂ϕ20
∂L2

∂a20
∂L2

∂ϕ20

]
=

[
−Λ2I22a

2
20

4
Λ2R22a

3
20−4τa20
8

−Λ2R22a
2
20

2 −Λ2I22a
3
20

4

]
. (38)

The eigenvalues of [A] are

λ1,2 =
1

2
p±

(
1

4
p2 − q

)1/2

, (39)

where p is the trace of [A] and q is the determinant of [A], and

p = −
Λ2I22

(
a2

20 + a3
20

)
4

, q =
Λ2

2a
5
20

(
I2
22 +R2

22

)
− 4τΛ2R22a

3
20

16
. (40)

Based on Equation (39), the well-known diagram of p − q plane characterizing different singular points is presented in
Figure 3.
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Fig. 3 Singular points in p− q plane.

Thus, for Equation (35), the stable region in p−q plane
is shown in the shadowed area. Specially, when p = 0, if q
is positive, the singular point is a stable center point and if
q is negative, the singular point is a saddle point. Equation
(40) will be used to evaluate the stability of the steady-state
amplitude solution a20 during orbit design in Section 5.

5 NUMERICAL SIMULATIONS

Numerical simulations are performed to demonstrate the
designing process of such novel parametric resonance
periodic orbits. The σ = 0.8, k = 0.9 are chosen as known
parameters during the simulations. Firstly, the resonance
region is located in the µ−β plane by the two preconditions
presented in Section 3. Then, the frequency-response curve
is obtained by Equation (36) with detailed explanations.
The corresponding stability for steady-state motions is
analyzed. Finally, the periodic parametric resonance orbits
are found.

5.1 Parametric Resonance Region

Precondition I about the stable equilibrium point in
Equation (12) and Precondition II about frequencies
relations in Equation (16) are used to guarantee the existing
region for parametric resonance.

The grey areas in Figure 4 indicate a threshold that
satisfies Precondition I in Equation (12). The red line is
the boundary of the threshold. According to the definitions
for natural frequency in Equation (13) and parametric
frequency in Equation (15), the blue lines denote the exact
resonance relations that ω = 2ω2. We notice that the
parametric amplitude and parametric frequency are all
functions of β and k, and the unperturbed system’s natural
frequency is a function of k, β, σ, and µ. It is interesting

to find that, instead of the exact resonance relation point in
most mechanical systems (Remigius et al. 2019), we have
the exact resonance relation lines.

In addition, as presented in Figure 4, the two black
lines denote the transition boundaries from non-resonance
to resonance, and the region between these two black
lines represents resonance area. The deviation from the
transition boundaries to the exact resonance relation
line corresponds to the analytical results ±2

√
T 2

21 + T 2
22

obtained from Equation (16). It is found that the larger
values of β and µ lead to the larger resonance region
for given σ and µ in Figure 4(a). Reminding us of that,
the larger the mass parameter µ is, the more irregular
the asteroid is. The larger the fourth body’s characteristic
parameter β is, the stronger the parametric excitation. In
other words, the irregularity of the asteroid and strong
gravitational influence from the fourth body play a key
role to generate parametric resonance. In Figure 4(b), when
β = 0, the system recovers to the classical particle-
linkage model, which only contains the asteroid itself and
no parametric resonance occurs. When µ = 0, the system
recovers to the regular asteroid, parametric resonance only
can occur in a very small interval that β ∈ [3.085 ×
10−3, 3.355 × 10−3]. Besides, with the increase of the β
and µ, the lower boundary trends downward until reaching
the border of the grey area obtained by Precondition I. The
shaded area denotes the final valid ranges of µ, β for it to
be found that parametric resonance occurs.

It is clear that, combining Precondition I and
Precondition II, the final valid ranges of µ, σ, k,
β for parametric resonance can be found. Any real
asteroid with parameters stratifying both Precondition I
and Precondition II has the potential to generate parametric
resonance orbits.

5.2 Frequency-response Curves

Based on Equation (36), the response amplitude a20 is
plotted as a function of detuning parameter τ with kβ =

0.09 in Figure 5. The parameters (σ = 0.8, k = 0.9,
µ = 0.001, β = 0.1) are selected from the shaded areas
in Figure 4. There are two nontrivial solution branches:
one stable and the other unstable. The solid lines denote
the stable solutions and dashed lines denote the unstable
solutions. Detailed analysis about the stability of the
nontrivial solutions will be discussed in Section 5.3.

Let us suppose that τ decreases from 0.5 to−1.5. This
process is represented by the black arrows through points
A1,A2 andA4. Correspondingly, three regions are marked
as I, II and III based on different dynamic behaviors.
Between points A1 and A2 (τ = 0.388), no nontrivial
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Overall view of parametric resonance region

Partially enlarged view when µ and β are close to 0

Fig. 4 Parametric resonance region for the second
principal resonance when σ = 0.8, k = 0.9.

solution exists which means that amplitude of parametric
resonance orbit remains zero until point A2. Between
points A2 and A4 (τ = −0.388), the only realizable
solution is given by Equation (36). The amplitude of this
solution branch increases as the frequency of excitation is
decreased. Beyond point A4, there is one trivial solution
and two nontrivial solutions given by Equation (36). The
results for the nonlinear system show that only the larger
of the two possible nontrivial solutions are stable.

If τ increases from −1.5 to 0.5, this process is
indicated by blue arrows through points A3, A4, A2 and
A1. There are two nontrivial solutions exit until τ reaching
point A3. Then, the jumping phenomenon to point A4 can
be observed. Similar to the aforementioned τ decreasing
process, from A4 to A2, the only realizable solution is
given by Equation (36). Between points A2 and A1, no
nontrivial solution exists.

In region I, it appears that the responses to all initial
disturbances, regardless of how large the amplitude, decay
in region I. Based on Equation (33), we note that the

nonlinearity can affect the amplitude indirectly through
changing the phase. Thus we conclude that, for the
nonlinear system, in this region, the phasing is such that
the force actually does negative work and thus contributes
to the decaying behavior.

Frequency-amplitude response curves

Amplitude of the excitation-amplitude of response curves

Fig. 5 Response curves for the asteroid’s parametrically
excited system

The behaviors of the solutions in region II and III are
certainly dependent on the nonlinearity. In region II, the
response of the nonlinear system is a bounded limit cycle.
Thus in region II, all initial disturbances trigger the same
steady-state response.

In region III, the response of the nonlinear system
may either decay (trivial solution) or achieve a sustained
periodic motion (nontrivial solution). It appears that for
some initial disturbances, the nonlinear term does not
have a strong influence on the resulting motion and the
system behaves essentially as a linear system; the motion
decays. On the other hand, for other initial disturbances
the nonlinear term has a strong influence; phase changes
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such as those described for region II occur, and a nontrivial
steady-state solution exists. Thus, in region III, there is the
possibility of producing motions that have characteristics
that are similar to those of the motions in region I as well
as region II. The initial conditions determine which steady-
state solution is physically realizable by the system.

In Figure 5(b), a20 is plotted as a function of amplitude
of the excitation 1.5kβ with constant detuning parameter τ
= −0.2548. With the increase of kβ, the process is shown
by red arrows. The a20 remains zero until B1, and then
jumps to B2. Further increase of the kβ causes the a20 to
follow the red arrows to B3. When the kβ decreases, the
process is shown by blue arrows. The a20 follows the curve
throughB3, B2 toB4. Further decrease of the kβ cause the
a20 jumps to zero.

5.3 Stability of Steady-state Motion Amplitude and
Periodic Parametric Resonance Orbit

Based on Equation (25), when σ = 0.8, k = 0.9, µ =

0.001, β = 0.1, the detuning parameter is obtained as τ =

−0.2548. There are two nontrivial solutions for the steady-
state motion amplitude, a20 = 0.2646 and a20 = 0.1399

according to Equation (36) which are marked as P2 and P1

in Figure 5.
Equation (40) is used to evaluate the stability of the

nontrivial solutions. Since p and q are all functions of a20,
τ and nonlinear coefficients, it is to find the values, p =

0, q = 0.0151 for a20 = 0.2646 and p = 0, q = −0.0022

when a20 = 0.1399. As we concluded in Section 4.3,
when p = 0 and q is positive, the corresponding value
of state-state amplitude is stable and if q is negative, the
corresponding value of state-state amplitude is unstable.
Thus, we conclude that a20 = 0.2646 is a stable solution
for steady-state motion amplitude and a20 = 0.1399 is
an unstable solution. Since there are no damping terms
considered in the system, the singular points of the system
must not be a node or a focus.

To illustrate these results further, we used
Equation (35) to calculate several trajectories in the state
flow chart in a20−ϕ20 plane for values of amplitude of the
excitation a20 and detuning parameter τ falling in region II
of Figure 5(a). These trajectories are plotted in Figure 6(a).
The saddle point (a20 = 0.1399, ϕ20 = 0) corresponds to
the unstable, nontrivial steady-state solution, which is the
exact value of P1 in Figure 5(a) and Figure 5(b). Similarly,
center point P2 (a20 = 0.2646, ϕ20 = π) corresponds to
the stable, nontrivial steady-state solution when more than
one steady-state solution exists. These points correspond
to those labeled in Figure 5(a) and Figure 5(b). All initial
conditions in the shaded area lead to nontrivial solution.

σ = 0.8, k = 0.9, µ = 0.001, β = 0.1

σ = 0.8, k = 0.9, µ = 0.0019, β = 0.1

Fig. 6 State flow chart.

The arrows indicate the direction of the motion of the
representative point. The initial conditions determine
which one is reached.

Similarly, we slightly adjust the value of µ into
0.0019 and keep the values of the rest parameters. The
corresponding detuning parameter is obtained as τ =

−0.2548. There is only one nontrivial solution for the
steady-state motion amplitude, a20 = 0.17043 according
to Equation (36). Equation (40) is used to evaluate its
stability. It is found that, when a20 = 0.17043, p = 0, q =

0.02209, and this nontrivial solution is stable. The state
flow chart in a20−ϕ20 plane for values of amplitude of the
excitation and frequency is also plotted in Figure 6(b). The
center point P2 (a20 = 0.17043, ϕ20 = π) corresponds
to the stable, nontrivial steady-state solution. The arrows
indicate the direction of the motion of the representative
point. All initial conditions in the shaded area lead to
nontrivial solutions.
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Time history diagram for fourth primary’s x-motion

Time history diagram for parametric resonance x-motion

Actual parametric resonance trajectory in L0 − ξη coordinate system

Fig. 7 Periodic stable parametric resonance orbit when
σ = 0.8, k = 0.9, µ = 0.001, β = 0.1

With the stable solution for the state-state amplitude
a20 and phase ϕ20, we present a possible periodic
orbit that can be utilized as nominal orbits for practical
space missions. Based on Equation (37), we plot both
periodic motions for the fourth primary and the parametric
resonance orbit to show the synthesis of these two types
of periodic motions in Figure 7(a)−7(b) when σ = 0.8,
k = 0.9, µ = 0.001, β = 0.1. It is clear that the

nonlinearity of the system plays a major role in adjusting
the frequency of the parametric resonance to exactly one
half the frequency of the excitation. When σ = 0.8, k =

0.9, µ = 0.0019, β = 0.1, the actual trajectory is shown in
red in Figure 7(c). It should be noted that the spacecraft’s
trajectory is shown in the L0 − ξη coordinate system. The
origin of this coordinate denoted by red point is the stable
equilibrium point L4 of the asteroid, which is determined
by Equation (12).

Although the final trajectory for the steady-state
motion shows up as an ellipse that looks like Lyapunov
orbit, it actually comes from a totally different family of
orbits. The frequency of the parametric resonance orbit
is decided by the frequency of the excitation while the
natural frequency of the Lyapunov orbit is decided by the
system’s characteristic equation without consideration of
the periodic excitation of the fourth primary.

It is worth mentioning that µ, σ, k, β are parameters
for the perturbed asteroid system itself and β is the
parameter about the Sun’s gradational perturbation. One
group of µ, σ, k, β that satisfies Preconditions I and II
can only result in one first principal parametric resonance
orbit or one second principal parametric resonance orbit.
The conditions to generate parametric resonance orbits are
critical, and not all of the asteroid systems are qualified.

In this study, we used a hypothetical asteroid
system in simulations. Since the conditions to generate
parametric resonance orbits are critical, no already-found
asteroids undergo such parametric resonance, although
some unknown parametric resonance asteroids may be
found in the future.

6 CONCLUSIONS

Based on the idea of integrating the solar gradational
force as part of the system instead of treating it as
perturbations, the concept of parametric resonance from
nonlinear oscillation theory is adopted to design a novel
type of parametric resonance orbits for irregular asteroids.

The resonance region is located in µ (mass parameter)-
β (fourth body’s characteristic parameter) plane. It is
found that the irregularity of the asteroid and gravitational
influence from the fourth body are important in generating
parametric resonance, and larger values of β and µ lead to
larger resonance region.

The frequency-response curves are obtained and
explained in detail. Based on the number of non-trivial
solutions, three regions are classified in the plane of steady-
state amplitude a20 and detuning parameter τ . The stability
for steady-state motions is analyzed. During the process of
increasing τ , the jumping phenomenon can be observed.
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With the stable solution for the state-state amplitude
and phase, we introduced the stable periodic orbits caused
by parametric resonance. It is clear that the nonlinearity of
the system plays a major role in adjusting the frequency
of the parametric resonance to exactly one half of the
frequency of the excitation. This study expands a set of
existing periodic solutions for the asteroid system.

In addition, since the asteroid is considered as a
few primaries separated by massless rods by the particle-
linkage model, the proposed method about the parametric
resonance orbit for irregular asteroids can also be used to

understand the dynamical behaviors parametric resonance
orbits for the binary and triple asteroids system.
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APPENDIX

Tw1 =
Hw1Hw3 +Hw2Hw4

H2
w1 +H2

w2

, Tw2 =
Hw1Hw4 −Hw2Hw3

H2
w1 +H2

w2

, w = 1, 2

Hw1 = 2
(
ω2
w + V 0

ξξ

)
(1− ωwρw2)− 4ω2

w + 4ωwρw2 + 2V 0
ξ7ρw1

Hw2 = 2
(
ω2
w + V 0

ξξ

)
ρw1ωw − 4ρw1ωw + 2V 0

ξη (ρw2 − ωw)

Hw3 =
3

4
kβ
(
ω2
w + V 0

ξξ

)
ρw1 −

3

2
kβρw1ωw +

3

4
kβV 0

ξη (1− ρw2)

Hw4 =
3

4
kβ
(
ω2
w + V 0

ξξ

)
(1− ρw2)− 3

2
kβωw (1− ρw2)− 3

4
kβV 0

ξηρw1

ρw1 =
−V 0

ξη

(
ω2
w + V 0

ξξ

)
4ω2

w +
(
V 0
ξη

)2 , ρw2 =
2ωw

(
ω2
w + V 0

ξξ

)
4ω2

w +
(
V 0
ξη

)2

W11 = 3Γ2
1Γ̄1A

2
1Ā1M1 + 6Γ1Γ2Γ̄1A1A2Ā2M1 + 3A2

1Ā1M4 + 6A1A2Ā2M4

+ 2Γ1Γ2A1A2Ā2M2 + 2Γ1Γ̄2A1A2Ā2M2 + 2Γ1Γ̄1A
2
1Ā1M2

+ 2Γ2Γ̄2A1A2Ā2M2 + Γ2
1A

2
1Ā1M2 + 2Γ̄2A1A2Ā2M3 + 2Γ2A1A2Ā2M3

+ 2Γ1A
2
1Ā1M3 + 2Γ1A1A2Ā2M3 + Γ̄1A

2
1Ā1M3

W12 = 3Γ2
1Γ̄1A

2
1Ā1N4 + 6Γ1Γ2Γ̄1A1A2Ā2N4 + 3A2

1Ā1N1 + 6A1A2Ā2N1

+ 2Γ1Γ2A1A2Ā2N3 + 2Γ1Γ̄2A1A2Ā2N3 + 2Γ1Γ̄1A
2
1Ā1N3

+ 2Γ2Γ̄2A1A2Ā2N3 + Γ2
1A

2
1Ā1N3 + 2Γ̄2A1A2Ā2N2 + 2Γ2A1A2Ā2N2

+ 2Γ1A
2
1Ā1N2 + 2Γ1A1A2Ā2N2 + Γ̄1A

2
1Ā1N2

S11 = 3Γ2
2Γ̄2A

2
2Ā2M1 + 6Γ1Γ̄1Γ2A1Ā1A2M1 + 3A2

2Ā2M4 + 6A1Ā1A2M4

+ 2Γ1Γ2A1Ā1A2M2 + 2Γ1Γ̄1A1Ā1A2M2 + 2Γ2Γ̄2A
2
2Ā2M2

+ 2Γ̄1Γ2A1Ā1A2M2 + Γ2Γ2A
2
2Ā2M2 + 2Γ̄1A1Ā1A2M3 + 2Γ2A1Ā1A2M3

+ 2Γ2A
2
2Ā2M3 + 2Γ1A1Ā1A2M3 + Γ̄2A

2
2Ā2M3

S12 = 3Γ2
2Γ̄2A

2
2Ā2N4 + 6Γ1Γ̄1Γ2A1Ā1A2N4 + 3A2

2Ā2N1 + 6A1Ā1A2N1

+ 2Γ1Γ2A1Ā1A2N3 + 2Γ1Γ̄1A1Ā1A2N3 + 2Γ2Γ̄2A
2
2Ā2N3

+ 2Γ̄1Γ2A1Ā1A2N3 + Γ2Γ2A
2
2Ā2N3 + 2Γ̄1A1Ā1A2N2 + 2Γ2A1Ā1A2N2

+ 2Γ2A
2
2Ā2N2 + 2Γ1A1Ā1A2N2 + Γ̄2A

2
2Ā2N2
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R1 + iI1 =
3kβ

(
1− 2Γ̄2i− Γ̄2

2

)
4

R21 + iI21 = 3M1Γ2
1Γ̄1 +M2Γ2

1 + 2M2Γ1Γ̄1 + 2M3Γ1 +M3Γ̄1 + 3M4

+ 3N1Γ2
1Γ̄2

1 +N2Γ2
1Γ̄1 + 2N2Γ1Γ̄2

1 + 2N3Γ1Γ̄1 +N3Γ̄2
1 + 3N4Γ̄1

R31 + iI31 = 6M1Γ1Γ2Γ̄2 + 2M2Γ1Γ2 + 2M2Γ1Γ̄2 + 2M2Γ2Γ̄2

+ 2M3Γ1 + 2M3Γ2 + 2M3Γ̄2 + 6M4

+ 6N1Γ1Γ̄1Γ2Γ̄2 + 2N2Γ1Γ̄1Γ2 + 2N2Γ1Γ̄1Γ̄2 + 2N2Γ̄1Γ2Γ̄2

+ 2N3Γ1Γ̄1 + 2N3Γ̄1Γ2 + 2N3Γ̄1Γ̄2 + 6N4Γ̄1

R22 + iI22 = 3M1Γ2
2Γ̄2 +M2Γ2

2 + 2M2Γ2Γ̄2 + 2M3Γ2 +M3Γ̄2 + 3M4

+ 3N1Γ2
2Γ̄2

2 +N2Γ2
2Γ̄2 + 2N2Γ2Γ̄2

2 + 2N3Γ2Γ̄2 +N3Γ̄2
2 + 3N4Γ̄2

R32 + iI32 = 6M1Γ1Γ̄1Γ2 + 2M2Γ1Γ2 + 2M2Γ̄1Γ2 + 2M2Γ1Γ̄1

+ 2M3Γ2 + 2M3Γ1 + 2M3Γ̄1 + 6M4

+ 6N1Γ1Γ̄1Γ2Γ̄2 + 2N2Γ1Γ2Γ̄2 + 2N2Γ̄1Γ2Γ̄2 + 2N2Γ1Γ̄1Γ̄2

+ 2N3Γ2Γ̄2 + 2N3Γ1Γ̄2 + 2N3Γ̄1Γ̄2 + 6N4Γ̄2
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i

)
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9
i
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)
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i
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i

)
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9
i

, M4 =

3∑
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i

)
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9
i
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2
i
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7
i
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2
i
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7
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2
i

)
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7
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2
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i

)
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9
i

N2 =
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(
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3
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2
i

)
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9
i
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(
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2
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iD
2
i + 3D4
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)
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(
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)
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(
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