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Abstract A pure two-body problem has seven integrals including thel&eenergy, the Laplace vector and
the angular momentum vector. However, only five of them adefprendent. When the five independent
integrals are preserved, the two other dependent integralsnaturally preserved from a theoretical
viewpoint; but they may not necessarily be from a numerioatputational viewpoint. Because of this, we
use seven scale factors to adjust the integrated positi@hgedocities so that the adjusted solutions strictly
satisfy the seven constraints. Noticing the existence @two dependent integrals, we adopt the Newton
iterative method combined with singular value decompasito calculate these factors. This correction
scheme can be applied to perturbed two-body AnrHody problems in the solar system. In this case, the
seven quantities associated with each planet slowly vatly tivhe. More accurate values can be given to
the seven slowly-varying quantities by integrating thegmal invariant relations of these quantities and the
equations of motion. They should be satisfied with the adglisblutions. Numerical tests show that the
new method can significantly reduce the rapid growth of nicaeerrors for all orbital elements.

Key words: Computational methods — Computational astronomy — plaaetssatellites: dynamical
evolution and stability

1 INTRODUCTION of a conservative Hamiltonian. The manifold correction
_ _ . . schemesNacozy 1971Han & Liao 2007 adopt invariant
Numerical integration methods are convenient toolsmanifolds to correct errors in the numerical solutions.

to study complex nonlinear dynamics problems. (€.gin this paper, we only focus on the manifold correction
Wu & Huang 2003 Wu et al. 2006aWu & Zhang 2006  schemes.

Wu & Xie 2007, 2008 Huang & Wu 2014 Wu & Huang

2015 Wu et al. 2015Li et al. 2019. Above all, geometric Nacozy’s manifold correction schemidcozy 1971
integration algorithms can preserve some physical ouses the least-squares method and pulls the solution back
geometric properties. Therefore, they have been widelyo the original integral hypersurface along the shortest
applied in celestial mechanics, general relativity, cospath. In this way, the error of an integral given by the
mology and post-Newtonian spinning compact binariescorrection method doubles that given by the uncorrected
Here, we list some classes of geometric algorithm-method. Thisis why Nacozy’s manifold correction scheme
s. As one of the geometric integration algorithms,can improve the precision of numerical integration.
symplectic integratorsRuth 1983 Forest & Ruth 1990 However, Hairer et al. (1999 found that this algorithm
Wisdom & Holman 1991 Zhong et al. 2010Wu & Xie  was not effective in the simulation of a five-body problem
201Q Meietal. 2013k can maintain the symplectic involving the Sun and four outer plane¥§u et al.(2006h
structure of the system. Extended phase-space metho@807 pointed out that this algorithm does not work very
(Pihajoki 2015 Liu et al. 2016 Luo et al. 2017Li & Wu well if only the total energy integral is preserved, but
2017, as explicitly symplectic-like or symmetric schemes, can exhibit good performance if all the individual quasi-
are mainly utilized for inseparable Hamiltonian systemsintegrals are corrected. The quasi-integrals are slowly-
Energy-preserving algorithmB8écchini et al. 20182019  varying quantities of each body that moves in a Keplerian
Hu et al. 2019 are generally implicit and nonsymplectic. orbit affected by a small perturbation. The slowly-varying
Furthermore, they can exactly conserve the energy integrguantities obtained from their integral-invariant redats
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(Huang & Innanen 1983Mikkola & Innanen 2002 are (2004, the method ofMa etal. (2008 is a one-step
regarded as reference values to correct the numericabrrection method. Five independentintegralsthe three
solution. This is because they are more accurate than thosemponents ofL. (L., L,, L.) and thez-component of
that are directly determined by the integrated positioms anP (P,) are approximately and simultaneously satisfied
velocities. Here are some details of the related manifoldh the method ofMa et al. (20080). The consistency of
correction methods as follows. For the pure Kepleriarthese integrals means the improvement of errors for all the
problem, there are seven conserved quantities includingrbital elements of each body.

five dependent integrals in relative coordinates, the Keple  Unlike the methods dfukushimg2004 andMa et al.
energy K, the momentum vectod. and the Laplace (2008h), a new manifold correction method will be
vector P. The seven conserved quantities are closeldescribed in this paper. The correction vector of the
related to the orbital elements. The Kepler energy directhinew method is obtained directly by solving a set of
determines the semimajor axis and the mean anomalyonlinear equations. Although the nonlinear equations
The eccentricity is calculated from the magnitude®f are underdetermined, the Newton iterative method with
and the argument of perihelion is determined by the singular value decomposition (SVD) is helpful to solve
component of P. The orbital inclination and longitude them.

of ascending node are given by the magnitude and three

components ofL. It means that the precision of orbital 2 ANEW MANIFOLD CORRECTION SCHEME
elements for each body can be improved effectively if the FOR PURE KEPLERIAN SYSTEMS

Kepler energyk,, the Laplace vecto” and the angular In this section, we construct a new correction scheme for

.momenj[um vectoL are conserved S|multaneou§Iy at eacha pure Keplerian problem and evaluate the effectiveness of
integration step. For av-body problem, these integrals the new scheme

are no longer invariant quantities. However, with the help

of the integral invariant relations, the varying quangtie 21 A PureKeplerian System
can also be used as the correction reference values.
Nacozy's manifold correction method is still effective. A pure Keplerian problem is a two-body problem without
Based on this, numerous extended Nacozy’'s manifolgherturbation. In the relative coordinate system, the Keple
correction methods have been developed. Some examplegergy is

are the velocity-position scaling method-ukushima K— v_2 o )
2003¢ Liu & Liao 1994; Fukushima 2003k, 2004 2 r

Ma et al. 2008p and velocity scaling methodMaetal. K is an integral constant. The equation of the relative
2008ca; Wu et al. 200J. These methods have greatly motion is

improved the accuracy of numerical integration. The dv = — (ﬂ) r, )
manifold correction scheme ofaetal. (2008 has dt rd

been applied to elliptic restricted three-body problem&Verer = (@,9,2)" 0 = (£,9,2)", p = G(M + m)
(Wang et al. 201pand dissipative circular restricted three- 21d” = || represent position vector, velocity vector, the
body problems \Wang etal. 2018 As a point to note, gravitational parameter and radius, respectively.

there are two correction methods, the linear transformatio Clearly, the a.ngular momentum \(ector andthe Laplgce
with single-axis rotation method oFukushima(2004 vector are also mteg.ral constants in the pure Keplerian
and the extended approximate manifold correction methoBrOblem' They are written as

of Ma et al. (2008B. It has been reported that they can L=rxv, P=vxL— (H) r 3)
improve the accuracy of all the orbital elements of each ) " .

body. The first methodFukushima 2004is a rigorous In fact, only five of these conserved quantities are
method that requires two steps to maintain the Keplepompletelymdependent because

energyk, the momentum vectadk and the Laplace vector P.L=0, P—-2KL=_p" 4)

H 1 . !/ !/
P.Inthe first step, the rotation mati: (r, v) — (r',v')  Note thatk, L and P can directly determine the orbital
is introduced to maintain the consistency of the orbital

elements:, e, I, w and)

angular momentum vector, so as to adjust the direction " P
of position » and velocity v. In the second step, the a==55 €=
rotated position”’ and velocityv’ are linearly transformed a
!/ / !/ / LZ . Pz
(r',v") — (sz7r',s,(v" — ar)), so that the corrected I = arccos - ) w=arcsin — ) (5)
position and velocity strictly satisfy the three equations esm
L

related toK, P and L. Unlike the method oFukushima Q) — arctan < z ) _
—L

<
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Here,I, Q andw areintheranges df < I < 7, 0 <

Q < 27 and0 < w < 2, respectively. The location of
Q on the orbital plane is decided by the signs/gf and
L, and the location ok is based on the signs ¢, and
P,cosQ) + Pysin€. For the sixth orbital element, the mean
anomaly) is related to the mean motion specified by the
Keplerian energy.

Because only five of the seven equations are completely
independent, Equatiori () is underdetermined. A method

to solve such a problem is described in ApperalixVhen

s is obtained, the adjusted vectsi*(s) will be used as
the initial solution for the next step in the integrationrFo
simplicity, we call the new method “M1”. Note that the
form of the correction vector is not arbitrary, and the reaso

2.2 Construction of the Algorithm for such an operation will be elaborated on in Secfich

For the pure Keplerian system, ¢ = For comparison, the existing methods Fidkushima
(K, Lq, Ly, L., P, Py, P.)" are conserved quantities and (2004 and Ma et al. (20088 will be called “M2” and
can be expressed &8: (), ¢2(x), ..., 7 (x))". Theyare  “M3”in the next section, respectively.

Ap(x) = ¢p(x) —c =0, (6)
where ¢(z) = (¢1(x), d2(z), ... o7 (2)", = =

b, 9,2)T ande = eer)T tth .

(,9,2,4,4,2)" andc . (e, e1, ..., ¢7) " represen e In order to evaluate the numerical performance of M1, we
seven conserved quantities, the state vectorandtheahtegg ke the simplest two-body probler) fwith =1 test
constant vector, respectively. However, usudlig(x;) # ake the simplest two-body problert) Wwith x=1 as a tes

g . . _model. The initial orbital elements ate= 2, e = 0.1,
0 because of the errors in the numerical calculation

. 1 = 23° Q = 50°, w = 30°and M = 40°. A fifth-
In order to pull the solution back to the hypersurface, _ . : .
+ order Runge-Kutta integrator (RK5) with a fixed time step
the seven parameters = (s1, s2, S3, S4, S5, S6, S7)

are introduced to construct a correction vectgs) — of 1/100 for the period!’ is selected as a basic numerical
(51201, 291, 8321, Sa21-+8721, S53j1 +57Y1, S671+5721) T integrator. The analytical solution is taken as the refeegen
1461, 92Y1, 93<1, 94L1 74159541 7Y1,96~1 7<1) -

e(s) values are utilized to adjust the numerical solutign value in the pure Keplerian problem.

2.3 Numerical Tests

with the form of As plotted in Figurel, the accuracies of all orbital
. r - elements are greatly improved for M1, M2 and M3,
x" = (v* ) = (v1 ) +e(s), (7)  compared to those for RK5. However, M1, M2 and M3
have some differences in the corrections of individual
which satisfies Equatioré} orbital elements. In Figurd(a) and1(b), M1, M2 and
Ap(z*(s)) = 0. 8) M3 have thg sgme pgrformance in suppressing thg error
of the semimajor axisz to the order of the machine
Equation 8) can also be written as epsilon. However, at the end of integration, the accuracy
v of the mean anomaly/ for M3 is lower in magnitude
K- 9 0, by about two orders than that for M2, and the errofin
L—r*xv* =0, (9) for M1 gradually approaches that for M2. The reason is
" that the adjusted numerical solution accurately satidfies t
P—v"xL— (r_*) r*=0. Keplerian energys in M2, while approximately satisfying

the equation ofK through the iterative method in M1.
However, M3 linearly satisfies the equation &f, so the
correction of K by M3 is poorer than that by M1 and
1 . . . M2. In Figure 1(c) and1(d), M1 is slightly better than
E((&m +87?)2 e +,S7I§1:)2((]86x1 +ora1)’) M2 and l\% in Ehie corre(ct)ion of eccgntri)(/:iw, and the
32;/1((9;;;;12:(;:;11))2i(;;2)(23511 - readjustment of the argument of periheliorby M1 and
M2 is slightly better than by M3. That is, M3 is the poorest

)=0
s321 (8471 + s7x1) — s121(s621 + s7x1) =0 . ) ) .
s121 (8571 + $721) — S2y1(s4z1 + s721) = 0 in correcting the Laplace vectdt. Here is an explanation

Obviously, Equation) can be expanded to a set of
nonlinear equations abost

Ag(s) = { L=(s571 + s721) — Ly (621 + s721) for these different results. The three component®aire
T ooenoronye =0 kept for M1, and the two related components are conserved
La(s61 + s721) — L (5421 + s71) for M2. However, onlyP, is preserved for M3. Finally,
f\/(Sm)2+’€:Zi)2+(5321)2 — Py =0 as displayed in Figuré(e)- 1(f), M1, M2 and M3 have
Ly(s4@1 4 s7x1) — L (s5@1 + s721) the same effect on the errors of orbital inclinatibrand
T - P, =0 longitude of ascendin, and the errors almost reach the

T VG1w1)2+(5291)% + (5371)2 . .
o . o (10)  order of the machine epsilon. That means that M1, M2 and
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Fig.1 Errorsin the Keplerian elements of the pure Keplerian anéigrated by RK5 and the manifold correction schemes
M1, M2 and M3 with eccentricity = 0.3. The units of all angle variables are radians, and the ufitime are the orbital
periodT. The step size for each method/ig100. The notations#100, «1000, *1000” mean that the errors are multiplied
by factors of 100, 1000 or 10 000 respectively for M1, M2 or M3.

M3 have the same performances in the conservation of thEherefore, M1 and M2 are superior to M3 in the correction
angular momentum vectdr. of the relative position.

Next, let us consider the influence of the variation of
As seen from the relative position errors in Fig@e eccentricities on the correction effectiveness. We fixahit
the difference between M1 and M2 is not obvious when therbital elements, = 2, I = 23°, Q = 50°, w = 30° and
integration time spans) 0007". The methods M1 and M2 M = 40°, but let the orbital eccentricity be altered from
have higher accuracies in magnitude by about six order8.1 to 0.7 with an interval of 0.01. The integration time of
than RK5, and in magnitude of about two orders than M3each orbit isL0 0007". It can be seen from Figu&that for
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system. Now, let us estimate the correction effectiveness
of the three methods.

The above Kepler problem is still used to check the
numerical performance of M1IM1” and M1. The initial
conditions and the basic numerical integrator are the same
as those in SectioR.3 Figure 4 depicts the growth of
the errors in the conserved quantities for an orbit with
eccentricitye=0.1. First, M1 and M1 achieve almost the
same good effectiveness in controlling the errors of all
the conserved quantities in Figude The errorAP, is
slightly larger in magnitude by 0-10.2 orders for M1
05 L0 L5 20 25 30 35 40 than for M1 in Figure4(f). That is to say, althougt®,

logpt (1) is not directly contained in M1it can be auto-corrected
to a large degree. However, the higher-precision results
that are obtained in this case cannot be guaranteed in any
other cases. However, they are always ensured for M1, and
the cost of additional computation is negligible. Therefor
M1 is a prior choice. By comparing Mland M1, we
find that the accuracies of Mlare lower in magnitude
)E)y about one order than those of M1 in the correction of
L, and L,,. In addition, MY’ is slightly poorer than M1
for the corrections of., P, andP,. In fact, five integrals
are not well maintained by M1 To clearly demonstrate
this, we list the singular values of the three methods when
the linear equations are decomposed by SVD at some

An appropriate choice of the conserved quantities anﬂmes in Table2. Five singular values of the equations are

the m.Od'f'ed vector is very important. As st-a.ted " honzero in M1 and M1 Equivalently, the corresponding
Equation @), there are seven conserved quantities, bufive integrals can be maintained well. However, one of

ohnly f'v?f OI: thfgm -a:je con;pletgly mdtTpendeEt. In thl(lathe five singular values is zero in K11 This implies that
theory, If the five independent integrals are kept we ‘only four of the five integrals are validly preserved in

the two other dependent mtegral; are ) also.. HoweyeEhe calculation. It is obvious that M1 is superior to f11
they may not be from a numerical viewpoint. This

@

log,, (|ar|/r)
I

Fig.2 The errors in the relative positions for the pure
Keplerian orbit.

any one of the three correction methods, the errois &f
and() can remain stable with an increase in the eccentricit
e, and the accuracies afande gradually increase, but that
of M decreases.

2.4 Discussions

) ) These results are consistent with those in Figurés a
!S why the clonservatlon of the seven dependgnt angonsequence,the selection of the correction vegtey in
independent integrals, called the method M1, is CONt/1 s appropriate.
sidered. Besides M1, the conservation of six dependent

and independent integrals (called method’Mdnd that
of five independent integrals (called method ‘Nlare

listed in Table 1-TF0r MY, we use six parameters gyasi-Keplerian orbits. Here, the quasi-Keplerian orbits
/ / / / 1 . .
s’ = (s],85...,55)" to construct new correction vector yepresent the Kepler orbits affected by small perturbation

e'(s") = (siz1, shyr, 8521, 8471, shyj1, s571) T, and obtain

the corrected solutiom™ = x;, + &'(s’) to satisfy the six 31 The Perturbed Two-body System

conserved quantitiek’, L,, L, L., P, andP,. Then, a

problem is how to solve such a set of nonlinear equationsor a perturbed two-body problem, the relative motion is
abouts;(i = 1,2...,6). The iterative method described controlled by

in Appendix A is still used. In this way, the readjusted

3 EXTENSION TO QUASI-KEPLERIAN SYSTEMS

solution is obtained. For M4, the modified solutiong* = dv = — (%) r+a. (11)
x, + €' (s") satisfy the five integral¥, L, L,, P, and dt "

P,. Here,s" = (s{,s},...,s¥)T is the parameter vector Herea is a perturbing acceleration.

ande”(s") = (sfx1,s5y1, 8521, 8)41 + stxy, siyr + It should be noted thakl, P and L are no longer

styy, 871 + s¥21)T is the corresponding new correction integral constants and become slowly-varying quantities i
vector. Similarly, the corrected solution is obtained bythis system. Like those in Sectidh2, the seven slowly-
the iterative method solving a five-dimensional nonlineavarying quantities can be written @s(¢t, ) = ¢;(t)(i =
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Table 1 The forms of M1, M1 and MY’ are presented in this table. Hereis a parameter vectoe. is the correction
vector andp is a set of conserved quantities.

Method s € (0]
S$1T1, S2Y1, S321, S4T1 + S7T1, K, Ly, Ly, Lz,
M1 $1, 89, 83, S4, S5, S6, S7) L ( L .
(51, 82,3, 34, 85, 86, 57) s5Y1 + S7Y1, 5621 + s721) T Py, Py, P,
! ' ! / ' ! 1\T ! ! ! ! VS o \T K,Lx,Ly,Lz,
M1 (81, 85, 835 845 55, 56) (sh@1, 8591, 8321, $421, 541, 621) Py, P,
" " " ", 1"
M1/ (8” s gl gl S//)T (315’31732?417332173411 +35$17 K, Ly, Ly, P,
", " " 1"
1:°2:%3:74°°5 sYyr + sty1, s Z1 + st z1) P,
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Fig.3 Dependence of the eccentricity on the integration erroithénKeplerian elements for several algorithms. The
magnitude of the orbital eccentricity varies from 0.1 to @ith an interval of 0.01, and each orbit is integrated tik th
time reached00007".
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Fig.4 The errors in the conserved quantities for a pure Kepleriait ith eccentricitye=0.1, given by RK5 and its
correction M1, M1” and M1.
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Table 2 The singular values of the equations are listed from theektrtp the smallest when decomposing the linear

Y. Chen et al.: A New Correction Method for Quasi-Keplerian Orbits

equations with SVD at some times.

The Singular Values

Method Time (T)

9 3252 5927 8308 1000
3.12201220558961 2.78181812405576 3.12201221280423 22(BL221566548 2.78181816346293
1.94250895238320 1.86827315178044 1.94250885182877 4250881212345 1.86827303596444
0.707305620343333  0.754983459415598 0.70730562270883507305623643913  0.754983466482571

M1 0.481660111360378  0.464906262903175 0.481660102613834881660099160655 0.464906230152241
0.288114413481869  0.346893992951316  0.28811442391450288114428031266  0.346894025161191
0.000000000000000  0.000000000000000  0.00000000000000@00000000000000  0.000000000000000
0.000000000000000  0.000000000000000  0.00000000000000@00000000000000  0.000000000000000
1.90585641255004 1.82513228900990 1.90586003470393 0586949214838 1.82513644377474
0.623384135039900 0.760341114341583 0.62338341847330%523383130147222  0.760338527764295

M1/ 0.580340314386519  0.665518084870883 0.58033747848550680336337386044  0.665518161683883
0.300543512542193  0.304760732845583  0.30054397393940300544159591971  0.304760891157126
0.100451312700609  0.119914367532845 0.10045125703046800451234632653  0.119914324278903
0.000000000000000  0.000000000000000  0.00000000000000@00000000000000  0.000000000000000
2.85428942302834 2.19466753168822 2.85428935167753 5428832374321 2.19466741781362
1.23576224456404 1.48642223104468 1.23576221513671 3576220357739 1.48642219737270

M1 0.594403383793914  0.644938698109366  0.59440340070325594403407327637  0.644938708695499

0.134194567655502
0.000000000000000

0.110528910893960
0.000000000000000

0.13419456799650.334194568130963
0.00000000000000:@00000000000000

0.110528910340996
0.000000000000000

Table 3 The errors of the positions and velocities for each innemgtigporoduced by RK5 and its manifold methods M1,

M2 and M3 at some times.
Time (yr)  Method | A7 ||
Mercury Venus Earth Mars Mercury Venus Earth Mars
RK5 1.15E-07 5.17E-10 3.77E-11 1.17E-12 9.03E-09 7.31E-1293E-13 1.54E-14
1 M1 1.15E-09 1.11-14 1.50E-13 2.70E-13 1.70E-10 2.08E-1555B-15 3.70E-15
M2 1.05E-09 1.39E-14 1.09E-13 2.30E-13 1.60E-10 2.51E-1592R-15 3.08E-15
M3 1.09E-08 1.86E-12 6.09E-13 2.91E-12 1.07E-09 1.85E-1434HB-15 6.26E-15
RK5 1.54E-02 9.31E-05 1.72E-05 1.41E-06 1.20E-02 2.57E-0B96E-07 1.31E-08
2370 M1 8.31E-05 1.75E-10 5.96E-11 5.20E-10 6.62E-06 4.34E-1249HB-12 9.63E-12
M2 8.89E-05 2.15E-10 4.44E-11 3.54E-10 7.09E-06 5.44E-1262E-12 8.33E-12
M3 8.27E-05 1.30E-08 1.17E-07 7.13E-08 6.59E-06 3.60E-1002E-09 6.99E-10
RK5 1.12E-01 6.37E-04 1.59E-04 1.77E-05 7.77E-03 1.77E-0B75E-06 1.67E-07
7572 M1 4.66E-04 1.93E-09 2.58E-10 1.22E-09 2.85E-05 5.67E-1125B-11 3.88E-12
M2 4.73E-04 1.56E-09 5.02E-10 8.03E-10 2.90E-05 4.67E-1194K>11 8.12E-12
M3 5.83E-04 5.72E-08 5.41E-08 3.29E-07 3.57E-05 1.59E-0902H-09 3.09E-09
RK5 6.63E-02 1.99E-03 1.91E-04 2.26E-05 4.34E-03 5.56E-0%29E-06 2.30E-07
9954 M1 9.538E-04 1.35E-08 1.62E-10 5.74E-11 5.86E-05 4.60E-1D17E-10 7.41E-11
M2 9.65E-04 1.44E-08 5.70E-10 5.01E-10 5.94E-05 4.88E-1012H-10 7.13E-11
M3 1.19E-02 1.30E-07 8.03E-08 4.48E-07 7.33E-05 3.71E-0954H-09 4.00E-09

1,2...7), wherec;(t) is a set of slowly varying quantities and P which are respectively provided by the initial

with time. The integral-invariant relations &f, P and L

were presented iRukushimg2009 by,

aK _
dt
aP
dt

The right-hand sides of Equation$2j are usually small
guantities, so we insehK = K — Ko, AL = L —
Ly, AP = P — P, instead of K, L, P at the left-

dL
— =7 Xxa,

a
T dt

(12)

=2(a-v)r —(r-a)v—(r- v)a.

positions and velocities. It has been reported that theegalu
of K, L and P obtained by simultaneously integrating
Equations 1{1) and (2) are more precise than those
yielded by substituting the numerical solutidmn,v)

into Equation 1) and Equations3) (Huang & Innanen
1983 Mikkola & Innanen 2002 Therefore, the reference
values of the slowly-varying quantities are given by the
integral-invariant relations1@). For the perturbed two-
body problem, the calculations are the same as those in
the pure Keplerian problem, but the difference lies in that

hand sides of the equations so as to reduce round-offie conserved quantities for the latter are replaced by

errors. Ky, Ly and P, are the initial values ofi(, L
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Fig.5 Errors of all orbital elements for Mercury in the inner sagstem when several methods are applied.

the slowly-varying quantities from the integral-invarian 3.2 Thelnner Solar System

relations for the former.
To compare the effects of M1, M2 and M3 in a multi-
body system, we take the inner solar system composed of
the Sun, Mercury, Venus, Earth and Mars (here, “Earth”
Each body in a multi-body problem is a perturbed two-refers to the Earth-Moon barycenter) as an example of
body problem. Similarly, it has the equations of motionmulti-body problems. In a heliocentric frame, each planet
like Equation (1) and the evolution equations of the is viewed as a point mass:; with position r;. The
slowly-varying quantities like Equatiorilp). Therefore, Newtonian equation of motion for each planet is written
the correction method of the solution of the perturbed two-
i i 2
body problem is also suitable for that of each body of the 2y, _ 7G(M@ 4 mi)ri Cai (i=1.2...4) (13)

multi-body problem. dt2 r3
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Fig.6 Same as Figb, but for Venus.

1 1 planet are shown in Figurés-8. The related results are

ij ij
a;= ) e (rj=ri)= 3 a (14) presented in the following.
J=1,5% J j=lg#i J
wherea; is the perturbed acceleration of each planet The accuracies of all the orbital elements for M1 are
- o ' OIconsistent with those for M2 and are higher in magnitude
The initial conditions of each planet and the relate .
Ey about three orders than those for RK5. M3 is not as good

physical parameters are obtained from those in the JP . . .
lanetary ephemeris=JD2440400.5), DE430. The basic as M1 and M2 in the accuracies of some orbital elements.
P yep L i This is because the seven slowly-varying quantities of each

w;eigr:aitsogzgllljtui%ssg I?)ﬁ/lle;g(jrg’);egrtt)lg T ;’(teeri?) (Ijs g:g t(:]zybody are satisfied simultaneously in M1 and M2, but not in
length of integration time i20* yr. The higher precision

reference solutions are provided by&h-orderAdams — As stated in Maetal. (20080, the effects for
Cowell method. The errors in the orbital elements of eactimproving all elements of every planet in the perturbed
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Fig.7 Same as Fig5, but for the Earth-Moon system. We simply take the Earth-Megstem as a point mass at the
Earth-Moon barycenter. The Earth-Moon separation is soaatipared to the interplanetary separations.

problem are less than that those in the pure Keplerianorrection schemes, we list the errors of the position and
problem. The effects are also influenced by the semimajorelocity in Table3. As expected, M1 and M2 exhibit
axes. Mercury, Venus, Earth and Mars have differentypically better performance than M3. However, M1 and
semimajor axes corresponding to different periods. For th&12 have no obvious differences.

same step size, a smaller period means that the uncorrected

integrator exhibits poorer performance, but the correcteg CONCL USIONS

method has better effects.

The errors in the relative positions of Mercury, Venus,Unlike the rotation and linear transformation method of
Earth and Mars are presented in Fig@rélere, the results Fukushima(2004 (M2) and the correction approach of
in Figure 9 are almost the same as those in Figuses Maetal. (20089 (M3), a new extension scheme has
8. To more clearly demonstrate the effectiveness of théeen established here. For a pure Keplerian system, we
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Fig.8 Same as Figb, but for Mars.

introduce seven parametess= (si,ss,...,s7)T to the perturbed case, the reference solution&ofP and L are
modified vectore, and make the readjusted solution calculated by the integral-invariant relationsif P and
satisfy the seven independent and dependent quantitids
including the Kepler energy, three components of the
angular momentum vector and three components of the To evaluate the performance of the new method, we
Laplace vector. Then, the problem is how to solve such &ke the pure two-body problem and the inner solar system
set of nonlinear equations abosit The Newton iterative as tested models. For the new scheme, the errors of all
method combined with SVD is used to solve theseorbital elements can achieve the order of the machine
underdetermined equations, and the corrected numericapsilon in the pure Keplerian problem. In addition, the
solutions are obtained. The new method can be extendextcuracies of all the Keplerian elements for each planet
to a perturbed two-body or multi-body system. In thein the inner solar system can be improved typically by
the new correction method, compared with the uncorrected
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Fig.9 Errors of the relative positions for the four inner plan&sbfigures (a), (b), (c) and (d) respectively depict the
errors in relative positions of Mercury, Venus, Earth and$4a

integrator. The numerical performance in the correctiorcombined with the SVD method is applied to solve
of the seven slowly-varying quantities is more effectiveEquation 8). The specific operation process is as follows.
than in that of the five integrals. Especially, the variationAssume thatA¢(s) = 0 has an approximate roc,

of eccentricity does not affect the effectiveness of M1.and the set of nonlinear equations is expanded at this root.
Compared with M2, M1 almost has the same performanc&hen, we have

in suppressing the errors of all the orbital elements for ,

each F;)F())dy in t%e inner solar system. It means that the new Ad(s) ~ Ad(sk) = AP (sk)(s — sk). (A1)
scheme is feasible and effective. In fact, A¢(s) = 0 can be approximated as

/
Acknowledgements The authors are very grateful to Prof. Ad(sk) = A¢/(sk)(s = sk) = 0. (A-2)
Xin Wu and Prof. Yan-Ning Fu for valuable suggestionsEquation A.2 is an underdetermined system of linear
and discussions. This research was supported by theguations. That is to say\¢’(sk) is a singular matrix
National Natural Science Foundation of China (Grant Noswhose inverse does not exist. In this case, the SVD method
11703005, 11533004, 11178006, 11673071, 11263008 used to solve its pseudo inverde)’ ™ (s ). That is

and 11273066). A¢'*(sk) = V(sk)E (sk)U” (k). (A.3)

Appendix A: AN ITERATIVE METHOD Here,V is a7 x 7 unitary matrix,U is a7 x 7 unitary
matrix andX is a7 x 7 diagonal matrix with positive or

Equation B) is underdetermined. It means that the numberzero elements (the singular values). Settipg 1 = s, we
of independent equations is less than that of unknowhave the following iterative formula

variables. The Newton iteration method cannot solve this - e B

kind of system of equations. Fortunately, the SVD method Skt1 = 8k — AGT (sk)Ad(sk), k=0, 1. (A4)
is helpful to solve the underdetermined linear equationsn this way, the roots* of Equation 8) can be obtained.
(Press etal. 1992 Thus, the Newton iterative scheme Finally,z* = x; + e(s*) is given.
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