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Abstract As the performance of dedicated facilities has continually improved, large numbers of pulsar

candidates are being received, which makes selecting valuable pulsar signals from the candidates challeng-

ing. In this paper, we describe the design for a deep convolutional neural network (CNN) with 11 layers

for classifying pulsar candidates. Compared to artificially designed features, the CNN chooses the sub-

integrations plot and sub-bands plot for each candidate as inputs without carrying biases. To address the

imbalance problem, a data augmentation method based on synthetic minority samples is proposed accord-

ing to the characteristics of pulsars. The maximum pulses of pulsar candidates were first translated to the

same position, and then new samples were generated by adding up multiple subplots of pulsars. The data

augmentation method is simple and effective for obtaining varied and representative samples which keep

pulsar characteristics. In experiments on the HTRU 1 dataset, it is shown that this model can achieve recall

of 0.962 and precision of 0.963.
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1 INTRODUCTION

Searching for pulars is an important frontier in radio as-

tronomy. Scientists are paying more attention to pulsars

because of their broad impact across physics, astronomy,

astronautics (Cordes et al. 2004; Lorimer et al. 1998;

Lyne et al. 2004; Hobbs et al. 2009; Sheikh et al. 2006),

etc. Many dedicated surveys have been used to search

for more pulsar signals, such as the Parkes Multi-beam

Pulsar Survey (PMPS, Manchester et al. 2001), High Time

Resolution Universe (HTRU, Keith et al. 2010) survey

and so on. With the advent of large-scale facilities that

can conduct such surveys, such as the Five-hundred-meter

Aperture Spherical radio Telescope (FAST, Nan et al.

2011) and the Square Kilometre Array (SKA, Smits et al.

2009), weaker pulsar signals can be received, although be-

ing mixed with more and more noise or radio frequency

interferences (RFIs), which makes it difficult to identify

valuable suspected pulsar signals from large numbers of

pulsar candidates. Researchers have applied many success-

ful methods to select pulsar candidates, including manual

selection (Stokes et al. 1986; Johnston et al. 1992), selec-

tion with graphical tools (Faulkner et al. 2004; Keith et al.

2009), ranking and scoring approaches (Lee et al. 2013)

and machine learning methods (Eatough et al. 2010; Bates

et al. 2012; Morello et al. 2014; Zhu et al. 2014; Lyon et al.

2016; Devine et al. 2016; Tan et al. 2018; Guo et al. 2017).

In related works, supervised machine learning meth-

ods have become more significant and the major methods

in classifying pulsar candidates.

The first published work which attempted to use a ma-

chine learning approach to select candidates is Eatough

et al. (2010). They implemented artificial neural networks

(ANN) with 12 designed experimental features as input

vectors. Then Bates et al. (2012) and Morello et al. (2014)

performed some work to improve the performance by op-

timizing designed features with ANN. In these methods,

the designed features relied on human experience, and may

carry unexpected biases against particular types of pulsar

candidates (Morello et al. 2014; Lyon et al. 2016). To ad-

dress these problems, Lyon et al. (2016) and Tan et al.

(2018) selected fundamental and statistical features which
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aimed to minimize biases and selection effects (Morello

et al. 2014) to provide better generalization performance.

In addition to these approaches with artificially de-

signed features, data-driven methods also play an impor-

tant role in this field. Zhu et al. (2014) developed the

Pulsar Image-based Classification System (PICS) by us-

ing a group of supervised machine learning approaches. It

produces classification based on image patterns. The inputs

are four important diagnostic plots of candidates rather

than extracted features. This avoids possible shortcomings

in artificially designed features and relying on excessive in-

formation. It has been validated to have a superior ability

at recognition in the PALFA survey pipeline and has dis-

covered six new pulsars. To address class imbalance prob-

lems in pulsar candidates, Guo et al. (2017) used a Deep

Convolution Generative Adversarial Network (DCGAN,

Radford et al. 2015) to generate more candidates and auto-

matically extract deep features at the same time. Then they

used deep features to classify data, which helps to make

the classifier more accurate.

In this paper, we take a step towards improving per-

formance by the data-driven method. We designed a deep

convolutional neural network (CNN) with eight convolu-

tional layers, one flatten layer and two fully connected lay-

ers. The inputs are the sub-integrations plot and sub-bands

plot in each candidate rather than artificially designed fea-

tures. To improve class balancing, we designed a simple

and useful approach to synthesize more diverse pulsar can-

didates. New samples were synthesized by adding up mul-

tiple subplots of pulsars after maximum pulses of pulsars

were shifted to the same position. We tested our model on

the HTRU 1 dataset. The results show that our model can

provide satisfactory results on both recall and precision.

This paper is organized as follows: In Section 2, the dataset

applied for training is introduced. Section 3 describes the

data augmentation method for pulsar candidates. Section 4

introduces the network architecture and training details.

Section 5 presents the experimental results of our model

and analyses of its performance. Finally, Section 6 is the

conclusions of our work.

2 DATASET

To train and test our model, we need labeled convictive

datasets. At present, there are relatively few public labeled

datasets. The most common one is the HTRU 1 dataset1,

produced by Morello et al. (2014).

This dataset is a part of the outputs from new process-

ing of HTRU intermediate Galactic latitude data (Morello

et al. 2014). It contains 1196 pulsars from 521 distinct

1 http://astronomy.swin.edu.au/˜vmorello/

sources with varying spin periods, duty cycles and signal to

noise ratios (SNRs). Furthermore, it has 89 995 non-pulsar

candidates. It has been examined in some recent works

(Morello et al. 2014; Lyon et al. 2016; Guo et al. 2017;

Ford 2017). In this paper, we implemented it to train and

measure our model.

Figure 1 is an example of a pulsar candidate (pul-

sar 0023) in the HTRU 1 dataset with its four most im-

portant subplots. The first subplot is a folded profile plot.

It was obtained by summing the signal in all frequencies

and periods. The pulse profile of a typical pulsar would

be composed of one or several narrow peaks above the

noise floor. The lower left one is the sub-integrations plot,

and it is obtained by summing the data from different fre-

quency channels. It reflects the intensity of the signal dur-

ing the observation time. For an ideal pulsar signal, the sig-

nal would be observed throughout the observation period,

so one or several vertical stripes will form corresponding

to the peak positions in the profile curve. The sub-bands

plot is at the upper right. By summing data over all peri-

ods, it reflects the intensity of the signal at different fre-

quencies. Since radio pulsars are broadband, there should

be one or more vertical stripes in most frequencies. In the

dispersion measure (DM)-SNR curve at the lower right,

the SNR as a function of DM is recorded. As the pulse

passes through the interstellar medium, it would disperse.

The dispersion curve shows the corresponding SNR of the

pulse curve when different dispersion values are used for

de-dispersion. Therefore, if it is a pulsar signal, the curve

will have a peak at the non-zero position, which means the

correct value is used for de-dispersion.

In the training process, the inputs are the sub-

integrations subplot and sub-bands subplot of each candi-

date. In HTRU 1, the data size of subplots in each can-

didate may be different. For convenience when extracting

features, each subplot data point was resized to the same

size, 64×64. The HTRU 1 dataset is very imbalanced (ap-

proximately 1:75). As is well known, class imbalance has

a negative effect on the performance of the resulting clas-

sifiers (He & Garcia 2009; Buda et al. 2018). So, before

training our model, it is necessary to address this effect.

3 DATA AUGMENTATION

In this section, the data augmentation methods that are em-

ployed to address class imbalance are introduced. In deep

learning, data augmentation techniques, such as rotation,

rescaling, shifting, shearing, local warping, adding noise,

etc., are frequently applied to increase the diversity of the

classes and reduce overfitting of the model. In this situa-

tion, we need more pulsar candidates for training, but the

traditional techniques (such as rotation or shearing) are not
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Fig. 1 A pulsar example (pulsar 0023) from the HTRU 1 dataset. The four subplots are the folded profile plot (upper left), sub-

integrations plot (lower left), sub-bands plot (upper right) and DM-SNR curve (lower right).

Fig. 2 An example of image synthesis. From left to right are pulsar 25, pulsar 62, pulsar 147, one of the synthetic samples without

firstly adjusting pulse positions and one of the synthetic samples after firstly adjusting pulse positions (α = β = γ =
1

3
). The upper

row displays the sub-integrations plots and the lower row depicts the sub-bands plots.

suitable for pulsar characteristics. Considering this, a sim-

ple and specific image synthesis approach is designed to

“generate” more pulsar candidates.

Our method is an oversampling method based on mi-

nority synthetic samples. The details are as follows:

(1) Translating the maximum pulse to the same middle

position for all pulsar candidates.

(2) Randomly selecting three candidates A, B and C

from training pulsar sub-dataset every time.
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(3) Adding up their corresponding sub-integrations

plots or sub-bands plots with random coefficients.

sub int(new) =α · sub int(A) + β · sub int(B)

+ γ · sub int(C) ,
(1)

sub band(new) =α · sub band(A) + β · sub band(B)

+ γ · sub band(C) ,

(2)

where α + β + γ = 1, and α , β and γ are randomly

selected.

(4) Repeat steps 1−3 until enough samples are pro-

duced.

In this way, some new pulsar candidates were gen-

erated as supplementary positive samples in training. It

should be noticed that making an adjustment to pulse po-

sitions before selecting samples in step 1 is necessary to

keep the characteristics of pulsars. Because positions of

pulse phase for different pulsars varies, adding up multi-

ple subplots in the above method may lead to multi-pulse

plots, which are mussy and may change the sample dis-

tribution (an example is shown in Fig. 2 column 4). The

inputs are subplots with the same size, so this method did

not use features of varied pulse width directly. In each sub-

plot, vertical stripe width is related to its pulse width. When

adding up different subplots, this aspect will influence the

intensity or width of vertical stripes, and enhance diversity

of training data. In addition, to further increase diversity,

pulse position of positive pulsar candidates can be shifted

randomly, when the generative process has finished.

Figure 2 shows a synthetic sample. In this figure, the

upper row is sub-integrations plots and the lower row is

the corresponding sub-bands plots. The first three columns

are data from three pulsars. The fourth column is one of

their failed synthetic samples without making adjustment

to pulse positions before applying steps 2 and 3. In the last

column, one of the correct synthetic samples is displayed.

The new synthetic sample exhibits different noises and sig-

nal strengths that correspond with the original samples.

In order to investigate the distribution of new sam-

ples, Figure 3 depicts a visualization of 500 original pul-

sar samples and 500 synthetic samples shown by us-

ing t-distributed Stochastic Neighbor Embedding (t-SNE,

Der Maaten & Hinton 2008). The t-SNE is a non-linear di-

mensionality reduction algorithm utilized for visualization.

In Figure 3, the corresponding high-dimensional data are

reduced to two dimensions for visualization. These syn-

thetic samples keep the characteristics of original samples

while having some changes in the strength of signals or

noise.

Table 1 Number of Samples in the Three Parts

Part All Pulsar Non-pulsar

Training set 75 507 21 510 53 997

Validation set 18 240 240 18 000

Testing set 18 240 239 17 799

Table 2 Performance of Different Methods on the HTRU 1
Dataset

Reference Method Recall Precision F-Score

Guo et al. (2017)

CNN-1 0.956 0.950 0.953

CNN-2 0.953 0.951 0.952

DCGAN-SVM-1 0.963 0.965 0.964

DCGAN-SVM-2 0.966 0.961 0.963

Our method
DCNN-C 0.851 0.848 0.849

DCNN-S 0.962 0.963 0.962

4 MODEL

4.1 Convolutional Neural Networks

In this section, CNNs are briefly introduced. CNNs have

achieved outstanding performance in computer vision,

speech recognition and natural language processing in re-

cent years (Nielsen 2015). Many CNN modules have been

designed for different tasks, such as AlexNet (Krizhevsky

et al. 2012), VGG (Simonyan & Zisserman 2015), ResNets

(He et al. 2016), CapsuleNet (Sabour et al. 2017), etc.

These models have become deeper and more complex to

meet the needs of different tasks.

A typical CNN has convolution layers, pooling layers

and fully connected layers. Convolution layers are used

to extract features. In convolution layers, convolution is

a specialized kind of linear operation (Goodfellow et al.

2016) on feature maps from previous layers with learn-

able kernels. Then an activation function (such as sigmoid,

hyperbolic tangent, softmax, rectified linear unit or Leaky

ReLU) makes a linear or non-linear operation on the out-

put of the kernels to form the output feature maps. In this

way, each of the output feature maps can be combined with

more than one input feature map (Alom et al. 2018). The

new feature maps will be the inputs of the next layer. The

convolution can be expressed as

xl
j = f(

∑

i∈Mj

wl
ij ∗ xl−1

i + bl
j) , (3)

where xl
j is the output of the current layer, xl−1

j is the pre-

vious layer output, wl
ij is the kernel weight for the present

layer, bl
j is the biases for the current layer and f represents

the activation function.

Pooling layers are usually sandwiched between con-

volution layers. They represent a down sampled opera-

tion (such as average pooling or max-pooling) on the in-

put maps to compress data and reduce overfitting. Fully

connected layers are usually at the ends of CNNs. They
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Fig. 3 Visualization of plots using t-SNE. ‘•’ marks the 500 original pulsar data, while ‘⋆’ signifies 500 synthetic samples. The left

panel is based on sub-integrations, and the right one is based on sub-bands. We can find that these synthetic samples vary slightly from

the original data.

Fig. 4 The CNN architecture implemented in this design. This model takes in grayscale subplots with size 64× 64× 2 and outputs the

classification probability scores for two classes. The network has a total of 11 layers with eight convolutional layers, one flatten layer

and two fully connected layers.

are used to integrate extracted features from the preceding

layers and output the score of each class. In general, there

would be a flatten layer before fully connected layers are

used for flattening any input tensor into a vector.

4.2 Model Architecture

For this classification task, a deep CNN model was de-

signed with eight convolutional layers, one flatten layer

and two fully connected layers. The network takes sub-

integrations plots and sub-bands plots as inputs. The input

size is 64 × 64 × 2, and outputs a tensor of size 1 × 2,

which means the predicted probability of a non-pulsar or

pulsar, respectively. The network architecture is shown in

Figure 4.

In the convolutional layers, Leaky ReLU was chosen

as the activation function, and ReLU and sigmoid activa-

tion was used for the two fully connected layers respec-

tively.

In order to reduce overfitting, some useful techniques

were used, including batch normalization (Ioffe & Szegedy

2015), dropout (Hinton et al. 2012) and L2 regularization.

We added batch normalization with a momentum of 0.9

before each activation layer. This has been demonstrated

to help accelerate training processes (Alom et al. 2018).

Then, dropout was applied with alpha of 0.25 after each ac-

tivation in all convolutional layers and an alpha of 0.55 for

the first fully connected layer. The key idea of dropout is

to randomly delete some units during training (Srivastava

et al. 2014) with a fixed probability (alpha). In addition,

L2 regularization incorporates a regularization term on the

cost function for weight decay. In this model, we used L2

regularization with a parameter of 0.02.

4.3 Details

The loss function utilized for optimizing the model is a bi-

nary cross-entropy cost function. The binary cross-entropy

cost function can be expressed as

L = −

1

n

∑

x

[y ln ŷ + (1 − y) ln(1 − ŷ)] , (4)
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Fig. 5 The learning curve of one training process.

Fig. 6 Visualization of 32 feature maps from the first convolutional layer of the network. Each row has eight feature maps.

where the sum is over all training inputs x, n is the total

number of training data, and y is the actual label with ŷ

being the corresponding predicted label.

Our model is optimized using a first-order gradient-

based optimization algorithm called Adam with default pa-

rameters (Kingma & Ba 2015) and a batch size of 512.

In each epoch, 512 candidates are randomly selected as a

batch from the training set to train the model and update

parameters, which will repeat until all training data have

been used. The implementation is based on Python 3.6 and

Keras 2.2.4.

5 RESULTS

5.1 Evaluation Metric

To provide comprehensive assessments of model perfor-

mance on this imbalanced dataset, we examined three met-

rics: recall, precision and F1. These metrics are defined as

follows:

Recall =
TP

TP + FN
, (5)

Precision =
TP

TP + FP
, (6)
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Fig. 7 Visualization of 32 feature maps from the second convolutional layer of the network. Each row has eight feature maps.

Fig. 8 Visualization of 32 feature maps from the third convolutional layer of the network. Each row has eight feature maps.

F1 = 2 ·

Recall · Precision

Recall + Precision
, (7)

where TP is True Positive and TN is True Negative. These

mean positive data (pulsar candidates) or negative data

(RFI) being correctly recognized, respectively. FN is False

Negative while FP is False Positive, and they represent the

part of the positive data or negative data being incorrectly

labeled, respectively. Recall indicates the fraction of pul-

sars correctly being recognized, and precision gives a mea-

sure of the fraction of pulsars in the predicted positive data.

F1 is a harmonic mean of recall and precision. To identify

the largest possible fraction of pulsars while returning a

minimal amount of mislabeled noise or RFI (Morello et al.

2014), a good model should provide a high recall as well

as a high precision.

5.2 Experiment on HTRU 1

Before training, the dataset was divided randomly into

three parts: training data (60%), validation data (20%) and

testing data (20%). The first and second parts of the data

were used to train the model while the testing part was used
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Fig. 9 Visualization of 32 feature maps from the fourth convolutional layer of the network. Each row has eight feature maps.

Fig. 10 Two mislabeled examples. Subplots in the first row are from pulsar 1135, and the others are from cand 4937. Their features in

these subplots are not obvious.
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to test the performance of the trained model. The proposed

data augmentation in Section 3 only acted on the training

data. With these augmentation methods, the number of pul-

sar sub-datasets for training was extended by a factor of

30. So, in each training process, the training set had 75 507

samples and the validation set employed for hyperparame-

ter selection had 18 240 samples. More details are provided

in Table 1.

The training operation was processed for 40 epochs,

and the learning curve of one training process is shown

in Figure 5. The entire training process was repeated 30

times, with different random data partitions, to obtain an

average score for candidates.

Our results are listed in Table 2. On testing data,

our CNN model without synthetic samples (only copying

minority pulsar candidates 32 times when training) can

achieve recall of 0.851 and precision of 0.848 (shown in

Table 2 as DCNN-C). When the model was trained with

data augmentation, our model showed excellent recall, pre-

cision and F1. It can achieve recall of 0.962 while precision

is 0.963 (shown in Table 2 as DCNN-S). We think that the

improvement is based on diversity of the synthetic sam-

ples. We also list some representative results of the data-

driven method from Guo et al. (2017) as a contrast. In Guo

et al. (2017), they tested the CNN model with the same

architecture as in Zhu et al. (2014). Meanwhile, they in-

troduced the DCGAN+SVM method, in which they used

DCGAN to generate synthetic samples and extract deep

features and a support vector machine (SVM) to produce

better classifications with deep features. With the help of

these synthetic samples, our CNN model has improved ap-

proximately 0.6% in recall and 1.2% in precision com-

pared to the CNN in Guo et al. (2017). It can reach the

level of using the DCGAN model. Though a Generative

Adversarial Network (GAN) can generate new samples by

adversarial training, it is difficult to train. In comparison,

our synthetic method is simpler than using GAN to gener-

ate samples.

5.3 Analyses

To analyze features extracted by this model, intermediate

convolution layer outputs of pulsar 0023 were visualized.

Figure 6 to Figure 9 depict some feature maps of convolu-

tion layers 1 to 4. By comparing them, we can find that it

extracts detailed features in shallow layers, and as the lay-

ers deepen, feature maps become more abstract and high-

light the most important vertical stripe areas.

From the testing results, our model has shown the

ability to classify pulsar candidates. We are more con-

cerned with the generalization performance of the model

and the classification performance of specific signal types,

such as weaker pulsar signals. We have analyzed the mis-

labeled testing candidates and found that there are some

candidates which are difficult to classify by input subplots.

Figure 10 provides two examples of them, one is from pul-

sar 1135 while the other is from cand 4937. With some

interference, cand 4937 is more pulsar-like than the sig-

nal of pulsar 1135. For these candidates, characteristics of

these subplots are not obvious to identify. So if we want to

make progress on accuracy, the model needs more resolved

information.

6 CONCLUSIONS

In this work, we have proposed a deep CNN architecture

for classification of pulsar candidates. By using plots as

inputs, it is an end-to-end model and avoids potential bias

of artificially designed features. To address the problem of

imbalance, a simple and effective way was designed to syn-

thesize more minority samples, which keep pulsar charac-

teristics. With the aid of synthetic samples, the model has

demonstrated the ability to classify pulsar candidates in the

HTRU 1 dataset. It can extract features well and classify

pulsar candidates reliably. The deep CNN has good ap-

plication prospects in this field. To improve generalization

performance further, we need to add more abundant and in-

dependent data or other valuable information (such as the

DM-SNR curve).
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