
RAA 2019 Vol. 19 No. 9, 135(12pp) doi: 10.1088/1674–4527/19/9/135

c© 2019 National Astronomical Observatories, CAS and IOP Publishing Ltd.

http://www.raa-journal.org http://iopscience.iop.org/raa

Research in
Astronomy and

Astrophysics

LSTM neural network for solar radio spectrum classification

Long Xu1,2, Yi-Hua Yan1, Xue-Xin Yu1, Wei-Qiang Zhang2, Jie Chen3 and Ling-Yu Duan3

1 Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing

100101, China; lxu@nao.cas.cn
2 College of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, China
3 National Engineering Lab for Video Technology, Peking University, Beijing 100871, China

Received 2019 February 13; accepted 2019 April 27

Abstract A solar radio spectrometer records solar radio radiation in the radio waveband. Such solar radio

radiation spanning multiple frequency channels and over a short time period could provide a solar radio

spectrum which is a two dimensional image. The vertical axis of a spectrum represents frequency channel

and the horizontal axis signifies time. Intrinsically, time dependence exists between neighboring columns

of a spectrum since solar radio radiation varies continuously over time. Thus, a spectrum can be treated as a

time series consisting of all columns of a spectrum, while treating it as a general image would lose its time

series property. A recurrent neural network (RNN) is designed for time series analysis. It can explore the

correlation and interaction between neighboring inputs of a time series by augmenting a loop in a network.

This paper makes the first attempt to utilize an RNN, specifically long short-term memory (LSTM), for solar

radio spectrum classification. LSTM can mine well the context of a time series to acquire more information

beyond a non-time series model. As such, as demonstrated by our experimental results, LSTM can learn a

better representation of a spectrum, and thus contribute better classification.

Key words: deep learning — long short-term memory (LSTM) — classification — solar radio spectrum

— solar burst detection

1 INTRODUCTION

Since solar radio radiation can go through Earth’s atmo-

sphere without being absorbed, the radio waveband has

been becoming a more and more important window to ex-

plore the Universe, not only targeting the Sun, but also in

nighttime astronomy for probing more distant stars. Solar

observation in the radio waveband provides us a window to

study the Sun, especially the solar atmosphere. Recently,

with the development of telescopes with higher precision

in terms of spatio-temporal resolution, solar observations

have entered the big data era. Traditional data analysis and

processing, usually performed manually, cannot fulfill the

mission of daily solar observation. We need automatic and

intelligent data analysis and processing in the big data era.

In this paper, we investigate classification of a solar ra-

dio spectrum by introducing deep learning. The spectrums

are provided by the Solar Broadband Radio Spectrometer

(SBRS) in China (Fu et al. 2004). The SBRS, consisting of

five “component spectrometers” and covering a wide fre-

quency range from 0.7−7.6 GHz, monitors solar radio ac-

tivity every day, therefore accumulating massive amounts

of data. The classification of data is the first step in big data

analysis. However, manual classification of data is boring

and exhausting to researchers. In addition, people cannot

easily and correctly classify spectrums under the condition

of strong noise interference. Therefore, automatic spectral

classification is very meaningful for both our research and

daily observation. Since a solar burst event is very sparse

among all data (less than 5% of all recorded data), only

binary classification is of great value. Through binary clas-

sification, we can firstly identify bursts from the extensive

data, saving more than 95% of human labor in the follow-

ing data analysis. In this work, we are concerned with only

three types of spectrums, “burst,” “non-burst” and “cali-

bration.”

Nowadays, with the availability of massive amounts

of data, deep learning (Bengio 2009) has been extensively

explored to perform many traditional tasks of recogni-

tion, classification, regression and clustering. The meth-

ods of deep learning, such as convolutional neural net-

works (CNNs) (LeCun et al. 1989; Simonyan & Zisserman

2014), auto-encoders (AEs) (Vincent et al. 2008) and deep
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belief networks (DBNs) (Hinton & Salakhutdinov 2006;

Hinton et al. 2006; Hinton 2012), have demonstrated state-

of-the-art performances in a wide variety of tasks, includ-

ing visual recognition (Sohn et al. 2011), audio recogni-

tion (Mohamed et al. 2012) and natural language process-

ing (Collobert et al. 2011). These methods can directly

learn useful features from unlabeled or labeled data, with

no need for hand-crafted features. This advantage of deep

learning is very useful, especially when applied to tasks for

which we do not have strong domain knowledge, or where

their physical processes are so complex that we cannot ra-

tionalize or model them precisely.

A solar radio spectrometer records solar radio flux

over time. In addition, it may record at several frequency

channels. Then, the image of solar radio flux can be drawn

in the two-dimensional space of time and frequency. This

kind of image is named a solar radio spectrum (or spectrum

for short). Since each spectrum represents a specific type

of solar activity, it demonstrates a distinctive image pat-

tern. There are many kinds of spectrums, such as “pulse,”

“drifting,” “zebra” and “fiber.” They are named according

to their morphology, i.e., from their external shapes. The

pattern of a spectrum gives a special solar activity caused

by different radio radiation. In addition, solar bursts are

very sparse among all recorded data, especially in this pe-

riod, namely Solar Cycle 24, which is a minimum solar cy-

cle. It is meaningful to identify solar bursts from the exten-

sive data before the following data processing and analysis

are applied, which only concern solar burst data. Up till

now, there have been little works on automatic classifica-

tion/detection of solar radio bursts. Also, there is no prior

knowledge about hand-crafted features of spectrums. So,

we employed deep learning to extract features of a spec-

trum and train classifiers. The feature extractor and clas-

sifier form an end-to-end framework of spectrum classi-

fication, which directly learns image features from an in-

put image without the need for hand-crafted features. In

Chen et al. (2016), we established a model of spectrum

classification using a DBN. It has been shown that the

proposed model can learn better representation of a so-

lar radio spectrum, and thus achieve higher accuracy of

classification beyond the traditional support vector ma-

chine (SVM) (Suykens & Vandewalle 1999) coupled with

principal component analysis (PCA) (Jolliffe 2011; Wold

et al. 1987). In Chen et al. (2015); Ma et al. (2017), an

AE (Vincent et al. 2008, 2010) was explored for spec-

trum classification. In addition, the multiple modality con-

cept (Guillaumin et al. 2010; Ngiam et al. 2011) was in-

troduced to exploit the correlations between adjacent fre-

quency channels, where each channel was regarded as one

modality. In Chen et al. (2017b), a CNN was employed for

spectrum classification, where each spectrum was treated

as a general image. In this CNN model, four convolutional

layers and a softmax layer were stacked together to realize

both feature extraction and classification.

The previous models (Chen et al. 2016, 2017b) are all

implemented at each time input. The context information

of a spectrum which is a time series was not utilized. In

these models, each spectrum is regarded as a general im-

age. In fact, a spectrum is a special type of image, describ-

ing a process of solar radio radiation over a certain time.

In addition, it extends over multiple frequency channels.

In Ma et al. (2017), we made the first attempt to establish

a multimodal learning model, specifically a model com-

posed of AE and structured regularization (SR), to learn

the representation of a solar radio spectrum. We regarded a

spectrum as a set of multiple modalities, where the mul-

tiple modalities correspond to multiple frequency chan-

nels in a spectrum. This multimodal method took multi-

ple frequency channels of a spectrum as the inputs at each

time. In lower layers, each modality was trained indepen-

dently using an AE network. Meanwhile, all modalities in-

teracted through an SR. Then, two fully-connected layers

were stacked on top of these AE layers. Finally, a softmax

layer was stacked on the top of all hidden layers.

Taking each column as one input, a spectrum can then

be treated as a time series. To process a time series, re-

current neural networks (RNNs) (Suykens & Vandewalle

1999; Graves et al. 2013; Sundermeyer et al. 2012) were

developed. They contain a loop which allows post in-

puts to persist until an output is produced. There have

been lots of variants of RNNs now in the literature. A

long short-term memory (LSTM) network (Hochreiter &

Schmidhuber 1997; Gers et al. 1999) is a typical example

of an RNN. A common LSTM unit consists of a cell, a for-

get gate, an input gate and an output gate. The cell keeps

the values over arbitrary time intervals for the following

LSTM units. The flow of information into and out of the

cell is regulated by three gates.

In this paper, all the models we have developed for

spectrum classification in Chen et al. (2016, 2015); Ma

et al. (2017); Chen et al. (2017b); Yu et al. (2017) are

summarized and compared. In particular, the LSTM model

is extended and further enriched. Among all models, the

LSTM achieves the best performance by exploring more

information in a time series. The rest of the paper is orga-

nized as follows. In Section 2, the LSTM network is intro-

duced. Section 3 discusses the pre-processing of solar ra-

dio spectrums to improve visual quality and reduce compu-

tational complexity for the subsequent classification task.

Section 4 presents the proposed model based on the LSTM

network. Section 5 gives the experimental results and anal-

ysis of spectrum classification. The final section concludes

the paper.
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Fig. 1 RNNs with loops.
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Fig. 3 LSTM neural network.

2 LONG SHORT-TERM MEMORY NETWORK

In the field of deep learning, most methods, such as fully-

connected and CNN, produce output only from the current

input. That means no context of a time series is utilized.

However, for the tasks of video processing, language mod-

eling, translation, speech recognition and reading compre-

hension, the input context is of great importance in recog-

nition and understanding. From the perspective of human

understanding, we do not start our thinking from scratch

every second as we read a paper, and we understand each

word based on our understanding of previous words. We do

not throw everything away and start thinking from scratch

again, but traditional neural networks cannot do this. They

process the inputs separately, with output at every input.

They have no mechanism for telling how the history of in-

puts informs the current status and output.

RNNs can address this issue. They are networks with

loops in them, allowing information to persist. In Figure 1,

a diagram of an RNN is illustrated, where a chunk of neu-

ral network, A, receives an input xt and outputs ht. A loop

allows information to be passed from one step of the net-

work to the next. An RNN can be thought of as multiple

copies of the same network, each passing a message to a

successor. It is not all that different from a traditional neu-

ral network as shown in Figure 2 if we unroll the loop.

This chain-like nature reveals that RNNs are intimately re-

lated to sequences and lists. They are the natural architec-

ture for neural networks to use for such data to explore

correlations and interactions among adjacent time points

in a time series. In the last few years, a variety of ap-

plications of RNNs, including speech recognition (Graves

et al. 2013), language modeling (Sundermeyer et al. 2012;

Mikolov et al. 2010), machine translation (Cho et al. 2014)

and image captioning (Chen et al. 2017a; Ren et al. 2017),

has achieved incredible success.

RNN keeps historical inputs until the current output

to better enhance understanding of the current status, e.g.,

reading comprehension. In the case of short-term depen-

dency, only very recent historical inputs are needed, which

can be done well by RNN. However, for long-term depen-

dency RNN would fail in practice, although it should be

good for any case in theory. LSTM is a special kind of

RNN. It can process both long-term and short-term depen-

dencies well. All RNNs have a repeating basic unit, which

conforms to a chain-structure. For a traditional RNN, the

repeating basic unit has only one nonlinear layer, while

the basic unit for LSTM is more complex. As shown in

Figure 3, an LSTM unit has four nonlinear layers. In addi-

tion, they interact with each other through a special strat-

egy, namely gate. The key of LSTM is a cell status, which

is the horizontal axis in Figure 3. LSTM keeps or inhibits

cell status by gates. The gate is a technique to let signals

pass selectively. In Figure 3, it realizes information per-

sistence and inhibition through three gates. Intuitively, the

forget gate controls the extent to which a value remains in

the cell, the input gate controls the extent to which a new

value flows into the cell and the output gate controls the

extent to which the value in the cell is used to compute the

output activation of the LSTM unit.

In an LSTM layer, the mapping function from an input

sequence x = (x1, x2, · · · , xT ) to an output sequence h =

(h1, h2, · · · , hT ) is precisely specified by

ft = σ(Wfxxt + Wfhht−1 + bf ), (1)

it = σ(Wixxt + Wihht−1 + bi), (2)

ot = σ(Woxxt + Wohht−1 + bo), (3)

ct = ft ∗ ct−1 + it ∗ c̃t,

c̃t = tanh(Wcxxt + Wchht−1 + bc),
(4)

ht = ot ∗ tanh(ct), (5)

where σ is the logistic sigmoid function, and i, f , o, c and

c̃ are the input gate, forget gate, output gate, cell and cell
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(a) “burst” spectrum (UT2010-04-21 2:00:25)

(b) “non-burst” spectrum (UT2010-04-21 1:51:00)

Fig. 4 Solar radio spectrums from the SBRS.

input activation vectors, respectively, all of which are the

same size as the cell output activation vector h. W rep-

resents weight matrices and b refers to bias vectors. The

operator “∗” indicates the element-wise vector product.

The first step in LSTM is to decide what information

we are going to throw away from the cell state. This deci-

sion is made by a sigmoid layer called the “forget gate.”

As described in Equation (1), it looks at ht−1 and xt, and

outputs a number between 0 and 1 for each element in the

cell state Ct−1. “1” means that we completely keep the his-

tory of that element while “0” signifies that we completely

get rid of the history of that element. The second step of

LSTM is to decide what information we will update into

the cell state. This decision is made by a sigmoid layer

called the “input gate,” as given in Equation (2). It looks at

ht−1 and xt, and outputs a number between 0 and 1. Next,

it will be sent to a tanh layer which creates a vector of new

candidate values, (ct), that could be added to the new state

ct as given in Equation (4). Therefore, the input gate de-

cides how much each element of the state (candidate state)

is updated.

After the two steps above, the cell state ct is updated

by both the old state ct−1 and a new candidate state (c̃t) via

Equation (4). In Equation (4), old state ct−1 is scaled by

forget gate ft, indicating how much we forget the history;

candidate state (c̃t) is scaled by input gate it, controlling

how much each state value of (c̃t) is updated into the new

state.

Finally, we decide what we are going to output. This

output will be based on the current cell state, but will be

a filtered version as described in Equation (5). First, we

run a sigmoid layer which decides which parts of the cell

state we are going to output. The sigmoid layer is named

“output gate,” ot given in Equation (3). Then, we put the

cell state ct through tanh and multiply it by output gate ot,

so that we only output the parts we decide to.
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(a) “burst” flux curve (UT2010-04-21 2:00:25)

(b) “non-burst” flux curve (UT2010-04-21 1:51:00)

Fig. 5 Solar radio flux curves.

Fig. 6 Original spectrum without channel normalization (UT2010-04-21 2:00:25).

3 PRE-PROCESSING ALGORITHM FOR A

SOLAR RADIO SPECTRUM

The SBRS has 120 frequency channels that can monitor

a solar burst simultaneously. The digital signal represent-

ing solar radiation flux is recorded. There is a variety of

timescales of recorded data files, such as 0.2 s and 8 ms.

They have the same data length. Each data file can pro-

duce two spectrums, left polarization and right polarization
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(a) Original (b) Down-sampling

Fig. 7 Histograms of an original spectrum and a down-sampled one.
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Fig. 8 The proposed network for solar radio spectrum classification.

spectrums, each of which has size 120 × 2520. A solar ra-

dio spectrum represents solar radio flux variation during a

certain time interval and across multiple frequency chan-

nels as illustrated in Figure 4. The horizontal axis and ver-

tical axis are time and frequency, respectively. For a single

frequency channel, we can draw a profile of solar radio

flux as shown in Figure 5, where the vertical axis gives the

intensity of solar radio flux. From Figure 4, a solar radio

burst spectrum is illustrated by intensity changes in an im-

age, representing radio flux variation, while a static one has

no obvious variation of intensity. The spectrums given in

Figure 4 have undergone a series of post-processing proce-

dures, including channel normalization, wavelet-based de-

noising and enhancement (Yan et al. 2002). However, the

original spectrum contains various noises which may di-

minish valuable information in a spectrum. As shown in

Figure 6, the original spectrum of Figure 4(a) is contami-

nated by strong noises, where the most obvious one is the

stripe-like noise which is caused by the nonuniform chan-

nel effect of the receiver. Usually, the signal is covered by

strong noise, so a series of image processing procedures

is performed on the original spectrum. In our previous

work on channel normalization, wavelet-based denoising

was proposed to enhance solar burst signals and compress

noise, which achieved satisfactory results (Yan et al. 2002).

In this work, regarding the task of classification, the pre-

processing, including normalization and down-sampling,

is performed on the collected spectrums before the train-

ing model.
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3.1 Channel Normalization

To reduce the channel effect, we introduce a channel nor-

malization method, which is formulated as

g = f − fLM + fGM , (6)

where f gives the data matrix of a spectrum, g is the pro-

cessed result of f after channel normalization, and fLM

and fGM denote the local mean and global mean, respec-

tively. The local mean fLM gives the mean of each channel.

fGM is the mean of the whole matrix computed from all

channels. fLM reduces the effect of uneven channel gain

(the channel effect as mentioned above), while fGM is pro-

vided to add a global background for all channels. The

main purpose of channel normalization is to reduce the

stripe-like noise, so that a burst hiding behind stripe-like

noise becomes more identifiable. For example, an original

spectrum containing annoying stripe-like noise as depicted

in Figure 6 becomes more identifiable after performing the

channel normalization, as illustrated in Figure 4(a).

3.2 Down-sampling

A spectrum used in this study originally has high resolu-

tion. However, the image pattern in a spectrum is very sim-

ple. There is high redundancy in a spectrum. As examined

from the point of view of a stochastic process, a spectrum

is an observation of a discrete stochastic process. Each col-

umn of a spectrum is a random variable. The correlation of

a stochastic process can be measured by a correlation coef-

ficient (Szegedy et al. 2016; Simonyan & Zisserman 2014),

which is computed by

γ(n, n + τ) =
ϕ[(x(n) − µ1) · (x(n + τ) − µ2)]

(σ1 · σ2)
, (7)

where x(n) and x(n + τ) represent two random variables

from the same stochastic process, µ1 and µ2 give the means

of x(n) and x(n + τ) respectively, σ1 and σ2 are stan-

dard deviations of x(n) and x(n+τ) respectively, and ϕ is

the ensemble average operator. Here, γ(n, n + τ) depends

not only on τ but also on n. In other words, a spectrum is

not a collection of samples from a wide-sense stationary

stochastic process. Consequently, for a given τ , γ(τ) is a

random variable instead of a constant. Moreover, we can

treat each row of a spectrum as a random variable, and the

correlation coefficient can be computed in the same way.

We calculate γ(τ) with different values of τ . The aver-

age correlation coefficients for all collected spectrums are

listed in Table 1.

From Table 1, the correlation coefficient is close to

1 for (a), indicating high correlation exists in a spectrum

along the horizontal axis, i.e., the time axis. In addition, it

does not vary a lot as τ changes. Therefore, the spectrum

Table 1 Correlation Coefficients (γ(τ )) of Solar Radio
Spectrums

(a) (b)

γ(τ) Along Horizontal Axis γ(τ) Along Vertical Axis

τ = 1 0.9978 0.8343

τ = 10 0.9829 0.7738

τ = 20 0.9771 0.7660

τ = 30 0.9753 0.7096

τ = 40 0.9750 0.6650

can be further down-sampled to reduce data volume while

its statistical properties do not change very much.

The original spectrum is down-sampled into a 120 ×

120 image using the nearest neighbor sampling method.

In Figure 7, histograms of the original spectrum and the

down-sampled one are illustrated. It can be observed that

image characteristics do not change much after down-

sampling.

After the pre-processing above, we have a collection

of spectrums for establishing a database for training a clas-

sifier. The database will be presented in detail in the exper-

imental results section.

4 PROPOSED MODEL FOR SOLAR RADIO

SPECTRUM CLASSIFICATION

The LSTM network consists of LSTM cells, as depicted

in Figure 3. Each cell controls how much the current in-

put comes in, how much and for how long the historical

data remain, and how the current status outputs through

the three gates, input, forget and output.

The architecture of the proposed LSTM model for

spectrum classification is illustrated in Figure 8, where

(x1, x2, · · · , xT ) is a time series consisting of the columns

of a spectrum. As mentioned above, a spectrum is a time

series representing solar flux variation over time. For this

reason, we can treat a spectrum as a time series. Thus, the

LSTM is employed to learn the representation of a spec-

trum for classification. As shown in Figure 8, the proposed

LSTM model consists of input layer, LSTM layer and soft-

max layer.

In the input layer, the vectors (x1, x2, · · · , xT ) are

given by the columns of a spectrum. They are fed into

the LSTM cells one by one in order. LSTM cells receive a

time series xi, and process it according to Equation (3) to

Equation (7). The recurrent concept in an LSTM network

means that each LSTM cell does not output immediately

responding to current input, but keeps silent until its time

slot comes. The time slot is scheduled by a time step which

is manually tuned by several rounds of experiments. Then,

a softmax layer is stacked upon the LSTM layer. It takes

the LSTM output as the input, and outputs the spectrum

type. In our case, the input image has size 120×120. The
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time step is 120 so that each input image has an output to

the softmax layer.

4.1 LSTM Layer

As already mentioned, LSTM has many variants, such as

LSTM with added peephole connection (Cho et al. 2014)

and the Gated Recurrent Unit (GRU) (Graves & Jaitly

2014). In Gers et al. (2002); Greff et al. (2017), readers

can find more about these LSTM variants. In this work, the

initial one in Jozefowicz et al. (2015) is used. The structure

of a basic LSTM cell is illustrated in Figure 2.

In an LSTM cell, a memory block is provided to store

the current status of the network so that this status can be

kept for the next time step. In this way, the LSTM layer can

explore interactions and correlations of a sequential input

x1, x2, · · · , xT . Assuming fLR(·) is the mapping function

of an LSTM module and hT represents the hidden state of

an LSTM cell at time T , the output of an LSTM layer is

expressed as

hT = fLR(x1, x2, · · · , xT ), (8)

where {xi, i = 1, . . . , T} is a time sequence correspond-

ing to a spectrum, with the subscript i giving the time in-

dex. The LSTM unit fLR is applied to {xi, i = 1, . . . , T}

to produce an output hT . Through Equation (8), the highly

compressed representation of a spectrum can be learned.

Afterwards, this representation is fed into a softmax layer,

where a classifier is trained by supervised learning for clas-

sification. Assuming L̂ is the output of the classifier and

ϕ[·] is the function that performs classification, then the

whole process of spectrum classification can be described

by

L̂ = ϕ[fLR(x1, x2, · · · , xT )] . (9)

4.2 Softmax Layer

For the task of spectrum classification, a softmax layer is

stacked on top of the LSTM layer, which is defined as

softmax(zi) =
exp(zi)∑
j exp(zi)

. (10)

The output of the LSTM layer hT firstly goes through

a fully-connected network with three outputs as demon-

strated in Figure 8. This process can be described by

z = WshT + bs , (11)

where Ws and bs are the weights and bias respectively of

the fully-connected layer connecting LSTM output and the

softmax function. Then, z is fed into the softmax expres-

sion, Equation (10), to output the probabilities of z belong-

ing to the given three classes. This process is demonstrated

in Figure 9, where the input is a vector, the dimension of

which is dependent on the number of classes. The output

must be less than 1 so that it can be interpreted as a proba-

bility value.

5 EXPERIMENTAL RESULTS AND ANALYSES

To evaluate the proposed LSTM model for spectrum clas-

sification, we implement it on the TensorFlow platform. It

is worth pointing out that a database of solar radio spec-

trums is established for validating our model, which can

be accessed via http://www.deepsolar.org.cn.

5.1 Solar Radio Spectrum Database

In this work, we use the spectrums provided by the

SBRS in the Huairou Solar Observing Station (HSOS),

National Astronomical Observatories, Chinese Academy

of Sciences. The SBRS is designed to acquire dynamic

spectrograms of solar microwave bursts across the fre-

quency range 0.7−7.6 GHz. The SBRS is comprised of five

“component spectrometers,” working at five wavebands,

0.7−1.5, 1.0−2.0, 2.6−3.8, 4.5−7.5 and 5.2−7.6 GHz, re-

spectively. These five spectrometers work simultaneously

to give a full view of solar radio bursts. Please refer to Fu

et al. (2004) for more details.

A lot of fine structures of microwave bursts were

recorded by the SBRS from 1995 to 2001. Some of them

are exhibited in Figure 10. The burst types were basically

named after their morphologies. The statistics indicate that

the percentage of solar radio bursts is tiny among all data.

We have recorded millions of microwaves in total from

1995 to the end of 2001. However, only hundreds of them

are “bursts” as shown in Table 2.

With the assistance of experts in solar astronomy, we

finally established a dataset, containing 8816 spectrums

which are divided into six categories (0: no burst or hard

to identify, 1: weak burst, 2: moderate burst, 3: large burst,

4: data with interference, 5: calibration). Table 3 tells the

number of spectrums for each type in the database. Since

our task is to distinguish the bursts from the others, we

combine labels for burst types (1, 2, 3), and relabel all spec-

trums into three categories, “burst,” “non-burst,” and “cali-

bration.” Table 4 provides the number of spectrums in each

category. A “burst” spectrum at least contains a detectable

solar radio burst during its lifetime, while a “non-burst”

spectrum has no identifiable burst during its lifetime. The

“calibration” spectrum usually contains a step calibration

signal. It is much easier to identify.

An original spectrum has size 120 × 2520. The hori-

zontal axis is time and the vertical axis is frequency. After

pre-processing as described in Section 3, the new spectrum

has size 120 × 120.
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Fig. 9 A schematic diagram of the softmax layer for classification.

(a) Simple (b) Type III (c) Pulse (d) Drifting pulse (e) Spike radiation

(f) Fiber (g) Zebra (h) Isolated pulse (i) Patches (j) Lace

Fig. 10 Examples of solar radio spectrums.

Table 2 Statistics on Solar Radio Bursts from the SBRS

Freq. range (GHz) 0.5−1.5 1.0−2.0 2.6−3.8 4.5−7.5 5.2−7.6

Number of bursts 108 526 921 233 550

Table 3 Statistics on Spectrum Types

Categories 0 1 2 3 4 total

Number of spectrums 6670 618 268 272 570 8816

0: no burst or hard to identify; 1: weak burst; 2: moderate burst; 3:

large burst; 4: data with interference; 5: calibration.

Table 4 Number of Entries in Database
with Three Classes

Spectrum types non-burst burst calibration total

Number of spectrums 6670 1158 988 8816

5.2 Evaluation Metrics

To evaluate a classifier, many evaluation indexes/metrics

have been provided, e.g., accuracy, error rate, precision and

Table 5 Definitions of TP, FP, TN and FN

Positive TP FP

Negative FN TN

recall. They are defined on the basis of the following four

basic terms, listed in Table 5 for comparison.

i) True positive (TP): if a positive instance is success-

fully predicted to be in a positive class;

ii) False negative (FN): if a positive instance is wrongly

predicted to be in a negative class;

iii) False positive (FP): if a negative instance is predicted

to be in a positive class;

iv) True negative (TN): if a negative instance is success-

fully predicted to be in a negative class.

From these four terms, the percentage/ratio of TP

among all positive instances (TP+FN) is named the true

positive rate (TPR), i.e.,

TPR = TP/(TP+FN), (12)
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representing the percentage of positive instances which

are successfully retrieved (correctly classified into positive

class) within all positive instances. Similarly, the false pos-

itive rate (FPR) is defined as

FPR = FP/(FP+TN), (13)

indicating the percentage of negative instances which are

wrongly decided as positive instances within the negative

instance category. Let P and N represent the number of

positive instances and negative instances, respectively. The

accuracy index is defined as

Accuracy = (TP+TN)/(P+N), (14)

the precision or precision ratio is defined as

Precision = TP/(TP+FP), (15)

and the recall or recall ratio is defined as

Recall = TP/(TP+FN) = TP/P = sensitive. (16)

From the definitions above, accuracy gives the percentage

of instances successfully classified in all instances (P+N

is the total number of instances). The numerator is com-

posed of all instances classified correctly, no matter if pos-

itive instance or negative instance, while the denominator

consists of all instances. Generally, the higher the accu-

racy, the better the classifier. Precision (precision ratio) is

only associated with a certain class, where the numerator is

the number of instances which are classified correctly, and

the denominator is the total number of instances which are

classified into this class. Recall ratio measures the percent-

age of positive instances that are retrieved, different from

precision, and the denominator is the number of positive

instances.

5.3 Model Evaluation

To evaluate a model, the dataset is split into two parts, a

training set and a testing set. For training, 800 “burst,” 800

“non-burst” and 800 “calibration” cases are randomly se-

lected each time from the dataset to form a training set. A

classifier is trained on this training set with the input being

spectrums and their labels. The rest of the dataset forms

the testing set. For comparison, we compare the proposed

LSTM model with the previous DBN model. In order to

efficiently assess the proposed LSTM model, we compare

it with the previous DBN model (Chen et al. 2016), CNN

model (Chen et al. 2017b) and multimodal model (Chen

et al. 2015; Ma et al. 2017). It is also compared with a tra-

ditional model of PCA+SVM (Chen et al. 2016). For fair

comparison, we follow the evaluation indexes in the bench-

marks (Chen et al. 2016, 2015; Ma et al. 2017; Chen et al.

2017b), TPR and FPR indexes as defined in Equation (12)

and Equation (13) respectively, to evaluate the proposed

LSTM model. TPR indicates the percentage of positive in-

stances that are successfully classified. Thus, a larger TPR

value represents a more accurate classifier. FPR describes

the percentage of negative samples which are wrongly as-

signed to be in the positive category among all negative

samples. Thus, a smaller FPR value gives a better classi-

fier.

In our case, we have three types of spectrum, so TPR

and FPR are computed independently for each type. In

addition, here an interclass imbalance is an issue, where

there is only a small percentage of “burst” samples. For an

interclass imbalance problem, the TRP and FPR indexes

are better than the accuracy index for describing the per-

formance of classification. There are two reasons for the

shortage of “burst” samples. The first is that solar burst

events are sparse among all recorded data. The other is that

labeling is time consuming. Especially for spectrum label-

ing, an expertise in solar astronomy is required.

In our case, only one LSTM layer is used since only a

small dataset is available. Too many layers would result in

an over-fitting problem for lack of training samples. After

several rounds of training and testing, the statistics for TPR

and FPR are listed in Table 6. From analyzing Table 6, we

can draw the following conclusions:

1) All of the five models from deep learning perform

well on spectrum classification, while the method of

PCA+SVM which was workable for a general image

fails on a solar radio spectrum.

2) For the “calibration” type, all deep learning models

achieve good performance. The TPR of all models is

around 95%, which means 95% of data are classified

correctly. The FPR of all models is very small, at less

than 3.2%, which means only 3.2% of other types of

data are wrongly classified as “calibration.”

3) For the “burst” type, the proposed LSTM model

achieves the highest TPR, up to 85.4%, meaning

85.4% of “burst” data are correctly identified by the

LSTM model. This means we can accurately distin-

guish “burst” from others. This is most important in

our daily task of archiving and reporting “burst” from

massive datasets. For the “burst” type, the FPR of the

LSMT model is 6.7%. This indicates that 6.7% of other

types of spectrum are wrongly classified as “burst.”

From the definition of FPR, the smaller the FPR is,

the better the performance that is achieved. Thus, the

LSTM model is the best among all compared models

regarding FPR.

4) For the “non-burst” type, LSTM is the best among all

compared models with respect to TPR.

5) Comparing “burst” and “non-burst,” both TPR and FPR

(larger TPR and smaller FPR) are better for “non-
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Table 6 Performance Comparisons

TPR(%) FPR(%) TPR(%) FPR(%) TPR(%) FPR(%) TPR(%) FPR(%) TPR(%) FPR(%) TPR(%) FPR(%)

Burst 85.4 6.7 83.8 9.4 82.2 22.5 70.9 15.6 67.4 13.2 52.7 26.6

Non-burst 92.3 8.2 89.7 8.7 83.3 9.6 80.9 13.9 86.4 14.1 0.1 16.6

Calibration 96.2 0.9 100 0.7 92.5 1.7 96.8 3.2 95.7 0.4 38.3 72.2

burst.” The reason is that “non-burst” has a much sim-

pler image pattern than “burst” as shown in Figure 4.

Thus, it is easier to identify than “burst.”

6) For all deep learning models, the achievement on “cal-

ibration” is the best compared to the other two types,

“burst” and “non-burst.” The reason is that “calibra-

tion” is the simplest compared to the other two types.

In fact, a “calibration” spectrum is almost a step signal

spread over all frequency channels. It is very special

relative to the other two classes.

7) For the proposed LSTM model, we can observe that

the TPR of “burst” is smaller than that of “non-burst”

and “calibration.” The reason is twofold. First, “burst”

is more complex than the two others regarding image

structure, so it is more difficult to identify. Second,

compared to “non-burst” and “calibration,” “burst” is

much more plentiful and variable, which makes the

learned model unable to handle variational situations.

The gain of the proposed LSTM model may come

from three aspects. First, a spectrum is reorganized into

a time series so that its inner structure can be exploited

during classification. Second, the LSTM module can ef-

ficiently learn the relations and interactions of a time se-

ries to generate more representative features of a spectrum.

Third, pre-processing further enhances the distinguishable

characteristics of a spectrum, making it easier to identify.

6 CONCLUSIONS

This paper makes efforts towards the classification of so-

lar radio spectrums by employing an LSTM network. A

spectrum is organized into a time series to be fed into the

LSTM module to explore the inner relations and interac-

tions of a time series. Experimental results demonstrated

the superiority of the proposed LSTM model on spectrum

classification beyond the benchmarks, which are all static

models related to instant input and instant output without

the context of the input. It can be explained in that this pro-

posed time series model can generate more representative

and recognizable features of a spectrum compared to the

benchmarks.
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