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Abstract In this study, we employ machine learning to build a catalog of DB white dwarfs (DBWDs) from

the LAMOST Data Release (DR) 5. Using known DBs from SDSS DR14, we selected samples of high-

quality DB spectra from the LAMOST database and applied them to train the machine learning process.

Following the recognition procedure, we chose 351 DB spectra of 287 objects, 53 of which were new

identifications. We then utilized all the DBWD spectra from both SDSS DR14 and LAMOST DR5 to

construct DB templates for LAMOST 1D pipeline reductions. Finally, by applying DB parameter models

provided by D. Koester and the distance from Gaia DR2, we calculated the effective temperatures, surface

gravities and distributions of the 3D locations and velocities of all DBWDs.
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1 INTRODUCTION

With initial masses of up to ∼9 M⊙ (Woosley & Heger

2015), white dwarfs (WDs) are the final state of stellar evo-

lution for stars on the main sequence. Owing to the absence

of nuclear reactions, energy from most WDs is generated

by radiation from residual gravitational contraction, which

can lead to relatively low brightness. Although the mean

mass of a majority of WDs is ∼ 0.593±0.016 M⊙ (Kepler

et al. 2007), the common radii of these stars are often of the

same order as that of the Earth, which implies that an ex-

tremely long cooling time is required.

Among WDs, those with atmospheres that are mostly

rich in hydrogen account for ∼80%, which are assigned

to the DA spectral type. The other 20% fall into the DO

(He II) or DB (He I) categories, whose atmospheres are

dominated by helium with, occasionally, minute traces

of hydrogen and heavy elements. In most cases, hot DO

stars can be observed at temperatures of ∼45 000 K. DB

WDs (DBWDs) have effective temperatures (Teff) averag-

ing <30 000 K, with only He I in their spectra. When the

temperature drops to 10 000 K, helium becomes spectro-

scopically invisible, such as for featureless DC, carbon-

present DQ and metal-rich DZ spectra (Voss et al. 2007).

Because the helium atom prevails in its ground state

in the atmosphere, DBWDs represent the best sample of

hydrogen-deficient stars in the universe. Many hydrogen-

dominated DA WDs transform into DBs with a helium at-

mosphere, and the ratio of DA to non-DA WDs varies as a

function of Teff along the cooling sequence (Fontaine et al.

2001). An expanded sample of DBWDs is helpful to better

understand the evolution of WDs.

At the end of the 20th century, only approximately

80 optical spectra and 25 ultraviolet spectrophotometric

spectra had been investigated (Beauchamp et al. 1996).

Since the Sloan Digital Sky Survey (SDSS) commenced

data releases (DRs), systematic research has been con-

ducted to gather larger samples of DBWDs (Eisenstein

et al. 2006). Kleinman et al. (2013) identified 923 DB stars

from the SDSS DR7 (Abazajian et al. 2009), and Kepler

et al. (2015) added another 450 in DR10 (Eisenstein et al.

2011). DR12 (Alam et al. 2015) featured 121 more stars

(Kepler et al. 2016), from which Koester & Kepler (2015)

selected 1107 objects with signal-to-noise (S/N) ratios of

>10 and analyzed their atmospheric parameters. Using a

machine learning (ML) approach to extract DBWD fea-

tures and recognize their spectra, we sought in past work

to identify DBWDs from the entire spectral data of SDSS

DR12 and DR14, and presented their particular features us-
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ing a line list (Kong et al. 2018, KONG2018 hereinafter),

thus increasing the total number of identified DB stars to

1999.

In addition to SDSS, the Large Sky Area Multi-object

Fiber Spectroscopic Telescope (LAMOST, also called the

Guo Shou Jing Telescope, Cui et al. (2012)) released

9 017 844 spectra from a spectroscopic survey, including

9574 WDs, in DR5. In spite of its massive number of re-

leased spectra, research on DBWDs using LAMOST DRs

has been scarce compared with that from SDSS DRs. A

few years ago, Guo et al. (2015) presented 34 DB and

1056 DA WDs from LAMOST DR2, and estimated their

Teff, surface gravity (log g) and distance. Ren et al. (2013,

2014, 2018) mined the WD-main sequence binaries from

the LAMOST pilot DR, DR1 and DR5. All of them were

DA main sequence binaries.

In general, spectra from both SDSS and LAMOST

are more or less the same: They share a similar resolu-

tion (R ≈ 18001,2) and waveband (∼3900–∼9000Å).

Given these similarities, we intend to search for DBWDs

in LAMOST DR5 and provide their particular program-

sensitive features by using the ML method applied to

KONG2018. It should be noted that there is a “WD” class

in both SDSS DR12 and LAMOST DR5 that contains DA

WDs with a few other subtypes of WDs mixed in.

In this paper, we build a DB catalog from LAMOST

DR5 using ML. Some known DB spectra from KONG2018

first served as positive samples. We carried out a data-

mining procedure and obtained some DB spectra from

the LAMOST DR5. The positive samples that we

selected must show at least two obvious He I lines

(4471.5 or 5875.6 Å). Otherwise, they can hardly be

spectroscopically identified. According to our experi-

ence at examining spectra, the spectra with S/N in the

g band (S/Ng) above 15 would generally meet these

conditions. Following manual inspection, we discarded

those without clear He I lines (4471.5 and 5875.6 Å),

and arranged the remaining spectra in descending order

S/Ng and selected the top 100 as positive samples.

The S/Ng of the 100th spectrum was 14.6 (specid is

20150413HD140137N164527M0116152 v2.9.7). These

were used to extract features and recognize DBs by using

the Least Absolute Shrinkage and Selection Operator

(LASSO) (Tibshirani 1996) and a support vector machine

(SVM) (Cortes & Vapnik 1995), respectively. “Feature”

here has the same meaning as flux at some particular

wavelengths or specific location in the spectra.

Moreover, there was a DB template in the SDSS

one-dimensional (1D) pipeline before SDSS DR7, which

was later removed probably because of its low accuracy

1 http://classic.sdss.org/dr1/
2 http://www.lamost.org/

Table 1 Class/Subclass from LAMOST DR5 catalog (except for
“Unknown” class), also types of spectra we applied in our exper-
iment.

Classa Subclassa

Star O, B, A, F, G, K, M, WD, carbon, CV, doublestar
Galaxy null
QSO null

a “Class” and “subclass” are adopted from the data archive of
LAMOST DR5.

when using the DB templates for classification. In this ex-

periment, however, we constructed DB templates for the

LAMOST 1D pipeline, and propose criteria to improve the

accuracy of recognition by analyzing the results from clas-

sification of several control groups of data.

Wegg & Phinney (2012) investigated the relationship

between the kinematics and mass of young DA WDs us-

ing SDSS DR4 and the Palomar-Green (PG) WD sur-

vey (Liebert et al. 2005), and found a strong connection.

We calculated the three-dimensional (3D) velocities of

DBWDs and obtained a similar conclusion. With respect

to the kinematics of old stars, low-mass WDs (between

0.45 M⊙ and 0.75 M⊙) have a higher velocity dispersion

and asymmetric drift whereas the ones with greater mass

are the opposite.

The remainder of this paper is organized as follows:

The datasets are defined and constructed in Section 2.

Section 3 describes the training procedure; i.e., feature

extraction by implementing LASSO and DB recognition

by using an SVM. We then select all DBWD spectra

from LAMOST DR5 in Section 4 employing the ML

method. Application of this experiment to the LAMOST

1D pipeline is then introduced in Section 5; i.e., for DB

template construction. Section 6 provides Teff, log g, and

3D distributions of the locations and velocities of the

DBWDs, and we analyze the similarities and differences

between DBWDs from LAMOST DR5 and SDSS DR14.

Finally, we summarize the conclusions of this study in

Section 7.

2 DATASETS

In total, there were >2000 DB spectra in SDSS DR12,

based on catalogs from Kleinman et al. (2013), Kepler

et al. (2015, 2016) and KONG2018. These spectra were

originally classified as O, QSO, B, galaxy or some other

type by the SDSS 1D pipeline. Moreover, the core algo-

rithm of the LAMOST Pipeline is the same as that of the

SDSS Pipeline: full-spectral template matching. Similar to

the analysis in our previous work, DB spectra might be

found in all types (Table 1) of spectra in LAMOST DR5.

For the data archive of LAMOST DR5, each released

spectrum was assigned a specific title, namely, a class and

a subclass, as displayed in Table 1. Therefore, we needed
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Fig. 1 Data usage of our experiment. The number of spectra from the LAMOST DR5 catalog in each CPS are shown by the blue lines

while those from ED are in red. “uk” stands for “Unknown” (Color version is online).

Fig. 2 Two examples of “DoubleStar” from LAMOST DR5: (a) DA+M and (b) A+M.

to classify between DB and each “subclass” in parallel. For

convenience, we abbreviate “class+subclass” (CPS) as the

identification of each subclass in this experiment, such as

“star+O” or “QSO+null.”

There was, however, a notable difference in class from

SDSS and LAMOST in that there was an “Unknown”

class in the catalog of LAMOST, whereas the spectra from

SDSS only had three classes; star, galaxy and QSO; in

which the term “class” was employed from the data archive

of these two sky surveys. Therefore, the spectral data clas-

sified as “Unknown” should have been preprocessed before

recognition (Sect. 2.3).

As listed in Table 2, in this experiment, we constructed

three subsets from LAMOST DR5 for training, testing and

searching. The training set was used for learning; i.e., to fit

the parameters (features and hyperplanes) of the classifier.

The testing set was used for adjusting the parameters of the

classifier: to choose the best features and the most suitable

kernel function of the SVM. A 10-fold cross-validation

was built into both the LASSO and SVM packages, and

was executed automatically by using the training set. For

application, we selected candidates, referred to as “exper-

imental data” (ED), from all spectral data, and explain the

selection procedure in Section 2.3.
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Table 2 Roles of the Three Datasets

Dataset Role

Training Data To be used in the training process, i.e.
Detecting features by LASSO (Sect. 3.2);
Estimating the parameterizing model by LIBSVM (Sect. 3.4).

Testing Data To be used in the training process, i.e.
Determining the parameters in LASSO (Sect. 3.2);
Determining the hyper-planes in LIBSVM (Sect. 3.4).

Experimental Data Application of Sect. 3, to be used in
Searching for DB spectra from Experimental Data (Sect. 4).

L A S S O : F e a t u r e E x t r a c t i o n

Y e s N o

S t a r t
O

A c c u r a c yS a t i s f a c t i o n

P r e p r o c e s s i n gS p e c t r a P r e p a r a t i o nN o r m a l i z a t i o n R e d s h i f t M e a s u r e m e n t
OD B BBD B W DW DD B D BT a g T a g T a g T a gT a g T a g T a g T a gT a g T a gS V M : R e c o g n i t i o n O p t i m i z a t i o n
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T r a i n i n g S e t

Fig. 3 Flowchart for the training process of the DB-mining procedure in our experiment, which mainly consists of preprocessing,

feature extraction, classification and optimization.

2.1 Preparation of Positive Samples

Consider the similarity of spectra from both LAMOST and

SDSS. Only 34 DBWDs were identified from LAMOST

DR2 (Guo et al. 2015) and six DB candidates from

LAMOST DR3 (Gentile Fusillo et al. 2015). Because few

DB spectra were available in LAMOST DR5, DB spec-

tra from SDSS DR14 were required to complete this ex-

periment. A total of 300 known DBWDs and DB feature

spaces obtained from KONG2018 first served as the pos-

itive samples. With spectra from LAMOST DR5 as nega-

tive samples, we conducted the recognition process using

an SVM program.

Following the classification procedure, which is ex-

plained in the following sections, we checked all data

marked as positive by the program and obtained 278 DB

spectra from LAMOST DR5. However, more DB spectra

may have been overlooked by the program owing to the

positive samples from the SDSS. We then chose 100 DB

spectra, including DB, DBA, DBZ and DB binaries, with
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Fig. 4 Features of DB versus O, B, A, F, WD(DA) and QSO, from top to bottom, respectively. To make them more explicit, the

wavelengths of features are marked with red lines above each type of spectrum (blue); the DB spectra are plotted in black.

relatively high S/Ng as positive samples for the training

set. Each group of negative samples was then compared

with this set of positive samples for rarity.

2.2 Data for the Training Process

The redshifts of these positive samples and DB spectra in

the negative samples from the LAMOST catalog were not

correct because they had been measured by using non-DB

templates. Hence, we needed to recalculate the z of all data

by using DB templates and move the spectra to the rest

frame. To acquire more comprehensive and accurate val-

ues, full-spectral template matching (the core algorithm in

the pipeline of SDSS (Lee et al. 2008) and LAMOST (Luo

et al. 2015) was used to compute the z values of all spectra.

However, we needed to guarantee that the negative

samples were as pure as possible; i.e., we needed to ensure

that every spectrum in the negative sets had a correct clas-

sification and retained the characteristics typical for it. For

each CPS, spectra were selected from all data, and ranked

by S/Ng in descending order, as negative samples.

In implementing the algorithm, the SVMs proposed

in the past experienced many limitations, such as low

recognition accuracy when applied to binary classifica-

tion from unbalanced datasets, in which negative instances

heavily outnumbered positive ones. Remedies have since

been developed to solve this problem (Akbani et al. 2004).

However, we maintained the balance between positive and

negative samples within the group of CPS cases, which

Table 3 Classification of “Unknown” Spectra in LAMOST DR5

Classa Subclassa Nb N in EDc

Star O 7004 131

Star B 354 62

Star A 1516 711

Star F 4580 409

Star G 3088 263

Star K 2798 119

Star M 18 898 331

Star WD 1783 725

Star carbon 5799 174

Star CV 19 0

Galaxy null 206 287 1084

QSO null 262 358 1837

a “Class” and “Subclass” are adopted from the data archive of

LAMOST DR5.
b Number of spectral types from “Unknown” portion of

LAMOST DR5, classified by full spectral template matching.
c These numbers are a small part from column 3, listing the

number of spectra.

means that the number of non-DB spectra in each group

of CPS was exactly 100. To obtain more comprehensive

results, we set the number of groups within each CPS to

five; i.e., there were five groups of positive and negative

samples for every spectral type or 1000 spectra in a CPS.

The “CPS” in this subsection means the CPS in the training

set. More details are available in Table 1.
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Fig. 5 Flowchart of the recognition procedure. This is the application stage of Fig. 3 and Sect. 3. The final catalog is also generated in

this part.

2.3 Data for Recognition

LAMOST DR5 contained >9 million spectral data items,

including 153 090 galaxies, 51 133 QSOs, 8 171 443 stars

and 642 178 unknown items, among which there were

5 807 771 spectra with S/Ng > 10.

Compared with stellar templates from the SDSS

Pipeline, templates in the LAMOST Pipeline contain more

subclasses, and can provide a more accurate stellar clas-

sification for about 95% of spectra (Wei et al. 2013).

Theoretically, the majority of data with high S/N should

be correctly classified by the LAMOST 1D pipeline. As

a result, obvious non-DB spectra needed to be excluded

in advance; otherwise, it would be inefficient if all spectra

were considered in the recognition process.

We used full-spectral template matching, which is de-

scribed briefly in Section 3.1, to classify all spectra from

LAMOST DR5. The only distinction, however, in our ap-

plication of this process was that the DB templates were

replaced by all templates from the LAMOST 1D pipeline

(Luo et al. 2015). Moreover, the χ2 value between the best

and second-best fit was also considered to confirm the final

type. Then, both the class and the redshift of each spectrum

could be obtained from the best-fitting template. After this

procedure was executed, some spectra were discarded from

the ED while others were maintained, as is shown with the

red and blue bars, respectively, in Figure 1.

It is worth noting that there was a subclass of the

DR5 category called “DoubleStar,” which is not a typi-

cal stellar type. The spectra with “DoubleStar” classifica-

tion mostly represented the binary companion of a WD, or

an early-type object, and an M star, such as DA+M (M-

P S-F is 56264-HD090427N432630M01 07-094; Fig. 2a)

(Ren et al. 2014; Guo et al. 2015; Kleinman et al. 2013;

Girven et al. 2011; Silvestri et al. 2007) or A+M (M-P S-

F is 55858-F5909 04-104; Fig. 2b). Both spectra plotted

in this figure were smoothed by convolving them with a

Gaussian function, where σ = 1 and µ = 10. The compo-

nents in panel (b) are A2 type and M3 giant stars. These

kinds of spectra exhibit characteristics of both types of

stars, features of which were more explicit in the blue and

red wavebands, respectively. Therefore, we placed all spec-
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Fig. 6 Five clustering centers of DBWDs from LAMOST DR5. Some He I lines (4026, 4472, 5876 and 6678 Å) are marked in dashed

lines. Centers (a3) and (a4) are both binaries: DB and M type stars.

Table 4 Results of Experiment and Evaluation of the Algorithm Model

Classa Subclassa EDb Candidatec DBd Ratioe

Star O 508 265 262 99.5%
Star B 9757 129 2 98.7%
Star A 108 367 2278 2 97.9%
Star F 863 200 16 404 3 98.1%
Star G 10 401 138 3 98.7%
Star K 9197 157 1 98.3%
Star M 12 423 296 10 97.7%
Star WD 5834 72 2 98.8%
Star doublestar 2198 98 1 95.6%
Star carbon 1910 93 1 95.2%

Galaxy null 89 120 2231 3 97.5%
QSO null 32 091 544 31 98.4%

Unknown null 163 977 10 020 30 93.9%

Total 1 608 983 32 725 351 96.7%

a“Class” and “Subclass” are adopted from the data archive of LAMOST DR5.
b Number of spectra for every CPS in ED.
c DB candidate, number of positive samples in every CPS directly derived from SVM.
d Number of positive samples in every CPS after visual inspection.
e The approximate identification precision when the predication negative samples are all right,
i.e. the correct proportion of classification (1 − Candidate−DB

ED
).

tra specified as “DoubleStar” into the CPS of M, WD, B

and A.

Compared with all LAMOST DR5 data, the ED even-

tually comprised ∼25% on average of the data.

3 TRAINING PROCESS METHOD

In general, the fundamental idea of classification here is to

use an SVM as a classifier to sort DBWDs from all spec-

tral data based on features extracted by using LASSO. An

SVM is a binary classification-based algorithm (Duan &

Keerthi 2005), which means that it focuses on building a

model that assigns new examples to one category or an-

other. LASSO is a method of regression analysis in statis-

tics and ML that conducts both variable selection and reg-

ularization. It can extract distinctions between datasets.

In the initial step of our experiment, all data were nor-

malized in preprocessing and a redshift measurement was
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Table 5 Number of Stellar Templates for Each “Subclass” from the LAMOST 1D Pipeline

Subclassa O B A F G K M Carbon CV DoubleStar WD Total

Number 2 2 49 25 24 36 38 3 1 1 2 183

a “Subclass” is adopted from the data archive of LAMOST DR5.

Fig. 7 Two examples of the classification procedure. M-P S-Fs of panels (a) and (b) are 57460-HD143837N545111M01 04-157 and

57844-HD144325N263140M02 11-038, respectively. The red lines in the upper panels are the best fit of the spectra, both of which are

assigned to DB type by the software. However, the spectrum in panel (a) is a galaxy, while that in panel (b) is a DBWD. The lower

panels display the residuals (blue) obtained by flux – best-fit, with the black dashed lines indicating the ±3σ range of the residuals.

The red lines on the residuals are the results of a Gaussian function fitting at a width of 50–100 Å.

Fig. 8 DB features combined from all CPSs. A DB spectrum is employed to indicate the wavelengths of features. All features are

shown in red in the spectrum over a light gray background.

made for the positive samples. The main body of the ex-

periment consisted of separating the DBs from other types

using a binary classification module of the SVM, followed

by feature extraction with LASSO. If the accuracy (the ra-

tio expressing how many samples are recognized correctly)

was not sufficiently high, then optimization was needed;

i.e., removing contamination of the DBs from negative

sample sets and restarting of this loop. Following the com-

pletion of the training process, unique features of the DBs

and hyperplanes from each group were derived by using

LASSO and an SVM, respectively. The entire procedure

conducted in KONG2018 was similar to that in this paper,

and is illustrated in Figure 3. Therefore, most of the fol-

lowing parts are only briefly introduced in this section.

3.1 Data Preprocessing

1. The normalization of the positive and negative samples

is given by

x̂ =
x − x̄

σx

,

where x = (x1, x2, . . . , xn)T represents a spectrum, n

(n > 0) is the number of points, and x̄ and σx are the

mean value and standard deviation of x, respectively.
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Table 6 Results of Classification Using Templates Including DB
for the Three Groups

G0a G1b G2c

TP 305 303 303

FP 11 13 13

TN 35 987 36 785 36 518

FN 538 40 7

Accuracy 98.5% 99.8% 99.9%

Ratiod 1.5% 0.1% 0.0%

a Include DB templates, no feature space, no other criterion. b Include

DB templates, in the feature space, no other criterion. c Include DB tem-

plates, in the feature space, with some additional criteria. d The ratios

refer to FN/(TN+FN), which means the percent of how many non-DB

spectra are mistaken for DBWDs.

Table 7 Classification results grouped by S/Ng . The total number
of column 2 (G2) corresponds to the sum of TP and FP from the
fourth column in Table 6.

S/Ng G2a DBb Ratio (%)c

2–5 41 34 17.0

5–10 96 92 4.2

10–20 84 82 2.4

> 20 95 95 0.0

a The number of DB spectra.
b The number of DB spectra classified properly by the

LAMOST 1D Pipeline (TP).
c Proportion of program classification errors (1 − DB

G2
).

The component xi represents the flux of the spectrum

x, i ∈ {1, 2, . . . , n}.

2. A redshift measurement for positive sample groups

was made using full-spectral template matching:

Known DB spectra with high quality were used as

templates to calculate the redshift of the positive sam-

ples. Simply put, this was approached as a χ2 mini-

mization problem. The pseudo continua of templates

were reshaped at the beginning to be consistent with

the spectrum. Afterwards, the distance between a tem-

plate and the spectrum at each step within a specific

redshift range was calculated. Finally, z was derived

from the best fit — the template that reached the min-

imum χ2.

3.2 Feature Extraction

In general, features include the continuum and some typ-

ical spectral lines when a spectrum is recognized. We be-

lieve that the pseudo continua of templates should be re-

shaped to be consistent with that of the spectrum before

the distance (χ2) between a template and the spectrum is

calculated. However, for classification using an algorithm,

all data points are not equally important and the continuum

may not have much of an effect. Some positions of the line

wings rather than centers may be more sensitive in distin-

Table 8 DB Features near He I Lines

He I Line (Å) Wavelength (Å) Widtha (Å)

3819.6 3807.0 – 3813.3 6.3

3888.6

3849.3 – 3879.7 30.4
3889.4 – 3892.2 2.8
3911.0 – 3921.0 10
3931.8 – 3940.9 9.1

3964.7
3944.5 – 3959.1 14.6
3967.2 – 3972.8 5.6

4026.2

3992.0 – 3993.0 1.0
4001.2 – 4003.1 1.9
4014.1 – 4019.7 5.6
4027.0 – 4028.1 1.1
4031.7 – 4032.7 1.0

4120.8
4100.0 – 4105.8 5.8
4134.2 – 4139.0 4.8
4199.4 – 4201.4 2.0

4387.9

4239.2 – 4242.3 3.1
4280.4 – 4286.4 6.0
4291.3 – 4297.3 6.0
4318.0 – 4324.1 6.1

4471.5
4456.7 – 4487.1 30.4
4513.3 – 4564.1 50.8

4713.1 4710.7 – 4711.9 1.2

4921.9
4877.4 – 4878.6 1.2

4915.7 – 4924.9 9.2

5015.7 5015.2 – 5016.4 1.2

5875.6
5849.1 – 5850.5 1.4
5868.0 – 5888.4 20.4

6678.2
6677.1 – 6681.8 4.7
6872.1 – 6873.8 1.7

7065.2
7071.3 – 7078.8 7.5
7202.6 – 7211.0 8.4
8188.2 – 8190.2 2.0

8361.7 8350.1 – 8354.0 3.9

a The lengths of features. Some features, <∼1.5 Å wide, are
only one data point.

guishing a DB from other types of spectra (O-/B-/A-type

star, galaxy, QSO, etc.).

During this experiment, LASSO was employed to ex-

tract particular features of DB and other kinds of spectra

from LAMOST DR5.

We built five sets of negative samples for each CPS as

control groups, for the features might not exactly have been

identical when the quality or parameters were changed

even slightly. We combined features from each group of

a CPS into one as final output. Based on our previous re-

search, the full wavelength range (3900–8900Å) is em-

ployed in this experiment.

Following the training process, we obtained conclu-

sions similar to those in section 3 of KONG2018. The fea-

tures varied from one CPS to another; features from each

group under the same CPS had subtle differences at cer-

tain wavelengths, owing to variations in line strength and

width caused by changing parameters. Some features were

also not symmetrical with respect to a spectral line.
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Table 9 Classification of DBWDs in LAMOST DR5

Type Number of stars Number of spectra

DB 207 249

DB+Ma 15 16

DBAb 41 49

DBO 13 14

DBZ 9 10

a One can find the subtype and RV of the M companion in the

online table.
b A few DBA cases are actually DBAZ or DBAO, but here

they are all counted in “DBA.”

3.3 Feature Collection

We extracted the features from all groups and combined

those within each CPS into an array as output.

Figure 4 shows the features of some CPSs: O, B, A, F,

DAWD and QSO, from top to bottom respectively, marked

using short red lines above each spectrum. In general,

many features on both sides of all spectral lines were im-

perfectly symmetrical, probably due to the asymmetry of

the spectral line and the continuum. Moreover, the range

of wavelength for features on the right side of a spectral

line, in some cases, was wider than that on the left. The

number of metal elements increased with the order of stel-

lar type from early to late, which corresponded to the rise

in the number of features in the red band.

3.4 SVM

Given a set of training samples divided into positive and

negative categories in a dual clustering system, an SVM

algorithm builds a robust binary linear classifier model that

assigns new data to either type. We adopted the LIBSVM

(Chang & Lin 2011) software to select DB spectra from all

spectra based on the DB features.

Parameter selection is crucial for any ML algorithm,

and LIBSVM is no exception. LIBSVM provides four ba-

sic kernels: linear, polynomial, sigmoid and radial basis

kernel function. We randomly selected thousands of spec-

tra with various types and S/Ng in LAMOST DR5, to-

gether with all the known DB spectra, as the test dataset.

Then all the four kernel functions were employed to exe-

cute the recognition process. Afterwards, we inspected all

the DB candidates recognized by LIBSVM. Many non-DB

spectra were mis-classified as DB when using polynomial

or sigmoid kernel functions, and the precision ratio could

be less than 80%. However, when the linear or radial basis

function kernels were adopted, the precision ratio would

reach above 95%. These tests have shown that linear and

radial-basis function kernels provide better results in terms

of discriminating spectral data. The built-in 10-fold cross-

validation was utilized to determine all other parameters

automatically by using the LIBSVM software.

Table 10 Newly Spectroscopically Identified DB+M Binaries

Designation Type RVDB RVM

(km s−1) (km s−1)

J225336.81+081608.1 DB+M3 −17.7 ± 3.4 90.4 ± 3.2

J130716.45+170220.9 DB+M1 103.0 ± 12.0 10.6 ± 13.3

J025521.23+210444.1 DB+M0 47.3 ± 3.1 −18.7 ± 2.4

J233741.62+454318.0 DB+M3 −26.9 ± 15.2 19.9 ± 32.9

Notes: An explanation of the fields within this table can be found
in Table 11.

Given that all data in the training set were assigned

to the correct type, some measures of information retrieval

and statistical classification were employed to evaluate the

performance of the algorithm in terms of accuracy, preci-

sion and recall. We applied the true positive (TP) stand-

ing for the correct prediction of the positive category, false

positive (FP) for that of the incorrect positive category,

and false negative (FN) and true negative (TN) for incor-

rect and true negative classifications, respectively. Because

almost all positive samples were recognized properly by

LIBSVM, the recall, TP/(TP+FN), was ∼99.9%, which

demonstrates the percentage of positive samples predicted

correctly. The accuracy – (TP+TN)/(TP+FN+FP+TN) –

reflects the program’s ability to determine the entire sam-

ple, which means identifying positive samples as DB spec-

tra and negative samples as non-DB ones. The percent-

ages of mean accuracy and precision – TP/(TP+FP) – were

99.7% and 99.1%, respectively, which indicate high stabil-

ity and reliability of the algorithm.

3.5 Verification of Method Validity

In our previous work (KONG2018), we applied this ML

method to extract features and search DB spectra in the

SDSS DR12 (Alam et al. 2015) and DR14 (Abolfathi et al.

2018). In all the spectra of 2700 DBs from SDSS DR12,

we spectroscopically identified 704 cases that were not in

the catalogs in Kepler et al. (2015, 2016); Kleinman et al.

(2013), which verifies the validity of our method. In gen-

eral, this ML method could be applied to search for DB

spectra more effectively.

4 RECOGNITION

4.1 SVM Input

Before the recognition process, each “Unknown” spectrum

needed to be assigned a specific type and become a mem-

ber of a certain CPS. The associated values are presented

in Table 3.

Only those with relatively high uncertainty from tem-

plate matching were added to the ED. Feature planes de-

rived from the training process were also employed as in-
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Fig. 9 Distributions of g-band magnitude for (a1) DBWDs and (a2) WDs. (b) Histograms of S/Ng for DBWDs. Red dotted lines and

blue solid lines, respectively, represent the amount of spectral data from LAMOST DR5 and SDSS DR12, all of which are normalized

to a maximum of 1 in each panel. In the three panels, the actual quantities are multiplied by factors of 608, 3745 and 123 for SDSS and

23, 536 and 10 for LAMOST, all of which are marked in parentheses after their sky survey names.

put to LIBSVM. A flowchart is shown in Figure 5 which

demonstrates the entire process described in this section.

4.2 Recognition and Results

A total of 13 CPSs, 1 608 983 spectra, were involved in the

recognition procedure. Similar to the preprocessing pro-

cedure, we normalized them and moved them to the rest

frame. Some hyperplanes in the feature space were used in

LIBSVM to distinguish the DBs from all data in the ED.

After inspection, we selected 351 DB spectra from

287 objects in LAMOST DR5, among which 53 stars were

newly identified. We provide the results of our experiment

in Table 4, which indicates that the mean percent correct

from the algorithm was ∼96.7% if all labeled negative

samples were real non-DBs.

Clearly, most DBs were identified as O, QSO and

Unknown in DR5. Among all 30 DBWDs from the

“Unknown” group, the best fits consisted of 21 O stars and

four QSOs, which indicate that these types of spectra and

those of the DBs had much in common. In a different way,

it would often be difficult to distinguish DBs from other

types when using the full spectrum to match them, instead

of particular wavelengths (features).

5 CONSTRUCTION OF DB TEMPLATES

We provide a solution to DBWD recognition for the

LAMOST 1D pipeline.

5.1 Spectral Data

All DBWD spectra with S/Ng > 10 from both SDSS

DR14 and LAMOST DR5 were used to build the DB tem-

plates by using k-means clustering (MacQueen 1967). We

set 12 clustering centers for the clustering process. The

centers containing <50 spectra with He I lines that were

too weak to be observed were abandoned. The abandoned

centers were noise, and helped little when the pipeline

identified the spectra. Finally, five clustering centers that

corresponded to the most numerous spectra were selected,

as illustrated in Figure 6. In general, a majority of DB spec-

tra was recognized by these five clustering centers.

Table 5 shows that the stellar templates of the

LAMOST 1D pipeline consisted of 183 spectra (Wei et al.

2013) ranging from O- to M-type stars, together with

some particular spectral types; e.g., CV, carbon, WD and

DoubleStar. These two “WD” templates were DA WD

spectra. To obtain a more comprehensive result, we ran-

domly selected 4000 spectra from each subclass of the
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Fig. 10 Three DBWD stars released by both LAMOST and SDSS. (a) J010901.58+083354.6 was recorded twice on either side (a1 and

a2 are from LAMOST DR5 and a3 and a4 are from SDSS DR12). (b) For J012148.19-001053.7, the counts are five (b1–b5) and two

(b6 and b7). (c) For J103955.44+310643.7, the counts are two (c1 and c2) and one (c3). Obsid (LAMOST) and plate-mjd-fiber (SDSS)

from catalogs are labeled above their spectra. From top to bottom, their S/Ng values are 2.76, 1.75, 22.45, 23.07 (a1–a4), 22.10, 3.48,

26.2, 34.25, 29.47, 50.64, 30.96 (b1–b7), 29.92, 44.15 and 22.24 (c1–c3), respectively. Because of a feature caused by noise, the three

spectra drawn in red were not selected by our algorithm.

LAMOST data archive, together with known DBs, as the

dataset.

5.2 Classification and Results

The five DB clustering centers were first added to the stel-

lar templates. Considering the features obtained in this pa-

per, we built three control groups and compared the recog-

nition results.

– G0: We directly used the LAMOST 1D pipeline to

classify all spectra from the dataset, using templates

including DBWDs.

– G1: The difference from G0 was that we performed

classification in the feature space and recognized using

the DB templates.

– G2: We added criteria to the final stage of classifica-

tion to improve accuracy (with G2 being the upgraded

version of G1). These criteria are explained below.

After classification, we inspected samples identified

as DBWDs and compared the results with types from the

LAMOST DR5 catalog. Table 6 shows the comparison re-

sults. For all groups, a majority of DB spectra was iden-

tified from the datasets in general. However, the program

mistook many other types of spectra for DBWD spectra if
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Fig. 11 Footprints of LAMOST DR5 (upper panel) and SDSS DR14 (lower panel). A band with declination equal to 0 is indicated

by a gray line. These targets observed by both surveys are colored blue, while all DBWDs are in red circles. In the sky area where the

Galactic latitude is between −30
◦ and +30

◦, LAMOST DR5 added many observations.

Fig. 12 One example of template matching for parameter measurement. The black spectrum is a DBWD (specid is

20150112GAC054N40B101161 v2.9.7) and the green one illustrates the best-fitting template.

all of the wavelengths were considered. The use of features

offered help in reducing instances of misclassification.

Most DBWD spectra were recognized by the DB tem-

plates using the LAMOST 1D pipeline. The majority of

DBWDs (FP) discarded by the software was dropped be-

cause of strong hydrogen lines (DBA), metal lines (DBZ)

or He II lines (DBO), whereas others were misclassified

due to noise. Table 7 signifies that noise could have a neg-

ative impact on classification results.

From the TN and FN rows in Table 6, we can conclude

that some non-DB spectra were mistaken as DBWD spec-

tra using templates containing the DB spectra. Group G0

indicates that >500 non-DB spectra were assigned to the

DB type, mainly owing to low S/N. After applying tem-

plate matching in the feature space, there was a significant

reduction in the error (the last row of Table 6).

We then added criteria to the classification process.

Because this process is only preformed in the feature

space, some typical lines in other types of spectra might not
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Fig. 13 Parameters of DBWDs calculated by both Kepler et al. (2016) and us. The red solid lines in the top two panels are the straight-

line fitting results, y = 0.92x + 927 for Teff and y = 0.95x + 0.38 for log g (x for parameters from KONG2018 and y for those from

Kepler et al. (2016)). The two panels below are the residuals of the fits with σ = 2482 K and 0.12 cgs for Teff and log g, respectively.

Fig. 14 Distributions of Teff, log g and distance from the Sun for DBWDs from LAMOST DR5.



X. Kong et al.: A Catalog of DB White Dwarfs from the LAMOST DR5 88–15

Table 11 Descriptions of Columns in the Entire Online Table of DBWDs

Column No. Heading Description

1 Designation LAMOST object name (LAMOST 2000J+)
2 M-P S-F LAMOST Modified Julian Date-Planid SPid-Fiberid
3 Type Classification of objects derived from ML method

4 RVDB Radial velocity and uncertainty of each spectrum (km s−1)

5 RVM Radial velocity and uncertainty of M companions (km s−1)
6 Teff Effective temperature (K)
7 log g Surface gravity (cgs)
8 FUV Magnitude of FUV from GALEX (mag)
9 NUV Magnitude of NUV from GALEX (mag)

10 S/Ng g band of S/N from catalog of LAMOST DR5

11 PmRA Proper motion at J2015.5 in the direction of RA (km s−1)

12 PmDEC Proper motion at J2015.5 in the direction of DEC (km s−1)

13 Parallax Absolute stellar parallax of the source at the reference epoch J2015.5 (mas yr−1)
14 Mass Obtained from http://www.astro.umontreal.ca/˜bergeron/CoolingModels/ (M⊙)
15 Age Obtained from http://www.astro.umontreal.ca/˜bergeron/CoolingModels/ (Myr)

Notes: –9999: there is no corresponding value.
The full table is online at http://www.raa-journal.org/docs/Supp/ms4311etable.rar.

have been considered. In panel (a) of Figure 7, three emis-

sion lines in the spectrum are not included in the feature

space, and were omitted by the program. We checked the

residuals between the spectrum and the best fit, and found

that many rejected spectral lines could extend beyond the

±3σ region of the residuals. For comparison, we illustrate

an example of successful recognition of the DBWDs in

panel (b) of Figure 7. Finally, we fit these extended points

with a Gaussian function if the spectrum was considered

a DBWD by the LAMOST 1D pipeline. If more than one

line was fitted successfully, then the pipeline got rid of the

DB templates and redid the classification.

6 ANALYSIS

6.1 Features of DBWDs

In Section 3.2, we obtained the differences (features) be-

tween the DBWD spectra and others types of spectra. We

then combined features from all CPSs and discarded those

existing only in fewer than three groups. As Figure 8 and

Table 8 show, almost every He I line center was recognized

as a DBWD feature. Moreover, some locations within the

line wings were also typical features of DBWDs, as dis-

cussed in Sections 3.2 and KONG2018.

In the previous section, we tested the effectiveness

of these features for spectral classification using the

LAMOST 1D pipeline. We think that they can also help

when using algorithms to select and analyze the DB spec-

tra.

6.2 Comparison with the Literature

Over 1500 pure DB objects have been identified in the lit-

erature, including some DB+M double stars. In this pa-

per, we present 351 DBWD spectra in LAMOST DR5 that

corresponded to 287 stars, among which 53 objects were

newly spectroscopically confirmed. Table 9 provides the

subtypes of DBWDs in our catalog.

We present these newly identified DBWDs online

at http://www.raa-journal.org/docs/Supp/

ms4311etable.rar and the DB+M binaries in

Table 10. All information concerning the DBWDs from

LAMOST DR5 can be found in the online table, the de-

scriptions of which are given in Table 11.

6.3 Comparison with SDSS Spectra

6.3.1 Distinction

Thus far, the largest datasets of DBs, even of WDs, are

from SDSS, in which the number of released WD spectra

was 36 093 and 38 575 in DR12 and DR14, respectively.

By contrast, the size of LAMOST DR5 is only 9211. The

number of helium-dominated WD spectra, more explicitly,

from SDSS DR14 was ∼2800 in the literature. However,

we have discovered 300 more DB spectra from LAMOST

DR5, despite its release of ∼9 million data items.

These two ratios of WDs with respect to the total num-

ber of data items in SDSS and LAMOST are so different

mainly owing to the limiting magnitude of the telescope,

source selection and data quality. These are discussed in

turn.

1. Limiting magnitude.

With its ability to capture 4000 spectra in a single ex-

posure, LAMOST can reach a limiting magnitude of

16–17 mag (Luo et al. 2015), whereas the observable

spectrum of the SDSS photometric camera is brighter

than 23.2 for g ′ (Gunn et al. 1998). Considering the

low brightness of WDs, compared with LAMOST,

SDSS can capture a much higher value.
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Fig. 15 FUV–NUV as a function of Teff. The continuous (red) line is the fitting results for DBWDs, with the two dashed lines repre-

senting the 3σ range.

Table 12 Source Selection of SDSS DR12 and LAMOST DR5

Sourcea SDSS LAMOST

Number Ratiob Number Ratiob

QSOc 718 810 17.8% 3082 0.03%

galaxyd 2 345 709 58.0% 112 031 1.2%
stare 260 198 0.6% 8 623 151 95.6%

dwarff 27 508 0.7% 282 0.003%
white dwarfg 11 182 0.3% 282 0.003%

a Refers to “SourceType” and “Objtype” fields from database of
SDSS DR12 and LAMOST DR5, respectively.
b The ratio represents a certain type of target accounting for the
proportion of all objects, which is derived by dividing column 2
by the number of all spectra, in addition to “NA”/“null”/“SKY”
(4 047 254 from SDSS DR12; 9 017 844 from LAMOST DR5).
c Sum of numbers from all the fields that include “QSO” (except
for “GAL NEAR QSO” in SDSS).
d Sum of numbers from all the fields that include “GAL” (together
with “LRG” in SDSS).
e Sum of numbers from all the fields that include “STAR” and
“STD” (except for “QSO STD” in SDSS).
f Sum of numbers from all the fields that include “DWARF”.
g Sum of numbers from “STAR WHITE DWARF”, “WHITE
DWARF NEW” and “WHITEDWARF SDSS”.

The distributions of g-band magnitude for WDs from

SDSS DR12 and LAMOST DR5 are shown in panels

(a1) and (a2) of Figure 9. Panel (a1) represents the

number of DBWDs from both the literature (Kleinman

et al. 2013; Kepler et al. 2015, 2016; Guo et al. 2015;

KONG2018) and this experiment, while panel (a2)

accounts for all WDs from the SDSS DR12 and

LAMOST DR5 catalogs. It is clear why DBWDs in

the LAMOST data archive were so small in number:

The majority of DBWDs (WDs) from LAMOST was

brighter than those from SDSS by a magnitude of

∼2–4 in the g band.

2. Source selection.

The object selection strategy is crucial to obtaining dif-

ferent kinds of spectral data, and is based on both in-

strument capability and survey plans. There are always

differences between the stars selected from LAMOST

and those from SDSS which can lead to a dispropor-

tionate number of DBWDs.

We checked the object selection in detail from SDSS3

and LAMOST4 databases, and demonstrate the distri-

butions of major sources (QSO, galaxy, star and WD)

in Table 12. Tens of thousands of WDs were preserved

in the observing strategy of SDSS, whereas only

∼300 were kept in that of LAMOST. In other words,

the SDSS project had greater interest in extragalac-

tic objects, and one of the major goals of LAMOST

was to collect the spectra of stars in the main sequence.

3. Data quality.

In spite of their similarity in terms of resolution, the

qualities of many spectral data from the SDSS and

LAMOST DRs were not of the same level. The S/Ng

distributions of DBWDs from SDSS DR12 seemed

structurally superior to those from LAMOST DR5, as

panel (b) of Figure 9 illustrates.

We cross-matched all released spectra from SDSS

DR12 and LAMOST DR5 in a circular area with a

radius of 3′′. There were ∼268 DBWD stars cap-

tured by both LAMOST (DR5) and SDSS (DR12),

from which we selected multi-observed DBWD spec-

tra. We display them in Figure 10. As panels (b1)–

(b5) illustrate, most spectra clearly displayed typical

spectral lines but some did not. We failed to recog-

nize the three spectra in red, which exhibit few spec-

tral lines and were assigned to “Unknown” by the

LAMOST 1D pipeline. However, many DBWD spec-

tra from LAMOST DR5 were similar to, or even bet-

ter than, those from SDSS DR12. For example, for the

3 http://skyserver.sdss.org/CasJobs/
4 http://dr5.lamost.org/sql/s
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Fig. 16 3D velocities, in the Galactic coordinate system, of high-S/N DBWDs from SDSS DR14 (blue) and LAMOST DR5 (red).

The axes represent the spatial position in parsecs. “x” is the distance from the Sun along the direction of the Galactic center, with that

toward the Galactic center being positive. “y” is perpendicular to “x” and follows the right-hand rule. “z” is perpendicular to the xy
plane and positive to the north. The top panel is the top view while the bottom one is the side view. All DBWDs are signified by gray

circles, the radii of which represent Teff. The lines with arrows represent the velocities and their directions on this plane. The two side

subplots are histograms of the velocity distribution along the x and y directions, respectively.

three spectra in panel (c), the S/Ng values of LAMOST

data ((c1) and (c2)) were 29.92 and 44.15, respectively,

while that of the third (c3) from SDSS DR12 was

22.24.

Possibly more spectra from the LAMOST data be-

longed to the DBWD category, but have not yet been

sought by astronomers because of low S/N ratio.

6.3.2 Connection

Data from both SDSS DR14 and LAMOST DR5 were low-

resolution spectra, with wavelength ranging from∼3900 to

∼9000 Å. Furthermore, both of the two sky surveys cov-

ered most of the northern celestial hemisphere. The foot-

prints of SDSS DR14 and LAMOST DR5 are shown in the

Galactic coordinate system in Figure 11.
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Table 13 Dispersion of 3D Velocities for DBWDs with S/N
g

> 10

M Na u v w TVb

(M⊙) (km s−1) (km s−1) (km s−1) (km s−1)

0.20 – 0.50 81 9.9 ± 1.6 −39.2 ± 1.2 −5.2 ± 0.9 106.3 ± 1.8

0.50 – 0.80 872 29.5 ± 0.6 11.6 ± 0.8 −13.7 ± 0.3 95.0 ± 1.0

0.80 – 1.20 430 15.0 ± 0.2 −21.2 ± 0.1 −18.7 ± 0.2 97.3 ± 0.2

a N is the number of DBWDs in each mass bin.
b Total velocity, obtained from

√
u2 + v2 + w2.

6.4 Parameter Measurement

Koester & Kepler (2015) gave DBWD parameters (se-

lected from SDSS DR10 and DR12 with S/N > 10) by

applying theoretical model fitting, and discussed their rela-

tionships and distributions. Using the DB parameter model

provided by D. Koester, we also measured the parameters

(Teff and log g) of the DB spectra from LAMOST DR5,

employing template matching at wavelengths of He I lines.

The fitting results for all the DB spectra were inspected

carefully. Figure 12 displays an example of this check. The

average fitting errors of Teff and log g were 3.7% and 1.4%,

respectively.

The parameters of DBWDs measured by both Kepler

et al. (2016) and us were compared. Figure 13 demon-

strates that the σ of the residuals for Teff is 2482 K, while

that for log g is 0.12 cgs. For the DB spectra whose pa-

rameters were illustrated in this figure, the average fit-

ting errors of Teff measured by Kepler et al. (2016) and

KONG2018 are 204 and 493 K, respectively; while the av-

erage fitting errors of log g are 0.058 and 0.069 cgs, re-

spectively. Although the methods are different, the mea-

surements of parameters rely on the same DB models pro-

vided by Koester. Therefore, when considering the un-

certainties of the Teff and log g, errors from the two

methods should contribute to the residuals, which are

about
√

2042 + 4932 ≈ 534 K and
√

0.0582 + 0.0692 ≈
0.091 cgs, respectively. The σ of the residuals of log g is

comparable with the uncertainties of the measurements.

Obviously, both the errors of Teff from Kepler et al. (2016)

and KONG2018 are relatively small; however, the errors

from Kepler et al. (2016) are much smaller. It reminds us

that the fitting errors of Teff should be scaled when using

them to conduct further study.

We show the distribution of Teff and log g in panels (a)

and (b) of Figure 14, respectively. The histogram of Teff

was used at 500 K intervals, while that of log g was 0.05.

A majority of DBWDs from LAMOST DR5 gathered at

Teff ≈ 15 000K and log g ≈ 8.0.

Given the strong intensity in the ultraviolet waveband

of the WD spectra, we cross-matched all DBWDs from

both LAMOST DR5 and SDSS DR14 with the Galaxy

Evolution Explorer (GALEX), obtaining the far-ultraviolet

(FUV) and near-ultraviolet (NUV) magnitudes. Those with

errors of <0.3 mag for both FUV and NUV and S/Ng >

10 were selected to demonstrate the relationship between

Teff and FUV − NUV colors:

FUV − NUV = −9.5 × 10−5Teff + 2.15 . (1)

In total, only 69 DB spectra from LAMOST DR5 were

included. See Figure 15 for more details.

We also looked up the masses and ages of DBWDs

based on the Teff and log g values in the Synthetic Colors

and Evolutionary Sequences of Hydrogen- and Helium-

Atmosphere White Dwarfs website5 (Holberg & Bergeron

2006; Kowalski & Saumon 2006; Tremblay et al. 2011;

Bergeron et al. 2011). The online catalog will include these

parameters with descriptions in Table 11.

6.5 3D Velocity

The Gaia satellite (Gaia Collaboration et al. 2016) released

DR2 (Gaia Collaboration et al. 2018) in April, 2018 pro-

viding proper motions in right ascension (RA) and declina-

tion (DEC), parallaxes (Luri et al. 2018), and photometry

(Arenou et al. 2018).

All DBWDs from SDSS DR14 and LAMOST DR5

were cross-matched with data from Gaia DR2. We adopted

1/parallax from Gaia DR2 to obtain the distances. Most

of the DBWDs survived within a distance of 500 pc

from the Sun. By applying the criteria of parallax > 0,

parallax error < parallax/5 (Luri et al. 2018) and S/Ng >

10, 1200 DBWDs remained.

We calculated the 3D velocities of the remaining

DBWDs using radial velocities (RVs), RAs and DECs ob-

tained from the LAMOST 1D pipeline, and parallaxes and

proper motions along the direction of RA and DEC from

Gaia DR2. By employing the local standard of rest (LSR)

from Huang et al. (2015), the 3D velocities (u, v and w in

Galactic coordinates) and the locations of the DBWDs are

illustrated in Figure 16.

Moreover, we investigated the dispersion of the

3D velocities at different mass levels for the DBWDs.

Table 13 shows that low-mass DBWDs, displaying the

kinematics of old stars, have a higher velocity dispersion

(∼1.5 km s−1). The dispersion decreased along all three

5 http://www.astro.umontreal.ca/˜bergeron/

CoolingModels/
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directions as the masses increased. This is consistent with

the conclusion in Wegg & Phinney (2012), the authors of

which used proper motion from PG in the velocity calcu-

lation. We employed more precise data and derived a con-

clusion for DBWDs, which is similar to that for DA WDs

given by Wegg & Phinney (2012).

For better illustration, an animation of the 3D

velocity distribution was produced, which is avail-

able online. From Figure 16 and the online animation

(www.raa-journal.org/docs/Supp/uvw.gif),

one can see that the known DBWDs seem to be more

cluttered in the neighborhood of the Sun. Furthermore,

most observed DBWDs are concentrated near the Galactic

anti-center, and their motions seem to be disorganized.

7 SUMMARY AND CONCLUSIONS

In this study, we spectroscopically identified 287 DBWDs

from 351 spectra in the LAMOST DR5, including 53

new objects, using ML, i.e., LASSO and an SVM. The

DBWD features were obtained by a combination of all

CPSs, as provided in Figure 8 and Table 8. We then con-

structed DB templates using DBWDs from SDSS DR14

and LAMOST DR5, and added them to the stellar tem-

plates of the LAMOST 1D pipeline. By experimenting

with several control groups of data, we proposed methods

that allow the pipeline to classify DBWDs more accurately.

The difference in numbers of DBWDs between SDSS

DR14 and LAMOST DR5 was analyzed from three as-

pects: limiting magnitude, source selection and data qual-

ity. Finally, we measured the parameters of all DBWDs

using DB models provided by D. Koester. Most DBWDs

were found to have Teff ∼ 15 000K ranging from 14 000 K

to 26 000 K, and log g ranging from 7.5 to 8.8. Using the

Gaia DR2, we calculated the 3D locations and velocities of

the DBWDs from SDSS DR14 and LAMOST DR5, and

have shown them in Figure 16 and an online animation.

Their velocity dispersion decreased with increasing mass,

which was consistent with the pattern of DA WDs.

At the same time, the application of DB templates and

features may require some other optimization to obtain

more comprehensive classification results. We need to con-

sider the relationship between the χ2 values corresponding

to the same template and the distributions of χ2. This will

be the subject of our next investigation in this area.
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