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Abstract Radio interferometers are used to construct high resolution images of the sky at radio frequencies

and are the key instruments for accessing the statistical properties of the evolution of neutral hydrogen over

cosmic time. Here we use simulated observations of the model sky to assess the efficacy of different esti-

mators of the large-scale structure and power spectrum of the sky brightness distribution. We find that while

the large-scale distribution can be reasonably estimated using the reconstructed image from interferometric

data, estimates of the power spectrum of the intensity fluctuations calculated from the image are generally

biased. This bias is found to be more pronounced for diffuse emission. The visibility based power spectrum

estimator, however, gives an unbiased estimate of the true power spectrum. This work demonstrates that for

an observation with diffuse emission the reconstructed image can be used to estimate the large-scale distri-

bution of the intensity, while to estimate the power spectrum, visibility based methods should be preferred.

With the upcoming experiments aimed at measuring the evolution of the power spectrum of the neutral

hydrogen distribution, this is a very important result.
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1 INTRODUCTION

Radio interferometers are the key instruments used to map

spatially resolved sky brightness fluctuations at radio fre-

quencies (Taylor et al. 1999). Within radio frequencies,

different emission mechanisms exist (Rybicki & Lightman

1985), including continuum emission by synchrotron radi-

ation, 21-cm line emission from neutral hydrogen gas or

H I to name a few. Various statistics of the sky brightness

distribution are evaluated from the radio interferometric

data to investigate different properties of Galactic and ex-

tragalactic sources including the magnetic field as well as

relativistic electron distributions in galaxies (Sukumar &

Allen 1989; Basu & Roy 2013), the morphology and dy-

namics of H I in nearby dwarf and spiral galaxies (Begum

et al. 2008; Walter et al. 2008; Dutta et al. 2010a, 2009,

2013), the origin and evolution of radio jets and lobes in

radio galaxies (Nandi & Saikia 2012), structures of super-

nova remnants (Roy et al. 2009), cosmological evolution

of H I (Ghosh et al. 2011), etc.

A class of these investigations uses large-scale dis-

tribution of the source emission to infer local physical

properties like the morphology of supernova remnants, ra-

dio galaxies and spiral galaxies, the radial distribution of

H I and rotational velocities or the relation between star

formation and gas distribution in spiral galaxies, from one-

point statistics like the mean or median of the specific

intensity at different positions within the source. On the

other hand, two-point statistics, like the autocorrelation

function, structure function or power spectrum of the sky

brightness fluctuations carry important physical informa-

tion like the properties of magnetohydrodynamic (MHD)

turbulence in supernova remnants or hydrodynamic turbu-

lence in the H I in galaxies and evolution of the distribu-

tion of H I during the cosmic dawn, epoch of reionization

and post-reionization era. In most of these cases, a power

spectrum of the specific intensity is evaluated from the

observed interferometric data (Dutta & Bharadwaj 2013;

Zhang et al. 2012).

Radio interferometers inherently measure a quantity

called visibility, a complex transform of the sky brightness

distribution. Roughly speaking, for many of the scientific

cases described above, the visibilities can be approximated

as the Fourier transform of the sky brightness distribution

measured at certain spatial frequencies. Estimation of the

one-point statistics of the sky brightness distribution re-
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quires a faithful reconstruction of it (the reconstruction is

usually referred to as the image) from the visibilities. As

the visibilities are often not measured at all spatial frequen-

cies, reconstruction of the image is not straightforward and

involves complicated algorithms to deconvolve the effect

of this incomplete measurement.

One approach to estimating the two-point statistics is

to use the reconstructed image and calculate either the

structure function or the autocorrelation function in the im-

age plane, or estimate the power spectrum of the image in

its Fourier conjugate plane. We shall call the estimators of

two-point statistics, that rely on the reconstructed image,

the image based estimators (e.g. Zhang et al. 2012; Walker

et al. 2014; Grisdale et al. 2017). Using image based es-

timators, it is possible to evaluate the two-point statistics

of a part of the astrophysical source under consideration.

This is essential in some particular cases, viz., in the cor-

relation of star formation with turbulence in the interstellar

medium (ISM), a variation of the MHD turbulence in the

arm and inter arm regions of spiral galaxies (Basu & Roy

2013), etc. However, any problem in image reconstruction

is likely to show up as artifacts in the image based esti-

mation of the two-point statistics and needs to be investi-

gated thoroughly before using for scientific inference. On

the other hand, a different class of estimators of two-point

statistics is used in the literature where visibilities are di-

rectly implemented to estimate the power spectrum of the

sky brightness distribution (Dutta et al. 2009; Choudhuri

et al. 2016). As this does not need image reconstruction,

these estimators are more direct and are not prone to arti-

facts of image reconstruction. We shall call these estima-

tors the visibility based estimators. As the visibility based

estimators implement the visibilities directly, they cannot

be used to estimate the two-point statistics of a part of the

image. However, in a few particular cases, these limitations

can be overcome by applying suitable techniques (see e.g.,

Dutta et al. 2010a).

Image reconstruction from the visibilities is a long-

standing problem (Thompson et al. 2017), and we shall dis-

cuss it in detail in the next section. The objective here is to

have the best guess of the sky brightness distribution from

limited observations that an interferometer provides. The

question is how accurately the one and two-point statistics

can be computed from these reconstructions. As the recon-

struction process requires various input parameters from

astronomers, the outcome is not unique (see e.g., Cornwell

et al. 1999; Condon et al. 1998; Becker et al. 1995; White

et al. 2007; Taylor et al. 1999). In this paper, we investigate

the efficacy of different estimators for the first and second

order statistics of radio interferometric data using simu-

lated observations. Engaging with all the different classes

of radio interferometric observations as well as all the dif-

ferent imaging techniques is not possible within the scope

of a single paper. Here we have focused on a particular

problem of estimating the first and second order statistics

of the H I emission of spiral galaxies. Our results are di-

rectly applicable to, but not limited to, cases involving the

same class of problems.

The rest of the paper is structured as follows: Section 2

describes H I observations and reconstruction of the image;

simulation of the interferometric observation is discussed

in Section 3; Section 4 focuses on the visibility and image

based statistical estimators; we present the result and anal-

ysis of the simulated data in Section 5; and we conclude in

Section 6.

2 BRIEF OVERVIEW OF RADIO

INTERFEROMETRIC OBSERVATION

Here we give a brief overview of interferometric observa-

tions; interested readers may refer to Taylor et al. (1999)

for further details. Radio interferometers are a collection

of many array elements, called antennas, arranged in a spe-

cific pattern on the surface of the Earth1. Each antenna

records the electric field of the electromagnetic wave com-

ing from a particular direction of the sky. The physical size

of the individual antenna and the observing wavelengths

limit the sensitivity of the antenna as well as the entire in-

terferometer to a limited portion of the sky. This is known

as the field of view (FOV) of the interferometer. Electric

fields from each antenna pair are correlated and recorded.

This quantity is known as the visibility function. The pair

of antennas for which the visibility is recorded is called

a baseline. The baseline vector U is the ratio of instan-

taneously projected separations of the antenna pair on a

plane perpendicular to the direction of the incoming wave

from the sky to the observing wavelengths. Clearly, the vis-

ibilities are functions of the baseline vector, i.e., V (U).

However, they can be measured only at the discrete val-

ues Ui, which correspond to the physical baselines offered

by all the antenna pairs. We introduce a function S(U) to

capture this sampling of the baselines by the interferometer

S(U) =

Nb
∑

i=1

δD(U − Ui) . (1)

1 In principle, there can be “zero spacing” interferometers (Mahesh

et al. 2014), interferometers with a very small number of baselines and

the antenna can be kept in space. However, most of the interferometers

used today consist of many antennas on the surface of the Earth.
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Henceforth, our discussion will be limited to the observa-

tion of H I 21-cm radiation from nearby spiral galaxies.

Typically, these galaxies are about ∼ 2−20 Mpc away and

hence their extent in the sky is limited to ∼ 40′ or lower.

Interferometers with a relatively narrow FOV of about one

degree are sufficient to observe these galaxies. Existing ra-

dio interferometers like the VLA2, GMRT3, etc., have the

required FOV. Here, we use the vector θ to denote the an-

gular separation between any point in the FOV with re-

spect to the center of the FOV. Correspondingly, the base-

line vector can also be taken as two dimensional and can

be considered as the Fourier conjugate of θ. In such ap-

proximation, the visibilities become the Fourier transform

of the sky brightness distribution (Sault & Conway 1999)

sampled at the baselines where the interferometric mea-

surements are done, i.e.,

V (U) = Ĩ(U )S(U) + N (U) , (2)

where Ĩ(U) is the Fourier transform of the sky brightness

distribution I(θ) and N (U ) is the measurement noise.

This is the quantity directly measured by radio interfer-

ometers. Note that, to completely describe a real measure-

ment, we need to also scale the first term on the right

hand side of Equation (2) by the gain of the interferom-

eter. However, here we assume that a proper calibration

procedure is followed to take care of the effect of the gain.

Note that we have neglected the effect of the antenna pri-

mary beam here. This is justified if the angular extent of

the galaxy is much smaller than the full width at half max-

imum (FWHM) of the primary beam of the antenna. On

the other hand, if the angular extent of the galaxy is larger,

the primary beam can be included in the window function

as described in Equation (4) in the next section.

The visibilities, as given by Equation (2), are used di-

rectly in the visibility based estimators of the two-point

statistics of the sky brightness distribution. However, to es-

timate the one-point statistics at different points in the sky

or to estimate the two-point statistics using an image based

estimator, reconstruction of the sky brightness distribution

is necessary from the observed visibilities.

The inverse Fourier transform of the measured visibil-

ity is called the dirty image

ID(θ) = I(θ) ⊗ BD(θ) . (3)

Here BD(θ) is the Inverse Fourier transform of the

weighted sampling function S(U) and essentially the point

spread function (PSF) of the interferometer. The weighting

2 NRAO-VLA: Very Large Array, New Mexico
3 Giant Metrewave Radio Telescope, NCRA-TIFR

schemes are discussed shortly. The symbol ⊗ denotes con-

volution here. We have neglected the measurement noise

for simplicity. The PSF of the interferometer is often called

the dirty beam as it has secondary maxima around the cen-

ter, known as the side lobes. Reconstruction of the sky

brightness distribution is essentially a deconvolution of the

interferometer PSF from the dirty image. Since the sam-

pling function can be quite discrete, and often irregular

and incomplete, the interferometer PSF can be quite com-

plicated thereby making the deconvolution procedure non-

trivial. Different algorithms have been devised for this pur-

pose, including types of CLEAN (Högbom 1974; Cotton

1979; Clark 1980; Schwab 1984), Maximum Entropy

Image Reconstruction (MEM) (Narayan & Nityananda

1986) and RESOLVE (Junklewitz et al. 2016). In this pa-

per, we focus on the CLEAN algorithm, which is the most

widely used algorithm in the radio astronomy community

to date (Sault & Conway 1999).

Ever since the first version of CLEAN was outlined in

Högbom (1974), it has been widely used and also widely

evolved. In CLEAN, the sky image is assumed to be a

collection of point sources. The algorithm relies on esti-

mating the brightness and position of all the point sources

in the sky from the image using an iterative procedure.

This is achieved in different ways in different variations of

CLEAN. Here we have utilized the Cotton-Schwab vari-

ant of CLEAN (Clark 1980). To evaluate the Fourier trans-

form of the measured visibilities, the observed visibili-

ties are weighted and put in regularly spaced grid points.

Two extreme weighting schemes used are called uniform

and natural weightings respectively. In the case of natural

weighting, all the measurements are given the same weight

and added together. This type of weighting emphasizes

the part of the visibility plane where more measurements

are present. Note that, when a weighting scheme is imple-

mented, the effective dirty beam is to be considered as the

Fourier transform of the sampling function multiplied by

the weighting kernel. As with most interferometers, the

baseline coverage is better at lower values of |U |, and

the PSF derived from the naturally weighted visibilities is

broader but with fewer side lobes. On the other hand, in a

different weighting scheme called uniform weighting, the

visibilities are weighted by the local density of measured

visibilities before gridding. This type of weighting results

in a narrower PSF but has a higher power in the side lobes.

The robust weighting scheme designed by Briggs (1995)

tries to combine the natural and uniform weightings. An

iterative weighting scheme called ‘adaptive weighting’ is

discussed in Yatawatta (2014) to assist high bandwidth and
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high dynamic range imaging by minimizing the PSF vari-

ation across frequencies while maximizing the sensitiv-

ity. The detailed process of gridding, different weightings

and their effects are discussed in Thompson et al. (2017).

We have used the default gridding convolution function

in the task IMAGR in AIPS4 which implements a prolate

spheroid wave function. Note that the weighting schemes

are used to reduce the artifacts in the image that may arise

from the incomplete baseline coverage. However, they may

introduce additional effects, which one needs to assess and

quantify before applying the reconstructed image for sci-

entific inferences.

The efficacy of the CLEAN reconstruction algorithm,

and its limitations and known artifacts are discussed in

detail in Thompson et al. (2017); we highlight a few rel-

evant points here. It has been shown in Schwarz (1978)

and Schwarz (1979) that in the absence of noise and in

the case when a lower number of point sources is required

to construct the sky brightness distribution than the inde-

pendent measurement of visibilities, CLEAN reduces to a

least squares image estimation procedure. However, in a

real scenario, particularly with extended sources and mea-

surement noise, CLEAN does not produce the unique re-

construction of the sky. The reconstructed image depends

on many user selectable parameters, like the loop gain, size

of the dirty beam patch used in the minor cycle, the weight-

ing and tapering schemes, etc. For example, it is recom-

mended to use a smaller loop gain and a larger patch of

the dirty beam in the minor cycles in the case of diffuse

emissions (Taylor et al. 1999).

The uncorrelated measurement noise in the visibilities

gives rise to correlated noise in any reconstructed image

and cannot be avoided. This is also the source of corre-

lated noise present in image based estimates of the power

spectrum in the case of incomplete baseline coverage (see

Junklewitz et al. 2015).

3 SIMULATING A MODEL VISIBILITY DATASET

In this article, we are interested in investigating the effi-

cacy of different statistical estimators used to interpret ra-

dio interferometric data. We proceed by simulating an ob-

servation with a known sky model based on the observed

H I emission from nearby external spiral galaxies (similar

models are used in Dutta et al. 2009). We write the spe-

cific intensity distribution from such a galaxy as a function

of the angle θ (for simplicity the x and y components of

the vector θ can be considered along the local directions

4 NRAO AIPS: Astrophysical Image Processing System

of Right Accession and Declination) from the center of the

galaxy as

I(θ) = W (θ)
[

Ī + δI(θ)
]

, (4)

where W (θ) quantifies the large-scale distribution of

the H I column density in the sky and is normalized as
∫

W (θ)dθ = 1. We call this the window function.5 The

quantity Ī is the total intensity coming from the entire

galaxy and δI(θ) corresponds to zero mean random fluc-

tuations in the specific intensity. In the case of the ISM of

spiral galaxies, such fluctuations arise as a result of com-

pressible fluid turbulence therein.

3.1 Modeling the Window Function

The H I profile of a spiral galaxy is dominated by the radial

variation in H I column density. However, azimuthal varia-

tions, like spiral arms and rings, are also seen. We use the

shapelet decomposition of the specific intensity to model

its large-scale structure. Shapelets are defined as a set of

localized basis functions with different shapes (Refregier

2003); we use Gaussian weighted Hermite polynomials

in polar coordinates here. In terms of the shapelet basis

Snm(θ, β) and the shapelet coefficients fnm, the specific

intensity can be written as

I(θ) =

∞
∑

n=0

n
∑

m=−n

fnmSnm(θ, β) . (5)

Here β is called the shapelet scale. Different orders n of

shapelet coefficients represent different scales of the spe-

cific intensity with higher orders representing the smaller

scale variations in it. We define the window function as

W (θ) =

N
∑

n=0

n
∑

m=−n

fnmSnm(θ, β)

∫

dθ

N
∑

n=0

n
∑

m=−n

fnmSnm(θ , β)

, (6)

where we truncate the summation in Equation (5) to a cer-

tain value of N and hence capture only the large-scale

structure of the sky brightness distribution. Notice also that

the window function so defined is normalized such that
∫

W (θ)dθ = 1. Exact considerations for choosing the pa-

rameters N and β will be discussed shortly.

5 Since we are mostly interested in estimating the power spectrum

of δI(θ), in general, the window function can be thought of as a mul-

tiplication of the galaxy window function with the primary beam of the

interferometer. However, in most cases the angular extent of the galaxy is

smaller than the primary beam and the latter can be ignored.
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3.2 Modeling Ī and δI(θ)

The power spectrum of the specific intensity fluctuations

δI(θ) is defined as

〈

δĨ∗(U)δĨ(U ′)
〉

= δD(U − U
′)P (U) , (7)

where U = |U |. The angular brackets denote ensemble

averages. Observations in our Galaxy (Crovisier & Dickey

1983; Green 1993) and external dwarf and spiral galaxies

(Elmegreen et al. 2001; Begum et al. 2006; Dutta et al.

2009, 2013; Dutta & Bharadwaj 2013) suggest that the

H I specific intensity fluctuations can be modeled as a

Gaussian random distribution having a power law power

spectrum, i.e., P (U) ∝ Uα. We define the ratio of the total

intensity Ī to the standard deviation of these fluctuations

σδI as R, i.e.,

R =
Ī

σδI

. (8)

We use the parameters α and R to simulate zero-mean

Gaussian random numbers with a given power law power

spectrum to represent δI(θ).

3.3 Modeling the Specific Intensity Distribution I(θ)

We model the window function based on the large-scale

structure of the face-on spiral galaxy NGC 628. We de-

compose the column density or moment zero map (nat-

urally weighted) of NGC 628 taken from the THINGS

(Walter et al. 2008) survey as a data product6 in terms of

its shapelet coefficients and use the first few shapelets to

model the window function. We choose the largest shapelet

order N and the shapelet scale β as follows. Considering

a given value of β, we construct the zeroth order shapelet

(N = 0, Gaussian function) from the moment zero map of

NGC 628 and estimate the mean square difference between

the moment zero map and this basic shapelet. The lowest

mean square difference corresponds to β = 240′′ for the

galaxy NGC 628. Dutta et al. (2013) found that the inten-

sity fluctuations in the galaxy NGC 628 are dominated by

the window function at angular scales < 240′′. We found

that for N ≤ 12 the shapelet coefficients do not have sig-

nificant structures at angular scales < 240′′. Hence we use

β = 240′′ and N = 12 to construct the model window

function. The greyscale image in Figure 1 represents the

moment zero map (naturally weighted) of NGC 628 from

the THINGS archive. We show the model window func-

tion based on this moment zero map as red contours in the

6 THINGS: The HI Nearby Galaxy Survey

data product: http://www.mpia.de/THINGS/Data.html

same figure. The range of values in the pixels of the mo-

ment zero map and the window function differs. We have

scaled the pixel values to keep the maximum pixel value as

unity for both the maps to make the comparison easier.

Figure 2 displays the power spectrum of a model sky

brightness distribution I(θ) (Eq. (4)) with a blue dashed

line. The values of the model parameters are R = 5, α =

−1.5. The green dot-dashed line indicates a power law

with slope −1.5. The power spectrum of only the first

term, W (θ)Ī , is signified with a black solid line. Clearly,

for baselines lower than 1 kλ, the power spectrum of the

model I(θ) is dominated by the window function, while

for baselines greater than 1 kλ, the power spectrum of the

model image I(θ) follows a power law with α = −1.5.

Dutta et al. (2013) has estimated the power spectra of

18 spiral galaxies from the THINGS sample using a visi-

bility based estimator. They found that power spectra fol-

low power laws with α ranging between −0.3 and −2.2.

Moreover, 9 of the 18 galaxies in their sample have α be-

tween −1.5 and −1.8. We choose three values of α for our

model sky image: [−0.5,−1.5,−2.0]. Dutta & Bharadwaj

(2013) found that R varies between 5 and 10 for the six

galaxies they analyzed. We consider two values of R here:

[5, 10].

Using the above parameters we generate six model sky

specific intensity distributions in a square grid of 10242

with each grid element representing a 1.5′′ × 1.5′′ patch in

the sky.

3.4 Simulated Visibility Data

To simulate radio interferometric observations and gener-

ate random group visibilities from the above sky model, we

need to choose a particular array configuration of the inter-

ferometer. We model our telescope based on the GMRT

array configuration7. We scale the antenna coordinates to

half their original values. This decreases the largest base-

line available for the array to 60 kλ (instead of ∼ 120 kλ

for the original GMRT array configuration) at 21 cm and

hence also reduces the effective resolution of the array.

Note that this compromise is made to increase the com-

putational speed and does not limit our analysis of the ef-

ficacy of different estimators. We choose the declination

of the source to be +54◦, which produces a fairly good

uv coverage. For each of the six model specific intensity

distributions, we perform the equivalent of eight hours of

simulated observation.

7 GMRT original array configurations can be seen in

http://www.gmrt.ncra.tifr.res.in/gmrt_hpage/

Users/doc/obs_manual
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Fig. 1 Greyscale image showing the naturally weighted moment zero map of the galaxy NGC 628. Contours represent the model

window function based on this map (see Eq. (6)). Note that the range of values in the pixels of these maps differs. We have scaled the

pixel values to keep the maximum pixel value as unity for both the maps.

Fig. 2 Power spectrum for the first term W (θ)Ī in Equation (4) (solid black line) is compared with the power spectrum of I(θ) for the

model image (blue dashed line) with R = 5 and α = −1.5. Observe that for U > 1 kλ there is a significant deviation between the

two. The green dot-dashed line corresponds to a power law with index −1.5. Clearly, the power spectra of I(θ) follow a power law for

U > 1 kλ with a slope of −1.5.

Fig. 3 Figure showing the sampling function for the simulated observation presented here. Black points are the places in the baseline

plane where the visibilities are measured.
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Figure 3 displays the sampling function correspond-

ing to this simulated observation. We also show the power

spectrum of the dirty beam corresponding to the three dif-

ferent weighting schemes in Figure 4. Clearly, the power

spectra of the three beams are significantly different. We

use a discrete Fourier transform to calculate the complex

visibility values at the sampled baseline positions from the

model sky images. In principle, the measurement noise at

each baseline as well as its effect on the one- and two-

point statistics can be arbitrarily decreased by increasing

the total observation time. Hence, we do not include any

measurement noise in our model observations for simplic-

ity.

4 DIFFERENT STATISTICAL ESTIMATORS

4.1 One-Point Statistics: Large-Scale Distribution of

Specific Intensity

The large-scale distribution of H I carries important infor-

mation about its interplay with star formation in spiral and

dwarf galaxies. Most spiral galaxies show visible depres-

sion of H I near the central part owing to large star forma-

tion rates (Wang et al. 2014). Bagetakos et al. (2011) have

observed the presence of H I holes at small knots of star

formation in the disks of spiral galaxies. Dwarf galaxies

like GR 8 have a clear spatial correlation between star for-

mation rate and H I column density (Begum & Chengalur

2003). These studies require evaluating the locally aver-

aged H I intensity distribution from the observed visibili-

ties. An estimate of the window function can be achieved

by performing a local average of the specific intensity as

〈I(θ)〉 = ĪW (θ).

We reconstruct the specific intensity distribution cor-

responding to the observed visibilities using CLEAN as

discussed in the previous section. In this work, we explore

various user-defined parameters with CLEAN to assess

their effect on the reconstructed image. These will be dis-

cussed in detail in the next section. For each reconstructed

image, we evaluate the window function using its shapelet

coefficients. Following the same arguments as discussed

in Section 3.3, we take the shapelet scale to be 240′′ and

the first 12 shapelet coefficients to represent the window

function. To distinguish between the window function es-

timated from the reconstructed image and the model win-

dow function, we mention the earlier WC(θ) for the rest

of the analysis. Further, for the model (W (θ)) as well as

the reconstructed windows (WC(θ)), we estimate the az-

imuthally averaged window function defined as

WA(θ) =
1

2π

2π
∫

0

W (θ, φ)dφ (9)

in different bins of θ. Here (θ, φ) are the polar components

of the vector θ. We use the standard deviation of the values

of the reconstructed window WC(θ) in each azimuthal bin

to represent the statistical fluctuations associated with the

estimated value of WA(θ) in the corresponding bin. This

gives us a robust way of comparing the estimates of the

window function with those of the model.

4.2 Two-Point Statistics: Power Spectrum

Two-point statistics of any field quantifies the scale depen-

dence of fluctuations in it. There are several quantifiers for

two-point statistics. For a two dimensional field A(θ), the

structure function and the autocorrelation function evaluate

the two-point statistics in the θ plane while its power spec-

trum evaluates the two-point statistics in a plane Fourier

conjugate to θ, like the baseline plane U (see Elmegreen

& Scalo 2004 for more detailed analysis of these estima-

tors). For a Gaussian random field, all these different esti-

mators contain the same information. We restrict ourselves

to measuring the power spectrum of the sky brightness

fluctuations, i.e. the quantity δI(θ) here. As discussed be-

fore, power spectrum estimators from the interferometric

data can be categorized into two classes, image based es-

timators and visibility based estimators. We give a brief

description of these estimators here.

4.2.1 Image based power spectrum estimator

Image based estimators use the reconstructed image to esti-

mate the power spectrum. To distinguish the reconstructed

image from the sky brightness distribution, we shall de-

note the former by IC(θ). Since the image is already eval-

uated at regular grids in θ, a two dimensional fast Fourier

transform can be used to estimate the Fourier transform of

IC(θ). As the interferometers are mostly not sensitive at

baselines lower than a certain value, they effectively do not

measure the first term in Equation (4) and we may write

ĨC(U) = W̃ (U) ⊗ δĨ(U) + BI(U ) , (10)

where W̃ (U) represents the Fourier transform of the win-

dow function and ⊗ denotes the convolution. The quantity

BI(U) jointly represents any artifacts introduced in the im-

age reconstruction procedure and effective noise in ĨC(θ)

resulting from the measurement noise. We correlate ĨC(U)
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at each baseline, which gives

PC(U) = 〈ĨC(U)Ĩ∗C(U )〉 =| W̃ (U) |2 ⊗P (U)+PB(U) ,

(11)

where PB(U) is related to both BI(U) and Ĩ(U). The an-

gular brackets above denote the ensemble average of many

realizations of the sky. In practice, we assume statistical

isotropy and choose azimuthal bins to perform this aver-

age. Hence the image based azimuthally averaged power

spectrum estimator is given as

PI(U) =
1

2π

2π
∫

0

ĨC(U, φ)Ĩ∗C(U, φ)dφ , (12)

where (U, φ) are the polar components of the vector U .

As discussed before (see Fig. 2), the window function rep-

resents large-scale variation of the specific intensity and

hence at baselines U ≫ 1/θ0, where θ0 is the extent of

the galaxy, the window function can be treated as a delta

function δD(U ). Hence in the absence of PB , at base-

lines U ≫ 1/θ0, the quantities PC(U) ∼ P (U) and

PI(U) give an estimate of the power spectrum of the sky

brightness fluctuations. The quantity PB(U) is a manifes-

tation of the incomplete baseline coverage and the different

techniques incorporated in the image reconstruction pro-

cess. Arguably it depends on the user-chosen parameters in

CLEAN (or other algorithms) and hence needs to be eval-

uated and subtracted from the above equation to estimate

the power spectrum in an unbiased way. Unfortunately,

a separate estimation of PB is almost always impossible.

Interestingly, such a bias is largely ignored in literature

where image based estimators are used (Zhang et al. 2012;

Walker et al. 2014). Further, incomplete baseline cover-

age also makes the measurement noise correlated in ĨC(θ)

and introduces a nonzero PB(U) (see Dutta 2011 for de-

tail). However, as we have not considered the measurement

noise in our simulation, we refrain from investigating this

effect here. Estimating the errors in the reconstructed im-

age is not straightforward and only a Monte-Carlo based

technique can be effectively used (Sault & Conway 1999).

Following that, errors in the image based estimates of the

power spectrum are also non-trivial. We use the variation

of the power spectrum values in different U inside an an-

nular bin to represent the error in the image based power

spectrum estimator. Additionally, at smaller baselines, in-

dependent estimates of the power spectrum reduce and the

sample variance dominates. The sample variance is given

by PI/
√

Ng , where Ng is the number of independent es-

timates of PI in a given annular bin. We also add this in

quadrature to represent the error in the image based esti-

mator of the power spectrum.

4.2.2 Visibility based power spectrum estimator

The visibility based power spectrum estimators use the di-

rectly measured visibilities and do not require image re-

construction (Bharadwaj & Sethi 2001). Since the Fourier

transform of the first term in Equation (4) is mostly not

measured by an interferometer (see the discussion above),

the measured visibilities can be written as

V (U ) =
[

˜W (U) ⊗ δĨ(U)
]

S(U) + N (U ) . (13)

The visibility correlation gives

〈V (U)V ∗(U)〉 = | ˜W (U) |2 ⊗P (U) | S(U) |2

+ | N (U) |2 .
(14)

In the absence of measurement noise, at baselines U ≫

1/θ0, the visibility correlation gives P (U) | S(U) |2.

The azimuthally averaged power spectrum then can be es-

timated as

PV (U) =

2π
∫

0

〈V (U )V ∗(U)〉dφ/

2π
∫

0

| S(U) |2 dφ. (15)

In practice, it is estimated at discrete azimuthal bins.

For most of the array configurations, the integral in the de-

nominator of the above expression has a nonzero value.

However, if the integral is zero in a particular bin the power

spectrum is not evaluated at that bin. In realistic observa-

tions, the noise term | N (U ) |2 dominates and introduces

a bias in power spectrum estimates. Dutta (2011) discusses

the procedure to take care of this noise bias in detail. Since

we do not have measurement noise in our simulation, we

neglect this effect here. We estimate the errors in the visi-

bility based power spectrum estimator following the calcu-

lations by Dutta (2011).

5 ANALYSIS AND RESULTS

We use the task IMAGR in AIPS to reconstruct the sky

brightness distribution for each of the six simulation sets.

We discuss our analysis and results based on the simulation

with parameters R = 5.0, α = −1.5 in detail and tabulate

the results for all the models.

In choosing different parameters for CLEAN in the

task IMAGR, we give particular emphasis to the fact that

here we are interested in reconstructing the sky brightness

distribution for diffuse emission. It is a common under-

standing that a smaller loop gain improves the reconstruc-

tion of extended sources (Thompson et al. 2017), however

improvement for a gain < 0.01 is minimal. We choose

a loop gain of 0.005. To tame the effect of an abrupt
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Fig. 4 Figure showing the power spectrum of the dirty beam for the uniform, robust and naturally weighted beams for the sampling

function given in Fig. 3.

Fig. 5 Window functions of the reconstructed images using different weighting schemes are shown in contours against the greyscale

plot of the window function of the model image corresponding to R = 5, α = −1.5. The scales of the contours are relative here.

fall in the baseline coverage at large baseline we use a

Gaussian taper with the UVTAPER parameter set to 45 kλ

in IMAGR (for both u and v). This corresponds to a taper-

ing function T (U) = exp
[

−U2/2(30)2
]

, where U is mea-

sured in kλ. Tapering down-weights the visibilities at the

larger baselines and hence may have an effect on the power

spectrum estimates. However, for a power law power spec-

trum the effect of tapering can be analytically reversed by

multiplying the power spectrum by 1/T (U)2. We choose

the pixel size for the image to be 1.5′′ × 1.5′′ in a grid of

10242. We use three different weighting schemes to weight

and grid the visibility data, namely natural weighting, uni-

form weighting and robust weighting. These are controlled

mainly by the parameters ROBUST in AIPS. We have cho-

sen ROBUST values of (−5, 0, 5) to produce three differ-

ent reconstructions of sky brightness from each simulated

visibility dataset. For each IMAGR run, we manually stop

the major cycles when the maximum and minimum pixels

in the residual image are of similar value. The restoring

beams for the uniform, robust and naturally weighted im-

ages came out to be 4.1′′×3.9′′, 6.7′′×5.8′′ and 9.3′′×8.2′′

with the beam position angles ∼ 63◦,∼ 68◦ and ∼ 70◦ re-

spectively. These images are used for further analysis.

5.1 Window Function

For each of the reconstructed images, we estimate the win-

dow function WC and the azimuthally averaged profile

WA following the prescriptions given in the previous sec-

tion. Contours in three panels of Figure 5 show WC cor-

responding to the uniform, robust and natural weighting

schemes respectively. The greyscale image in each panel

corresponds to the model window function. A visual com-

parison of the contours of these three panels with those in
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Figure 1 demonstrates that the naturally weighted scheme

best reproduces the model window. We shall quantify this

statement shortly. Note that both the model window func-

tion W and the quantity WC are estimated at Cartesian

grids in θ; we may denote the values in the grid points as

W [i, j] and WC [i, j] respectively. We use the quantity

χ =

∑

i,j

(W [i, j] − WC [i, j])
2

N2

G

√

σ2

W + σ2

C

(16)

to represent the deviation of WC from W . Here σW and

σC correspond to the standard deviation of the pixel val-

ues of W [i, j] and WC [i, j] respectively and NG gives the

number of grid points along one axis8. The quantity χ gives

the mean square deviation between the model and the esti-

mated window functions. Clearly, a lower value of χ cor-

responds to a better reconstruction of the window function.

We have performed tests to check if the figure of merit χ

actually captures the deviation between the estimates of the

window function. In this test, we choose a fiducial model

for the window function, values of R and α, and gener-

ate different realizations of δI to simulate models of the

sky brightness distribution. We then estimate the window

function from each of these images and compare them with

the fiducial window function using the figure of merit χ. If

the window function estimated from any of these models

exactly matches the fiducial model of the window, then the

value of χ is zero. We found the value of χ lies between

0.004 and 0.01 in the six models discussed here. These

numbers can be considered as references while interpret-

ing the results.

For the model with R = 5.0, α = −1.5, we found that

the uniform weighting produces a window function with

the largest value of χ = 2.63, whereas the correspond-

ing values of χ for robust weighting and natural weight-

ing are 0.26 and 0.15 respectively. The window function

estimated from the images produced with uniform and ro-

bust weighting have a bias, however, the natural weighting

scheme produces the best estimate of the window function.

Figure 6 plots the azimuthally averaged window func-

tions estimated from the model as well as the three recon-

structed images. The black solid line corresponds to the

azimuthally averaged window function of the model im-

age. Color bands around each of the estimates correspond

to variation of the window function within the respective

azimuthal bins. The uniform weighting (circles) produces

the largest deviation from the model window and also has

8 The quantity χ used here has no probabilistic interpretation and

should not be confused with a functional used in most maximum like-

lihood estimations.

the largest variation in each azimuthal bin as represented

by the error band in the figure. Note that both the robust

(square) and natural (triangle) weightings reproduce the

azimuthally averaged window within errors, however, the

points corresponding to the robust weighting (square) are

systematically offset from the model window function.

Figure 7 shows the azimuthally averaged window

function estimated for all the six models using natural

weighting schemes (red triangles) against the same esti-

mated from the model images (black solid line). Table 1

shows the values of χ for all the six model skies. A lower

value of χ represents a better reproduction of the window

function. Clearly, in all cases, the natural weighting gives

the best reconstruction of the window function. It is ob-

served that the value of χ in the case of uniform and ro-

bust weighting is considerably larger than the correspond-

ing example of natural weighting. It is well known that the

natural weighting produces a wider PSF. Since the window

function represents the large scale distribution, the natu-

ral weighting is expected to reproduce it better. Note that

the actual values of χ do not carry a robust probabilistic

interpretation here. Moreover, for the models with a rel-

atively lower amplitude of fluctuations in specific inten-

sity (R = 10), the χ values are systematically lower than

the models with R = 5. We conclude that with a careful

choice of the imaging parameters for CLEAN, it is possi-

ble to estimate the window function unbiasedly from the

reconstructed image and it is best estimated when natural

weighting is used.

5.2 Power Spectrum

We estimate power spectra from the model images using

the image based estimator. Note that the model images do

not have any artifacts that may arise from the reconstruc-

tion and hence this power spectrum can be considered as a

reference. This is shown with a solid black line in Figure 8.

The power spectrum PV (U) is shown with grey pentagons

in the same figure with the grey area indicating the error

bars. It is quite clear that the visibility based power spec-

trum follows the reference spectrum quite well and over-

all bias is minimized. The large error bars in small and

larger baselines are indicative of fewer independent mea-

surements at those baselines. The visibility based power

spectrum estimator assumes a power law at baselines larger

than 1 kλ.

We use the image based power spectrum estimator for

all the three reconstructed images from the three weight-

ing schemes. We correct each of these spectra for the ef-

fect of tapering by multiplying them by 1/T (U)2. We plot
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Fig. 6 This figure compares the azimuthally averaged window functions estimated using different weighting schemes with that of the

input image. The color bands for each estimate represent the error.

Fig. 7 Comparisons of the azimuthally averaged window functions estimated from the input model (black solid line) with the recon-

structed naturally weighted image (red triangles) are shown for all six simulations.
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Fig. 8 This figure compares the power spectra estimated using the visibility based estimator and the image based estimator for all

three different weighting schemes against the model power spectrum. The shaded area corresponds to the error associated with each

estimate.
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Fig. 9 Comparisons of the power spectra estimated from the input model (black solid lines), using the visibility based estimator (grey

pentagons) and image based estimator from the uniform weighted image (blue circles) are shown for all six simulations. The amplitudes

of the y-axes for different panels are arbitrary scales to keep the power spectra in the same range in all plots.



P. Dutta & M. Nandakumar: Estimating Statistics of Sky Brightness Using Radio Interferometric Observations 60–13

Table 1 Table summarizing the results of comparison between different estimates of the window function and the power spectrum.

Efficacy at reproducing the model window function from an estimated image is quantified by χ (see Eq. (16)). We tabulate the values

of αV and αI for each model to assess the merit of different estimators in the table. The headers ‘U’, ‘R’ and ‘N’ correspond to the

uniform, robust and natural weighting schemes respectively.

R = 5 R = 10

α U R N U R N

−0.5

χ 2.77 0.42 0.02 1.36 0.1 0.004

αI −1.4 ± 0.1 −1.9 ± 0.3 −2.1 ± 0.1 −1.3 ± 0.1 −1.4 ± 0.1 −1.7 ± 0.3

αV −0.44 ± 0.07 −0.48 ± 0.08

−1.5

χ 2.63 0.26 0.15 1.43 0.16 0.003

αI −1.8 ± 0.1 −2.0 ± 0.1 −2.2 ± 0.1 −1.9 ± 0.1 −2.2 ± 0.2 −1.9 ± 0.3

αV −1.5 ± 0.1 −1.4 ± 0.2

−2.0

χ 3.76 0.22 0.02 1.16 0.08 0.004

αI −2.1 ± 0.1 −2.3 ± 0.1 −2.3 ± 0.1 −2.1 ± 0.1 −2.4 ± 0.2 −2.1 ± 0.3

αV −1.9 ± 0.1 −1.9 ± 0.2

with circular, square and triangular markers in the same

figure to represent the uniform, robust and natural weight-

ings respectively with the corresponding error bands. At

longer baselines, the power falls drastically. This is an ef-

fect of the convolution of the CLEAN components with

the restoring beam which produces correlation at the pix-

els at a scale smaller than the beam scale. The image based

estimate with natural weighting scheme is drastically dif-

ferent from the model. The power spectrum estimated us-

ing the reconstructed image with the uniform weighting

scheme almost follows the model power spectrum within

error bars in the baseline range of 1− 20 kλ, and that with

the robust weighting scheme is slightly different from the

model. As discussed before, we expect the power spec-

trum to be a power law. To assess how good the image

based estimates of the power spectra are, we fit (chi-square

method) a power law function to these spectra between the

baseline range 1 − 20 kλ and find the best fit value of the

power law slope with error bars. We find the power law in-

dex estimated from the image based power spectra varies

as −1.8 ± 0.1,−2.0 ± 0.1 and −2.2 ± 0.1 for the uni-

form, robust and naturally weighted images respectively.

The best fit power law index for the visibility based esti-

mate of the power spectra in the same baseline range is

−1.5 ± 0.1. These numbers suggest that, more or less, all

three image based estimators deviate from the power spec-

trum of the model sky. However, we must note that the

uniform weighting scheme preserves the power spectrum

of the model with least bias among the image based esti-

mators.

Figure 9 shows the power spectra estimated from the

uniform weighting schemes for all six of our models (blue

circles) and from the visibility based estimators (grey pen-

tagons) against the model power spectrum (black solid

line). Clearly, the visibility based power spectrum repro-

duces the model power spectrum almost exactly, whereas

the image based estimate of the power spectrum is biased.

The bias is visually more prominent for larger values of α.

Table 1 gives the values of the estimated α using visibility

and image based estimators for all the different sky models

and different weightings. To compare the result from all the

six simulations, we plot the different estimates of power

law slope (αI ) from the image based estimator against

that estimated using the visibility based estimator (αV ) in

Figure 10. The three panels in this image correspond to

three different weighting schemes. Representations of dif-

ferent markers are given in the left panel. Clearly, for all

models, the uniform weighting scheme performs the best.

We also notice that the αIs are systematically smaller than

the corresponding αV s with shallower power spectra hav-

ing a systematically larger bias.

5.3 Application to Point Sources

Apart from the baseline coverage of the interferometer, ef-

ficacy of the image reconstruction may also depend on the

structure of the sky brightness distribution itself. In the

CLEAN algorithm, the sky is modeled as a collection of

point sources. If the observed sky is a set of isolated unre-

solved sources, then the visibility function is smooth across

baselines. In such cases, CLEAN is supposed to give an un-

biased estimate of the sky. On the other hand, for diffuse

emission, the visibility function is expected to be patchy.

Observations with inadequate baseline coverage will lack

the full information to model the sky. To test how much

of the sky needs to be filled by sources to see the effect

of the baseline coverage, we model the sky with a collec-

tion of point sources uniformly distributed in the FOV. The
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Fig. 10 The image and visibility based estimates of α are compared for different simulations and weighting schemes. In each panel,

we plot the image based estimate αI against the visibility based estimate αV for all six simulations. The dashed line corresponds to an

exact match. The meaning of different markers is given in the leftmost panel. Three panels in this figure correspond to three different

weighting schemes, from left to right, giving uniform, robust and natural weightings respectively.

Fig. 11 The figure shows the power spectra calculated from the residual images after point source subtraction for the point sources

influencing 1%, 10% and 30% of the FOV.

amplitudes of these sources are varied randomly within

a decade of flux density; the absolute flux scale is of no

importance here. If we keep the number of point sources

small, then they are expected to be isolated and CLEAN

must work well. On the other hand, if we increase the

number of point sources, it would start to simulate a dif-

fuse emission and CLEAN may fail to reproduce an unbi-

ased estimate of the sky. Considering a Gaussian PSF of

the interferometer, we assume that each point source influ-

ences the nearby pixels within a circle of diameter equal to

2.5 times the FWHM of the PSF. How much of the FOV

is covered by the point sources in this way gives a mea-

sure of how diffuse the emission is as seen by the tele-

scope. We generate three model sky intensity distributions

with 1%, 10% and 30% of the sky influenced by the point

sources (using robust weighting with ROBUST=0). Using

these model images, we simulate the visibilities and recon-

struct images keeping the same baseline coverage as in our

previous simulations. We subtract the CLEAN component

model of the point sources from the reconstructed image to

get the residual maps. Power spectra of the residual maps

for the three cases are shown in Figure 11. The shaded re-

gion of the cases indicates the corresponding errors. A flat

power spectrum is expected if the residual image does not

have any correlated noise. We see a significant systematic

increase in the amplitude of the residual power spectrum

with the number of sources. This demonstrates the lim-

itation of image reconstruction from interferometric data

with incomplete uv coverage in reproducing the structures

of the diffuse sky.



P. Dutta & M. Nandakumar: Estimating Statistics of Sky Brightness Using Radio Interferometric Observations 60–15

(a) (b)

Fig. 12 Comparison of the power law slopes calculated from the visibility and the image based power spectra for 18 galaxies in the

THINGS sample using naturally weighted (NA in left) and robustly weighted (RO in right) images from the THINGS data archive.

Dashed lines correspond to an exact match between the slopes.

5.4 Application to H I Power Spectrum of Galaxies

Walter et al. (2008) performed a survey of H I in a sam-

ple of 34 external galaxies using B, C and D configura-

tions of the VLA. To reconstruct the images, they used the

multi-scale version of the CLEAN algorithm with the nat-

ural and robust (with the ROBUST parameter set to 0.5)

weighting schemes. The effective resolution of their re-

constructed image with the robust weighting scheme is

∼ 6′′. Dutta et al. (2013) have estimated slope of the power

spectrum (αV ) of the H I intensity fluctuation of 18 spi-

ral galaxies from a THINGS sample using the same vis-

ibility based estimator as we used here. As our simula-

tion suggests that the visibility based estimator estimates

the true power spectrum of the specific intensity fluctua-

tions, we implement the measured αV as a proxy for the

value of α for these galaxies. We applied the publicly avail-

able naturally and robustly weighted THINGS moment 0

maps of these 18 spiral galaxies to estimate the power

spectrum using the image based estimator we have dis-

cussed here. These power spectra were fit well by power

laws in a similar range of length scales as in the work

of Dutta et al. (2013) and we estimate the corresponding

power law slopes (αI ). We plot the values of αV and αI

along with their error bars in the left and right panels of

Figure 12 for the naturally and robustly weighted maps.

The dashed line corresponds to αV = αI . As is clear for

the majority of the galaxies, the data points lie away from

the equality line for both cases of naturally and robustly

weighted maps. The image based estimator systematically

produces steeper spectra. As expected from our simulation

result, biases in the robustly weighted maps are lower but

still significant. Moreover, Figure 12 compares quite well

with Figure 10, where a similar plot is made for the re-

sults of our simulation. As the THINGS archive does not

provide any reconstructed moment 0 map estimated using

the uniform weighting scheme, we do not show them here.

Nevertheless, it is clear from our analysis that in general

bias exists in the image based estimates of the power spec-

trum. Several authors, including but not limited to Zhang

et al. (2012); Walker et al. (2014); Grisdale et al. (2017),

have used the image based estimators to make inferences

about the power spectrum of the sky brightness distribution

and observe discrepancy with the visibility based estima-

tors. We believe our investigation answers the reason for

these discrepancies.

6 DISCUSSION AND CONCLUSIONS

In this work, we simulate H I observation of external spi-

ral galaxies to test the efficacy of different estimators that

are used to measure the statistical properties of the sky

brightness distribution from radio interferometers. In par-

ticular, we have investigated how well we can reconstruct

the large-scale structure of the brightness given by the win-

dow function and the scale dependence of the structures

given by the power spectrum of the intensity fluctuations.

In order to estimate the window function, it is essential

to reconstruct the sky brightness distribution from the ob-

served visibilities. On the other hand, one can either use

the visibilities directly to estimate the power spectrum, or

first estimate the brightness distribution from the visibil-
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ities and then use those to estimate the power spectrum.

Reconstruction of the brightness distribution is based on

several algorithms. We find that with the Cotton-Schwab

version of the CLEAN algorithm using the natural weight-

ing scheme, the window function is reasonably repro-

duced. The visibility based estimator of the power spec-

trum reproduces the model power spectrum unbiasedly.

Among the image based estimators, the reconstructed im-

age with uniform weighting scheme performs best, how-

ever, a general scale dependent bias is observed for all the

image based estimators.

It is clear that for an ideal interferometer with vis-

ibilities measured over the entire baseline-plane, that is

with complete uv coverage, the sky brightness distribu-

tion can be estimated without any bias. In such a case

the image based power spectrum estimators are expected

to produce an unbiased result. Apparent reasons for the

bias in the image based estimates of the power spectrum

from a realistic interferometer could be the incomplete-

ness and non-uniformity of the uv coverage of the in-

terferometer. Different weighting schemes try to address

these issues, however, as our result suggests, for the base-

line coverage of the simulated visibilities used here, the

weighting methods fail to reproduce the power spectrum

of the model sky. Interestingly, the natural weighting gives

the best estimate of the window function, while the power

spectrum estimated from the image with uniform weight-

ing provides the best approximation to the power spec-

trum. This can be understood in the following way. The

natural weighting gives the same weight to all the mea-

sured visibilities in a grid. Since the baseline coverage of

the interferometer is more complete at the shorter base-

lines and falls as the baseline increases, effective natural

weighting produces a larger synthesized beam. Hence, it

is expected that natural weighting would produce a bet-

ter approximation to the large-scale distribution, while it

models the small scale distribution poorly. The effect then

is also a redistribution of the flux across different angular

scales. Thereby, the power spectrum at large scales, that is

at small baselines, is enhanced, whereas the power spec-

trum at large baselines is reduced. Effectively, the bias pa-

rameter PB(U), as discussed in Equation (11), assumes

positive values at smaller baselines and is negative at larger

baselines. Uniform weighting, on the other hand, produces

a smaller restoring beam and hence reproduces relatively

more power at the longer baselines compared to the natu-

ral weighting. This is observed in the power spectrum es-

timates. We note here that we have not addressed the rela-

tionship between the incomplete baseline coverage and the

observed bias in the image based estimators. This is not

in the scope of the paper and requires further and detailed

investigation.

In the case of large bandwidth observations with

smooth specific intensity across frequencies, a method

termed multifrequency synthesis can be effectively applied

which drastically improves the effective baseline coverage

and hence reduces the CLEAN artifacts. In this work, we

model our sky brightness distribution based on H I emis-

sion from external spiral galaxies. In such a case, the spe-

cific intensity has structures as a function of frequency

and hence the method of multifrequency synthesis cannot

be used. In continuum observations with large bandwidth,

however, multifrequency synthesis (Sault & Conway 1999;

Bajkova 2008; Junklewitz et al. 2015) is possible and,

hence, the image based power spectrum may be a use-

ful tool. We have also restricted our analysis to relatively

small FOV such that the effect of the w-terms is negligi-

ble. For a larger FOV, the w-term is known to restrict the

baseline range over which the visibility based power spec-

trum can be used (Dutta et al. 2010b). Wakker & Schwarz

(1988); Cornwell (2008) have introduced the method of

multi-scale CLEAN for image reconstruction in the case

of extended objects. Multiscale CLEAN tries to first find

the large-scale structures from the image and then proceeds

with smaller scales. While this has been successful and has

been used in many cases (e.g. Greisen et al. 2009), the

subjective choice of the scales at which CLEAN proceeds

remains an open question. An advanced version of multi-

scale CLEAN has been reported in Zhang et al. (2016),

where adaptive methods are used in choosing the scales

and loop gains. We note that this choice of scales may in-

troduce artificial scale dependence in the power spectrum.

Hence, we have not considered these algorithms in this

work for power spectrum analysis.

In this work, we have not included any thermal noise

in our simulation. We justified it by considering the fact

that for any experiment the thermal noise can be decreased

arbitrarily by increasing the integration time. Each visibil-

ity measurement has noise associated with it as shown in

Equation (13). Estimating the power spectrum by directly

squaring the visibilities gives rise to a noise bias in the vis-

ibility correlation. Since the measurement noise arises due

to electronics associated with different antennas, the noise

at different baselines is not correlated. Hence, the noise

bias in the power spectrum is expected to be independent

of baseline. The visibility based estimator of the power

spectrum we use here, however, does not correlate the vis-

ibilities in the same baseline, but at nearby baselines. This
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effectively reduces the noise bias from the power spectrum

estimates. The effect of measurement in the image based

power spectrum estimator depends on the baseline cover-

age. Analytical calculation shows that uncorrelated ther-

mal noise in the visibility measurements with incomplete

baseline coverage appears as correlated noise in the image

plane and adds to an additional bias in the image based es-

timates of the power spectrum on top of what is discussed

here. The effect of noise on visibility and image based es-

timators of the power spectrum are discussed in detail in

Dutta (2011); interested readers may have a look.

As the radio astronomy community plans for larger in-

terferometers, the volume of visibility data is expected to

grow progressively larger. One way of reducing the prob-

lem of large data volume is to perform online reconstruc-

tion of the images with the instantaneously available visi-

bilities. Our investigation highlights the problems that may

arise in a proper reconstruction of the sky statistics and em-

phasizes the need for recording the visibilities directly or

estimating the power spectrum and recording. A visibility

based power spectrum as discussed in this work has limited

use when the power spectrum of a selected part of the tele-

scope’s FOV is required to be estimated. Choudhuri et al.

(2016) has developed a visibility based Tapered Gridded

Estimator (TGE) that uses a tapered window to reduce the

response of the sky outside it. We have worked on mod-

ifications of the TGE limiting the tapering function to the

required part of the FOV of interest and selectively estimat-

ing the power spectrum using the visibility based method;

the results will be reported in a separate paper.
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