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Abstract Based on the SDSS and SDSS-WISE quasar datasets, we put forward two schemes to estimate
the photometric redshifts of quasars. Our schemes are based on the idea that the samples are firstly clas-
sified into subsamples by a classifier and then a photometric redshift estimation of different subsamples is
performed by a regressor. Random Forest is adopted as the core algorithm of the classifiers, while Random
Forest and kNN are applied as the key algorithms of regressors. The samples are divided into two sub-
samples and four subsamples, depending on the redshift distribution. The performances based on different
samples, different algorithms and different schemes are compared. The experimental results indicate that
the accuracy of photometric redshift estimation for the two schemes generally improves to some extent
compared to the original scheme in terms of the percents in |∆z|

1+zi

< 0.1 and |∆z|
1+zi

< 0.2 and mean abso-
lute error. Only given the running speed, kNN shows its superiority to Random Forest. The performance
of Random Forest is a little better than or comparable to that of kNN with the two datasets. The accuracy
based on the SDSS-WISE sample outperforms that based on the SDSS sample no matter by kNN or by
Random Rorest. More information from more bands is considered and helpful to improve the accuracy of
photometric redshift estimation. Evidently, it can be found that our strategy to estimate photometric redshift
is applicable and may be applied to other datasets or other kinds of objects. Only talking about the percent
in |∆z|

1+zi

< 0.3, there is still large room for further improvement in the photometric redshift estimation.
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1 INTRODUCTION

With the development of large photometric survey projects
(e.g., 2MASS, GALEX, the Sloan Digital Sky Survey
(SDSS), Pan-STARRS, LSST), we face a photometric
data deluge, which is the best test bed for various algo-
rithms. Among them, photometric redshift estimation is
an important issue. Research on this aspect focuses on
celestial objects, such as galaxies, quasars, supernovas,
gamma-ray bursts and so on. The study of photometric
redshifts is of great importance to the large scale struc-
ture of the Universe, the formation and evolution of galax-
ies, clustering of galaxies, distance measurement and so
on. There are lots of works on the photometric redshift
measurement of distant objects including quasars, and es-
pecially galaxies. Furthermore, a large number of algo-
rithms and tools on photometric redshift estimation are in
development. The algorithms are grouped into two kinds:
template-fitting and machine learning — for instance,
Bayesian method (Benítez 2000; Edmondson et al. 2006;

Mortlock et al. 2012), color-redshift relation (Richards
et al. 2001; Wu et al. 2004; Ball et al. 2007), k-Nearest
Neighbors (kNN; Ball et al. 2007; Zhang et al. 2013),
Gaussian process regression (Way & Srivastava 2006; Way
et al. 2009; Bonfield et al. 2010), sparse Gaussian pro-
cess regression (Almosallam et al. 2016b,a), Artificial
Neural Networks (ANNs; Firth et al. 2003; Zhang et al.
2009; Yèche et al. 2010; Cavuoti et al. 2012; Brescia
et al. 2013; Cavuoti et al. 2017), kernel regression (Wang
et al. 2007), spectral connectivity analysis (SCA; Freeman
et al. 2009), Random Forests (RFs) (Carliles et al. 2010;
Schindler et al. 2017), ArborZ (Gerdes et al. 2010), the
extreme deconvolution technique (Bovy et al. 2012), the
Directional Neighborhood Fitting (DNF) algorithm (De
Vicente et al. 2016), a hybrid technique (Beck et al. 2016),
Self-Organizing Map (SOM; Way & Klose 2012; Carrasco
Kind & Brunner 2014), Clustering aided Back propaga-
tion Neural network (CuBANz; Samui & Samui Pal 2017)
and Support Vector Machine (SVM; Jones & Singal 2017;
Schindler et al. 2017).
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To improve the accuracy of photometric redshift es-
timation, researchers have considered new approaches or
combined several methods. Wolf (2009) combined χ2 tem-
plate fits and empirical training sets into a single frame-
work, applied it to the SDSS Data Release 5 (DR5)
quasars, and improved the accuracy of photometric red-
shift estimation. Laurino et al. (2011) put forward Weak
Gated Experts (WGE) to derive photometric redshifts of
galaxies and quasars through a combination of data min-
ing techniques. Gorecki et al. (2014) investigated differ-
ent approaches and combined a template-fitting method
and a neural network method for photometric redshifts of
galaxies. Han et al. (2016) integrated kNN and SVM for
photometric redshift estimation of quasars. Hoyle (2016)
proposed Deep Neural Networks to estimate the photo-
metric redshift of galaxies by using the full galaxy im-
age in each measured band. Leistedt & Hogg (2017) pre-
sented a new method for inferring photometric redshifts in
deep galaxy and quasar surveys, which combines the ad-
vantages of both machine learning methods and template
fitting methods by building template spectral energy dis-
tributions (SEDs) directly from the spectroscopic training
data. Wolf et al. (2017) investigated the photometric red-
shift performance of several empirical and template meth-
ods, and kernel-density estimation (KDE) was the best for
their case. Jouvel et al. (2017) explored different tech-
niques to reduce the photometric redshift outliers fraction
with a comparison between the template fitting, neural net-
works and RF methods. Speagle & Eisenstein (2017a,b)
derived photometric redshifts using fuzzy archetypes and
SOMs, and demonstrated that statistical robustness and
flexibility can be gained by combining template-fitting and
machine-learning methods, and can provide useful insights
into how astronomers may further exploit the color-redshift
relation. Since large numbers of images are available, it
is applicable to directly use image data and save time
by preprocessing image data. D’Isanto & Polsterer (2018)
probed deep learning to derive probabilistic photometric
redshift directly from multi-band imaging data, rendering
pre-classification of objects and feature extraction obso-
lete.

Although a large number of algorithms have been em-
ployed in this aspect, algorithms that perform well on
galaxies may be not necessarily be applicable for quasars.
Because the accuracy of the photometric redshift estima-
tion of quasars is not too satisfactory, there is still large
room for improvement. Therefore, we have designed a new
strategy to estimate the photometric redshifts of quasars.
The sample used for photometric redshift estimation is de-
scribed in Section 2. Then, the adopted methods are briefly
introduced in Section 3. Based on the SDSS and SDSS-
WISE samples, the different schemes of photometric red-
shift estimation of quasars by kNN and RF are depicted in
detail and compared in Section 4. The discussion is pre-

sented in Section 5. Finally we summarize the results of
this paper in Section 6.

2 SAMPLE

The SDSS (York et al. 2000) has been one of the most suc-
cessful surveys in the history of astronomy. In particular,
it has created the most detailed three-dimensional maps of
the Universe ever compiled, with deep multi-color images
of one-third of the sky, and spectra for more than three
million astronomical objects. We adopt the quasar sam-
ple from the Data Release 14 Quasar catalog (DR14Q)
of SDSS-IV/eBOSS (Pâris et al. 2018). The DR14Q con-
tains 526 356 unique quasars, of which 144 046 are new
discoveries since the beginning of SDSS-IV. The cata-
log also includes previously spectroscopically-confirmed
quasars from SDSS-I, II and III. Spectroscopic observa-
tions of quasars were performed over 9376 deg2 for SDSS-
I/II/III and are available over 2044 deg2 for new SDSS-
IV. Removing the records which contain default SDSS
magnitudes, zWarning = −1 and full magnitude er-
rors larger than 5, the number of entries in the SDSS
quasar sample reduces to 445 958. When further ruling
out the records with default W1 and W2, the number
of entries in the SDSS-WISE quasar sample amounts to
324 333. In this paper, we adopt AB magnitudes and con-
vert the SDSS u-band and z-band magnitudes with uAB =
u′ − 0.04 mag and zAB = z′ + 0.02. All magnitudes are
corrected for Galactic extinction with the extinction val-
ues from DR14Q. The W1 (3.4 µm) and W2 (4.6 µm) of
the Wide-field Infrared Survey Explorer (WISE; Mainzer
et al. 2011) are directly obtained from DR14Q and con-
verted to AB magnitudes using W1AB = W1 + 2.699
and W2AB + 3.339, and then extinction-corrected by the
extinction coefficients αW1, αW2 = 0.189, 0.146 with the
extinction values from SDSS photometry. The AB magni-
tude conversion and extinction correction process are sim-
ilar to the work of Schindler et al. (2017).

3 METHODS

The kNN method belongs to the lazy learning family,
which delays its learning until prediction. Its principle of
operation is to find the k training samples closest in dis-
tance to the new point, and predict the label from these. For
the classification problem, the new point is labeled accord-
ing to the majority of the k closest neighbors. For appli-
cations involving regression, the prediction is the average
of the k closest neighbors. In general, the distance can be
any metric measure, and standard Euclidean distance is the
most common choice. To improve query speed, a fast in-
dexing structure such as a Ball Tree or KD Tree is adopted.

RF (Breiman 2001) is based on bagging models built
using the Random Tree method, in which classification
trees are grown on a random subset of descriptors (e.g.,
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Gao et al. 2009). Each tree in the ensemble is constructed
from a sample drawn with replacement (i.e., a bootstrap
sample) from the training set. When splitting a node in the
process of tree construction, the chosen split is no longer
the best split among all of the features. However, this split
is the best split among a random subset of the features.
Based on this randomness, the bias of the forest usually
slightly increases (with respect to the bias of a single non-
random tree). However, due to averaging, its variance also
decreases, usually more than compensating for the increase
in bias, hence yielding an overall better model. Therefore,
RF uses the average to improve the predictive accuracy
and control overfitting. Compared to Breiman (2001), the
scikit-learn implementation of RF combines classifiers by
averaging their probabilistic prediction, instead of letting
each classifier vote for a single class.

For these two methods, we use KNeighborsRegressor,
RandomForestRegressor and RandomForestClassifier
from the Python module scikit-learn (Pedregosa et al.
2013).

4 PHOTOMETRIC REDSHIFT ESTIMATION

The redshift distribution of this sample is depicted in
Figure 1. Because the quasar colors change with redshift
and the dominating features appear in different bands with
different redshifts, we divide the quasar sample into two
classes and four classes according to the redshift range.
The two classes are one with 0 < z ≤ 2.2 and the
other with 2.2 < z. The four classes are “vlowz” with
0 < z ≤ 1.5, “lowz” with 1.5 < z ≤ 2.2, “midz” with
2.2 < z ≤ 3.5 and “highz” with 3.5 < z similar to
Schindler et al. (2017). At the first break of z = 1.5, the
Lyman-alpha (Lyα) emission line stays blueward of the u-
band and the CIV emission line still remains in the g-band.
Because the second break is at z = 2.2, the Lyα emis-
sion line is just leaving the u-band. At z = 3.5, a strong
flux decreases in the u-band while the Lyα forest absorbs
flux blueward of the Lyα line. We apply these two classes
and four classes to label the SDSS and SDSS-WISE quasar
samples for the classification problem. In the following ex-
periments, for the SDSS quasar sample, r, u−g, g−r, r−i,
i − z are taken as the input pattern, while for SDSS-WISE
quasar sample, r, u − g, g − r, r − i, i − z, z − W1,
W1 − W2 are adopted. The whole quasar samples from
SDSS and SDSS-WISE are randomly separated into two-
thirds for training and one-third for testing.

The problem of photometric redshift estimation be-
longs to the regression task of data mining. Thus, the al-
gorithm’s fit for regression can be applied for photometric
redshift estimation. When the sample is specified, a choice
of approaches is needed. Comparison of different regres-
sors depends on different regression metrics, such as the
residual between the spectroscopic and photometric red-
shifts, ∆z = zspec − zphoto, and the mean absolute error

σ. Another metric to determine the goodness of photomet-
ric redshift estimation is the fraction of test samples that
satisfy | △z |= |zi − ẑi| < e (Schindler et al. 2017 and
references therein).

The definition of mean absolute error σ is as follows

σ =
1

n

n−1∑

i=0

|zi − ẑi| , (1)

where zi is the true redshift, ẑi is the the predicted redshift
value and n is the sample size.

The fraction of test samples that satisfies | △z |= |zi−
ẑi| < e is usually used to evaluate the redshift estimation,
where e is a given residual threshold,

f|△z|<e =
N(|zi − ẑi| < e)

Ntotal

. (2)

The typical values of e are 0.1, 0.2 and 0.3. However,
the redshift normalized residuals are often adopted,

δe =
N(|zi − ẑi| < e(1 + zi))

Ntotal

. (3)

Once the methods have been chosen, the next im-
portant task is to determine an algorithm’s hyperparam-
eters, which indicate how the machine learns. For kNN,
the model parameter is only k when taking Euclidean dis-
tance as metric measure and KD Tree as index. But for RF,
main parameters contain the maximum depth of individual
trees (max depth) and the number of trees in the forest (n
estimators). The goal is to find the optimal model parame-
ters which optimize the algorithm’s performance. In reality
we do not know these values in advance. Therefore, a grid
search is performed with K-fold cross-validation, which
means that the training sample is split into K subsamples
such that one subsample is left to estimate the algorithm’s
performance while the remaining subsamples are utilized
to train the algorithm and construct the classifier/regressor.
This process is done K times and finally the average per-
formance is kept. The entire process is repeated for every
combination of hyperparameters in the grid space and val-
ues that optimize the performance are output. The grid for
kNN has k values from 10 to 30. The grid for RF has the
hyperparameters: n_estimators = [50, 100, 200, 300] and
max_depth = [15, 20, 25] (12 combinations).

4.1 Photometric Redshift Estimation with One

Sample

For the SDSS sample and the SDSS-WISE sample, the two
samples are randomly divided into two parts: two-thirds as
training sets and one-third as test sets. All of the model
constructions are performed by 10-fold cross-validation on
the full training sets while the other test sets are applied
to test the regressors (kNN and RF). Their performance,
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Fig. 1 Spectroscopic redshift distribution of the SDSS quasars (the red solid line histogram) and the SDSS-WISE quasars (the blue

dashed line histogram). The bin size is ∆z = 0.05.

Fig. 2 Predicted photometric redshifts vs. spectroscopic redshifts. The color bars signify the number of objects per rectangular bin.
The upper-left panel is based on the SDSS test sample by kNN; the upper-right panel is based on the SDSS-WISE test sample by kNN;
the lower-left panel is based on the SDSS test sample by RF; the lower-right panel is based on the SDSS-WISE test sample by RF.

optimal model parameters and running time of the two al-
gorithms for model construction and predicting photomet-
ric redshifts of quasars are written in Table 1. A compari-
son of photometric redshift estimation with spectroscopic
redshifts by different methods is displayed in Figure 2. As

listed in Table 1, for SDSS sample with kNN, the percents
(δ0.1, δ0.2 and δ0.3) in different |∆z|

1+zi

intervals and the mean
absolute error σ are 62.53%, 80.13%, 87.17% and 0.3326,
respectively; for the SDSS-WISE sample with kNN, δ0.1,
δ0.2 and δ0.3 and σ are 79.40%, 91.37%, 95.28% and
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Table 1 Performance of Photometric Redshift Estimation for Different Datasets with kNN and RF

Data Set Algorithm Model Parameters δ0.1(%) δ0.2(%) δ0.3(%) σ Time (s)

SDSS kNN k = 30 62.53 80.13 87.17 0.3326 242
SDSS-WISE kNN k = 30 79.40 91.37 95.28 0.1931 420

SDSS RF n_estimators = 300 63.34 80.48 87.34 0.3271 37628
max_depth = 15

SDSS-WISE RF n_estimators = 300 79.87 91.37 95.23 0.1907 36762
max_depth = 20

Table 2 Performance of photometric redshift estimation for different datasets with kNN after
classifying one sample into two subsamples by RF.

Data Set (Test set) Algorithm Model Parameters δ0.1(%) δ0.2(%) δ0.3(%) σ

SDSS (T1) RF_kNN k = 30 54.07 71.79 84.44 0.3574
SDSS (T2) RF_kNN k = 30 84.58 89.31 90.12 0.2856

SDSS (T1+T2) 67.11 79.28 86.87 0.3267

SDSS-WISE (T1) RF_kNN k = 30 74.80 89.37 94.73 0.2037
SDSS-WISE (T2) RF_kNN k = 20 93.05 96.40 97.00 0.1710

SDSS-WISE (T1+T2) 80.97 91.75 95.50 0.1926

Table 3 Performance of photometric redshift estimation for different datasets with RF after
classifying one sample into two subsamples by RF.

Data Set (Test set) Algorithm Model Parameters δ0.1(%) δ0.2(%) δ0.3(%) σ

SDSS (T1) RF_RF n_estimators = 300 55.08 72.07 84.36 0.3550
max_depth = 15

SDSS (T2) RF_RF n_estimators = 300 84.77 89.55 90.31 0.2810
max_depth = 15

SDSS (T1+T2) 67.74 79.52 86.90 0.3235

SDSS-WISE (T1) RF_RF n_estimators = 300 75.77 89.55 94.52 0.2022
max_depth = 15

SDSS-WISE (T2) RF_RF n_estimators = 300 93.01 96.40 96.97 0.1660
max_depth = 20

SDSS-WISE (T1+T2) 81.60 91.87 95.35 0.1900

0.1931, separately; for the SDSS sample with RF, they
are respectively 63.34%, 80.48%, 87.34% and 0.3271; for
the SDSS-WISE sample with RF, they are respectively
79.87%, 91.37%, 95.23% and 0.1907. For kNN, the run-
ning time of model construction and prediction is 242 s
with the SDSS sample and 420 s with the SDSS-WISE
sample; while for RF, the running time is 37 628 s and
36 762 s, respectively. No matter for kNN or for RF, the
accuracy of photometric redshift estimation improves ap-
parently with both optical and infrared information com-
pared to only the optical information. For the SDSS sam-
ple, the performance of RF is a little superior to that of
kNN. Meanwhile, for the SDSS-WISE sample, the perfor-
mance of RF is better than that of kNN except for δ0.2 and
δ0.3, although their accuracy is comparable. If only consid-
ering speed, kNN shows its superiority.

4.2 Photometric Redshift Estimation with Two

Subsamples

Considering the redshift distribution due to the physical
properties of quasars, quasars may be separated into dif-
ferent groups. To improve the performance of photometric

redshift estimation, we put forward a scheme of first clas-
sification and second regression for photometric redshift
estimation, specifically any new source is classified by a
classifier in advance and subsequently its photometric red-
shift is predicted by a regressor.

For the detailed steps of photometric redshift estima-
tion with two subsamples, see Figure 3. First, the quasar
samples of SDSS and SDSS-WISE are divided into two
subsamples: one with 0 < z ≤ 2.2 and the other with
2.2 < z. For the two subsamples, they are randomly seg-
mented into two parts: two-thirds for training (A with red-
shift from 0 to 2.2 and B with redshift from 2.2 to 6) and
one-third for testing (T1 with redshift from 0 to 2.2 and
T2 with redshift from 2.2 to 6). With the training sets A
and B, the classifier is created by 10-fold cross-validation.
The testing sets T1 and T2 are applied as inputs for the
classifier and then classified as T1A and T2A with redshift
from 0 to 2.2 and T1B and T2B with redshift from 2.2 to
6. Second, the samples A and B are used as training sets to
train regressors and represented as regressor_A and regres-
sor_B, respectively. The testing samples T1A and T2A are
tested by regressor_A while the testing samples T1B and
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Fig. 3 Flow chart of photometric redshift estimation based on two subsamples.

Fig. 4 Predicted photometric redshifts vs. spectroscopic redshifts for two subsamples. The color bars signify the number of objects per
rectangular bin. The upper-left panel is based on SDSS test sample by kNN; the upper-right panel is based on SDSS-WISE test sample
by kNN; the lower-left panel is based on SDSS test sample by RF; the lower-right panel is based on SDSS-WISE test sample by RF.

T2B are tested by regressor_B. Finally, the predicted re-
sults are obtained as result_A and result_B.

In brief, the core algorithm of the classifier is RF,
while the regressors adopt kNN and RF. For the SDSS
and SDSS-WISE samples, they are randomly segmented
into two-thirds for training and one-third for testing. The

RF classifier is constructed by 10-fold validation with the
full training set. The regressors (kNN and RF) are also
built by 10-fold validation with the full training set. For
convenience, RF is utilized for classification and kNN is
for regression, RF_KNN for short; RF is employed both
for classification and regression, RF_RF for short. For
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the SDSS sample with RF_KNN, the optimal parame-
ters of the RF classifier are n_estimators = 100 and
max_depth = 15; while for the SDSS-WISE sample
with RF_KNN, n_estimators = 300 and max_depth =
25. For the SDSS sample with RF_RF, optimal param-
eters of the RF classifier are n_estimators = 300 and
max_depth = 15; while for the SDSS-WISE sample with
RF_RF, n_estimators = 300 and max_depth = 20. For
different subgroups, the performance of photometric red-
shift estimation for the SDSS and SDSS-WISE samples
with kNN after classifying one sample into two subsam-
ples by RF is indicated in Table 2, while the performance
with RF is shown in Table 3. Comparison of photomet-
ric redshift estimation with spectroscopic redshifts by dif-
ferent methods is indicated in Figure 4. No matter if im-
plementing RF_KNN or RF_RF, adding the infrared in-
formation is helpful to improve the accuracy of photomet-
ric redshift estimation, and the performance based on T2
is better than that based on T1. Comparing the results in
Table 2 with those in Table 3, it is found that the perfor-
mance of RF_KNN is a little inferior to that of RF_RF
except for δ0.3 of SDSS T1 and SDSS-WISE T1, δ0.3 of
SDSS-WISE T1+T2 and three δ values of SDSS-WISE T2.
Considering the entire test sets (SDSS T1+T2 and SDSS-
WISE T1+T2), RF_RF manifests slightly better perfor-
mance than RF_KNN.

4.3 Photometric Redshift Estimation with Four

Subsamples

Similar to Section 4.2, we put forward another scheme
of first classification and second regression for photomet-
ric redshift estimation. To be different, the quasar sam-
ples of SDSS and SDSS-WISE are separated into four
subsamples: “vlowz” with 0 < z ≤ 1.5, “lowz” with
1.5 < z ≤ 2.2, “midz” with 2.2 < z ≤ 3.5 and “highz”
with 3.5 < z. These four subsamples are randomly broken
up into two parts: two-thirds for training (a with redshift
from 0 to 1.5, b with redshift from 1.5 to 2.2, c with red-
shift from 2.2 to 3.5 and d with redshift from 3.5 to 6) and
one-third for testing (t1 with redshift from 0 to 1.5, t2 with
redshift from 1.5 to 2.2, t3 with redshift from 2.2 to 3.5 and
t4 with redshift from 3.5 to 6). Based on training sets a, b, c
and d, the classifier is created. Then the classifier separates
testing sets t1, t2, t3 and t4 into t1a, t2a, t3a and t4a with
redshift from 0 to 1.5, t1b, t2b, t3b and t4b with redshift
from 1.5 to 2.2, t1a, t2c, t3c and t4c with redshift from
2.2 to 3.5, and t1d, t2d, t3d and t4d with redshift from 3.5
to 6.0. Next, samples a, b, c and d are used for training re-
gressors, and four regressors are obtained, represented as
regressor_a, regressor_b, regressor_c and regressor_d, re-
spectively. The testing samples t1a, t2a, t3a and t4a are
tested by regressor_a, t1b, t2b, t3b and t4b by regressor_b,
t1c, t2c, t3c and t4c by regressor_c, and t1d, t2d, t3d and

t4d by regressor_d. In the end, the predicted results are ob-
tained as result_a, result_b, result_c and result_d, respec-
tively. The detailed steps of photometric redshift estima-
tion with four subsamples are shown in Figure 5.

In the whole process, RF is still adopted as the clas-
sification algorithm, while RF and kNN are utilized as
the regression algorithms. The performance of photomet-
ric redshift estimation for the SDSS and SDSS-WISE sam-
ples with kNN after classifying one sample into four sub-
samples by RF is indicated in Table 4, while the perfor-
mance with RF is shown in Table 5. Comparison of pho-
tometric redshift estimation with spectroscopic redshifts
by different methods is indicated in Figure 6. For the
SDSS sample with RF_KNN, the optimal parameters of
RF classifier are n_estimators = 300 and max_depth =
15; while for the SDSS-WISE sample with RF_KNN,
n_estimators = 200 and max_depth = 20. For the SDSS
sample with RF_RF, the optimal parameters of RF classi-
fier are n_estimators = 300 and max_depth = 15; while
for the SDSS-WISE sample with RF_RF, n_estimators =
300 and max_depth = 25. To compare the results in
Table 4 with those in Table 5, given that there are only
three δ values for the test sets (SDSS t4 and SDSS-WISE
t4), the accuracy of RF_KNN is better than RF_RF, while
only considering σ, RF_RF is superior to RF_KNN; given
that there are only δ0.2 and δ0.3 for the test set SDSS t1,
RF_KNN shows better performance than RF_RF while
considering δ0.1 and σ, RF_RF displays superiority over
RF_KNN; for the test set SDSS-WISE t1, RF_RF is better
than RF_KNN except for δ0.3. In terms of the entire test
sets (SDSS t1+t2+t3+t4 and SDSS-WISE t1+t2+t3+t4),
RF_RF achieves slightly better results than RF_KNN.

5 DISCUSSION

The above results are summarized and compared in
Table 6. The experimental results indicate that the accu-
racy of photometric redshift estimation can be generally
improved by dividing the sample into subsamples and the
accuracy of four subsamples is superior to that of two sub-
samples when not considering the percent in |∆z|

1+zi

< 0.3;
the performance with information both from optical and
infrared bands enhances compared to that with only op-
tical information; the four estimation metrics (δ0.1, δ0.2,
δ0.3 and σ) all only improve with the SDSS-WISE sample
divided into two subsamples. Therefore, the scheme of di-
viding the sample is indeed effective and the accuracy of
four subsamples is better than that of two subsamples. It is
evident that the accuracy is rather satisfying if accurately
knowing the redshift range of new objects in advance. The
accuracy further improves through the classification sys-
tem and the improvement in accuracy depends on the ac-
curacy of classification into subsamples. In reality, we do
not know the redshift range of new objects beforehand. If
we want to better estimate redshift of new objects, then we
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Fig. 5 Flow chart of photometric redshift estimation based on four subsamples.

Table 4 Performance of photometric redshift estimation for different datasets with kNN after
classifying one sample into four subsamples by RF.

Data Set (Test set) Algorithm Model Parameters δ0.1(%) δ0.2(%) δ0.3(%) σ

SDSS (t1) RF_kNN k = 30 65.36 75.91 80.47 0.3719
SDSS (t2) RF_kNN k = 30 72.96 84.83 86.88 0.2905
SDSS (t3) RF_kNN k = 30 81.79 86.92 87.90 0.3181
SDSS (t4) RF_kNN k = 10 95.57 96.66 96.82 0.1948

SDSS (t1+t2+t3+t4) 75.16 83.48 85.73 0.3235

SDSS-WISE (t1) RF_kNN k = 20 78.96 89.80 93.56 0.1949
SDSS-WISE (t2) RF_kNN k = 30 82.91 94.05 95.72 0.1885
SDSS-WISE (t3) RF_kNN k = 30 91.77 95.35 96.09 0.1833
SDSS-WISE (t4) RF_kNN k = 10 98.02 98.56 98.76 0.1498

SDSS-WISE (t1+t2+t3+t4) 84.63 92.95 95.08 0.1885

need to judge their redshift range. Therefore, it is neces-
sary to construct a classification system before estimating
photometric redshifts. More information from more bands
leads to performance of a classifier or a regressor becoming
better. In addition, there is a lot of room for improvement
from the perspective of percents in different redshift ranges
since the percent in |∆z|

1+zi

< 0.3 does not improve by the
two schemes for most situations.

When the sample is classified into two/four subsam-
ples, a discontinuity in the photometric redshift distribu-
tion exists due to misclassification near the cutoff. Because

the accuracy of the classifier is much higher, the degree of
discontinuity is much lower. Therefore, we may reduce the
discontinuity by improving the accuracy of the classifier.
In addition, when we utilize the photometric redshift cata-
log for further scientific study, we may adopt the estimated
redshift value from two or four samples far from the cutoff,
and keep the estimated value from one sample near the cut-
off. Taking the SDSS-WISE sample into four subsamples
by RF_RF for example, we adopt the estimated redshift
value from the regressor and keep the estimated value from
one sample by RF near the three cutoff points (±0.3), then
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Table 5 Performance of photometric redshift estimation for different datasets with RF after classifying
one sample into four subsamples by RF.

Data Set (Test set) Algorithm Model Parameters δ0.1(%) δ0.2(%) δ0.3(%) σ

SDSS (t1) RF_RF n_estimators = 200 65.65 75.88 80.27 0.3760
max_depth = 15

SDSS (t2) RF_RF n_estimators = 300 73.81 85.05 87.07 0.2854
max_depth = 15

SDSS (t3) RF_RF n_estimators = 300 82.04 87.16 88.16 0.3131
max_depth = 15

SDSS (t4) RF_RF n_estimators = 50 95.35 96.49 96.68 0.1935
max_depth = 15

SDSS (t1+t2+t3+t4) 75.56 83.62 85.82 0.3213

SDSS-WISE (t1) RF_RF n_estimators = 300 80.43 90.16 93.35 0.1916
max_depth = 15

SDSS-WISE (t2) RF_RF n_estimators = 300 83.35 93.69 95.45 0.1860
max_depth = 15

SDSS-WISE (t3) RF_RF n_estimators = 300 91.95 95.48 96.26 0.1770
max_depth = 15

SDSS-WISE (t4) RF_RF n_estimators = 200 97.31 98.30 98.52 0.1420
max_depth = 20

SDSS-WISE (t1+t2+t3+t4) 85.33 93.01 94.97 0.1843

Table 6 Performance of Photometric Redshift Estimation with Different Datasets for Different Schemes

Data Set Scheme Algorithm δ0.1(%) δ0.2(%) δ0.3(%) σ

SDSS one sample kNN 62.53 80.13 87.17 0.3326
SDSS two subsamples RF_kNN 67.11 79.28 86.87 0.3267
SDSS four subsamples RF_kNN 75.16 83.48 85.73 0.3235

SDSS-WISE one sample kNN 79.40 91.37 95.28 0.1931
SDSS-WISE two subsamples RF_kNN 80.97 91.75 95.50 0.1926
SDSS-WISE four subsamples RF_kNN 84.63 92.95 95.08 0.1885

SDSS one sample RF 63.34 80.48 87.34 0.3271
SDSS two subsamples RF_RF 67.74 79.52 86.90 0.3235
SDSS four subsamples RF_RF 75.56 83.62 85.82 0.3213

SDSS-WISE one sample RF 79.87 91.37 95.23 0.1907
SDSS-WISE two subsamples RF_RF 81.60 91.87 95.35 0.1900
SDSS-WISE four subsamples RF_RF 85.33 93.01 94.97 0.1843

the metrics (δ0.1, δ0.2, δ0.3 and σ) are 85.76%, 93.28%,
95.19% and 0.1699, respectively. As a result, this method
is applicable. To compare the performance of photometric
redshift estimation, the true redshifts and estimated red-
shifts by different methods are depicted in Figure 7.

In general, there are many factors influencing the accu-
racy of photometric redshift estimation, among which the
adopted techniques and selected features are most impor-
tant. However, other factors are also not neglected. For ex-
ample, Singal et al. (2011) presented the effects of includ-
ing galaxy morphological parameters in photometric red-
shift estimation with an artificial neural network method.
Way (2011) found that the broad bandpass photometry
of the SDSS in combination with precise knowledge of
galaxy morphology was helpful to improve the accuracy
of estimating photometric redshifts for galaxies. Soo et al.
(2018) studied the effects of incorporating galaxy mor-
phology information in photometric redshift estimation,
and found that the inclusion of quasar redshifts and as-
sociated object sizes in training improved the quality of
photometric redshift catalogs and morphological informa-
tion can mitigate biases and scatter due to bad photom-

etry. Gomes et al. (2018) investigated improving photo-
metric redshift estimation using GPZ by size information,
post-processing and improved photometry. All these fac-
tors may be considered in our strategy in future work.

Considering improving the robustness, flexibility and
automation of approaches for photometric redshift estima-
tion, various tools in this aspect are in development, such
as IMPZ (Babbedge et al. 2004), EAZY (Brammer et al.
2008, 2010), ArborZ (Gerdes et al. 2010), BPZ (Benítez
2011), Hyperz (Bolzonella et al. 2000, 2011), LePHARE
(Arnouts & Ilbert 2011), ANNz (Collister & Lahav 2004;
Niemack et al. 2009; Lahav & Collister 2012), PhotoZ
(Saglia et al. 2013), XDQSO (Bovy et al. 2013), TPZ
(Carrasco Kind & Brunner 2013), SOMz (Carrasco Kind &
Brunner 2014), PhotoRApToR (Cavuoti et al. 2015a), GAz
(Hogan et al. 2015), DAMEWARE (Cavuoti et al. 2015b),
TailZ (Granett 2016), CuBANz (Samui & Pal 2016), GPZ
(Almosallam et al. 2016a), ANNz2 (Sadeh et al. 2016) and
Photo-z-SQL (Beck et al. 2017a,b). Abdalla et al. (2011)
compared six photometric redshift codes (ANNz, HyperZ,
SDSS, LePHARE, BPZ and ZEBRA) for 1.5 million lumi-
nous red galaxies (LRGs) in SDSS DR6. Therefore algo-
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Fig. 6 Predicted photometric redshifts vs. spectroscopic redshifts for four subsamples. The color bars signify the number of objects per
rectangular bin. The upper-left panel is based on SDSS test sample by kNN; the upper-right panel is based on SDSS-WISE test sample
by kNN; the lower-left panel is based on SDSS test sample by RF; the lower-right panel is based on SDSS-WISE test sample by RF.

Fig. 7 Redshift distribution. Grey line represents true redshift; red line for estimated redshift from one sample by RF; blue line for
estimated line from four samples by RF_RF; green line for estimated redshift from four samples by RF_RF and corrected near the
cutoff.

rithms turning into automated tools are of great value once
they are successfully applied in a specified issue. This is
important and necessary for astronomers with such conve-
nient tools in the big data era (Zhang & Zhao 2015).

6 CONCLUSIONS

In general, the work on accuracy improvement of photo-
metric redshift estimation of quasars focuses on algorithm
choice and feature selection. We design two schemes of
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photometric redshift estimation by first classification and
then regression, comparing the performance of RF and
kNN with the SDSS and SDSS-WISE samples for the two
schemes to the original scheme. We explore how to deal
with the sample itself, and how the sample segmentation
influences the estimation accuracy. Considering the ex-
perimental results, we are able to improve the estimation
accuracy of photometric redshifts through first classifica-
tion and then regression. In most of our experiments, the
performance of dividing the sample into four subsamples
is better than that of two subsamples with the two algo-
rithms for the two samples, moreover the accuracy of both
schemes improves compared to the original scheme, ex-
cept for the percent in |∆z|

1+zi

< 0.3. In addition, for the
SDSS-WISE dataset, no matter for RF or kNN, all the
four metrics of performance criterion improve based on the
sample divided into two parts compared to the one sample
or four subsamples (see Table 6). RF shows a little better
performance than kNN but its speed is slower than kNN
since kNN is based on KD-tree index. The accuracy with
the SDSS-WISE sample is superior to that with the SDSS
sample when the same method is adopted. For the case of
the SDSS-WISE sample divided into four subsamples by
RF_RF, the estimated redshifts are adopted from the re-
gressor and the estimated redshifts by RF with one sample
replace them near the three cutoff points (±0.3), then the
metrics (δ0.1, δ0.2, δ0.3 and σ) amount to 85.76%, 93.28%,
95.19% and 0.1699, respectively. In other words, the strat-
egy we put forward is effective. The accuracy of the clas-
sification system directly influences the performance of re-
gression. The classification and regression also depend on
the available information. As a result, information added
from more bands is necessary to improve the accuracy of
photometric redshift estimation and classification. In our
next work, we will apply the databases (Pan-STARRS, fu-
ture LSST, etc.) for this issue. Photometric redshift estima-
tion of galaxies or other objects may be also improved by
a similar strategy.
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