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Abstract We simulate the dynamics of slender magnetic flux tubes (MFTs) in the accretion disks of

T Tauri stars. The dynamical equations of our model take into account aerodynamic and turbulent drag

forces, and the radiative heat exchange between the MFT and ambient gas. The structure of the disk is

calculated with the help of our MHD model of the accretion disks. We consider the MFTs formed at

distances of 0.027− 0.8 au from the star with various initial radii and plasma betas β0. The simulations

show that MFTs with a weak magnetic field (β0 = 10) rise slowly with speeds less than the speed of

sound. MFTs with β0 = 1 form an outflowing magnetized corona above the disk. Strongly magnetized

MFTs (β0 = 0.1) can cause outflows with velocities 20 − 50 km s−1. The tubes rise periodically over

times from several days to several months according to our simulations. We propose that periodically

rising MFTs can absorb stellar radiation and contribute to the IR-variability of young stellar objects.
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1 INTRODUCTION

Various observations indicate that stars at the early stages

of evolution (young stellar objects, YSOs (Adams et al.

1987)) have a magnetic field. Measurements of Zeeman

splitting in their spectral lines show that classical T Tauri

stars (Class II YSOs) have a surface magnetic field with

strength 1 − 3 kG (Johns-Krull 2007). Polarization maps

of thermal emission from dust indicate that the accretion

disks of these young stars have a large-scale magnetic

field (Li et al. 2016, 2018). The angular resolution is still

not enough to detect their magnetic field geometry in de-

tail.

The theory of a fossil magnetic field predicts that

the magnetic field of the accretion disks of young stars

originates from the magnetic field of its parent molec-

ular cloud (see for review Dudorov (1995); Dudorov

& Khaibrakhmanov (2015)). The dynamo mechanism

driven by turbulent cyclonic motions and differential ro-

tation in conducting plasma can also lead to the gen-

eration of a magnetic field in the disk (see, for exam-

ple, reviews Brandenburg & Subramanian (2005) and

Blackman (2012)). Some aspects of the dynamo action

in accretion disks can be found in Brandenburg et al.

(1995), Kitchatinov & Rüdiger (2010), Gressel & Pessah

(2015) and Moss et al. (2016). In this work, we use

the magnetohydrodynamics (MHD) model of accretion

disks of young stars with a fossil magnetic field devel-

oped by Dudorov & Khaibrakhmanov (2014). Dudorov

& Khaibrakhmanov (2014) have shown that the mag-

netic field geometry varies through the disk. The mag-

netic field is quasi-azimuthal, Bϕ ∼ Bz (in cylindri-

cal coordinates), in regions of thermal ionization, where

the magnetic field is frozen in gas. Throughout most

of the disk, Ohmic diffusion, magnetic ambipolar dif-

fusion and the Hall effect operate (for example, see re-

view Turner et al. (2014)). The magnetic field is quasi-

poloidal, (Br, Bϕ) ≪ Bz , inside regions with low ion-

ization fraction (“dead” zones, Gammie (1996)), and

quasi-azimuthal or quasi-radial, Br ∼ Bz , in the outer

regions depending on the ionization parameters. The

magnetic field has quasi-radial geometry near the borders

of the “dead” zones (Khaibrakhmanov et al. 2017).
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The intensity of the azimuthal magnetic field Bϕ is

amplified over a time scale on the order of the rotation pe-

riod Porb. The intensity of Br is amplified over an accre-

tion time scale tacc. In the accretion disks Porb ≪ tacc,

therefore Br ≪ Bϕ in the inner region (see Dudorov

& Khaibrakhmanov (2014)). The problem is what mech-

anism hinders significant growth of the azimuthal mag-

netic field in the region of thermal ionization. Dudorov

& Khaibrakhmanov (2014) have assumed that magnetic

buoyant force can be such a mechanism. Magnetic flux

tubes (MFTs) form as a result of Parker instability of

a gas layer with a strong horizontal magnetic field (see

Parker (1979)). A number of numerical simulations con-

firmed the development of the Parker instability and for-

mation of MFTs (Cattaneo & Hughes 1988; Matthews

et al. 1995; Wissink et al. 2000; Fan 2001; Vasil &

Brummell 2008). Once formed, the MFTs rise from the

disk under the action of the buoyant force. This process

leads to the escape of excess magnetic flux from regions

where it is generated. Khaibrakhmanov et al. (2017) and

Khaibrakhmanov & Dudorov (2017) incorporated mag-

netic buoyancy into the induction equation and showed

that the buoyancy can be treated as an additional mag-

netic flux escape mechanism in the disks.

Usually, the MFT dynamics in accretion disks have

been investigated in the frame of slender flux tube ap-

proximation (Sakimoto & Coroniti 1989; Torkelsson

1993; Chakrabarti & D’Silva 1994; Schramkowski 1996;

Dudorov & Khaibrakhmanov 2016). The dynamics is de-

termined by the buoyant force, drag forces, thermal struc-

ture of the disk, efficiency of heat exchange with ambient

gas, and relation between the centrifugal and magnetic

tension forces.

Dudorov & Khaibrakhmanov (2016) considered the

dynamics of slender adiabatic MFTs in the accretion

disks of young stars. In this paper, we extend their ap-

proach by including radiative heat exchange in the model

equations. In the frame of the slender flux tube ap-

proximation, we investigate MFT dynamics in the ac-

cretion disks of T Tauri stars. The initial parameters

take into account the disk structure determined using

our MHD model of the accretion disks (Dudorov &

Khaibrakhmanov 2014; Khaibrakhmanov et al. 2017).

Different from other researchers, we take into account

turbulent drag inside the disk. This paper is based on the

talk presented at the “Stars and Interstellar Medium” sec-

tion of the All-Russian Astronomical Conference VAK-

2017 that was held on 2017 September 17C22 (see

Samus & Li 2018 for review of the section).

The paper is organized as follows. In Section 2,

we present our model of the MFT dynamics. The

model of the accretion disk is briefly discussed in

Section 3. Section 4 presents results of numerical sim-

ulations. Typical dynamics of the MFT is considered in

Section 4.1. Dependence on the model parameters is in-

vestigated in Section 4.2. We make analytical estimates

of the terminal MFT velocities in Section 4.3. We search

for the observational appearance of MFT dynamics in

Section 4.4. Section 5 summarizes and discusses our

findings.

2 MODEL OF MAGNETIC FLUX TUBE

DYNAMICS

We investigate the MFT dynamics inside the accretion

disks using cylindrical coordinates (r, ϕ, z). Axis z co-

incides with the disk rotation axis. The magnetic field in-

side the disk has components B = (Br, Bϕ, Bz). We

assume that toroidal magnetic field Bt = (0, Bϕ, 0)

splits into MFTs due to Parker instability (Parker 1979).

The MFT has the form of a torus around the disk ro-

tation axis with major radius amaj = r and minor ra-

dius a ≪ amaj. The MFT is azimuthally symmetric.

Therefore, we can investigate motion of the small part

of the torus, i.e. a cylinder of unit length. This cylindrical

MFT has radius a, gas pressure Pg, density ρ, tempera-

ture T and magnetic field strength Bϕ = B. The accre-

tion disk is characterized by pressure Pe, density ρe and

temperature Te.

We model the dynamics of the MFT following

Dudorov & Kirillov (1986) and use the system of equa-

tions

ρ
dv

dt
= (ρ − ρe) g + ρfd (v, ρ, T, a, ρe) ,(1)

dr

dt
= v, (2)

Ml = ρπa2, (3)

Φ = Bπa2, (4)

dQ = dU + PedV, (5)

Pg +
B2

8π
= Pe, (6)

dPe

dz
= −ρegz, (7)

Pg =
Rg

µ
ρT, (8)

U =
Pg

ρ(γ − 1)
+

B2

8πρ
. (9)
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Equation (1) is the equation of motion (where fd is the

drag force per unit mass), (2, 3, 4) are the definitions of

velocity v, mass Ml per unit length and magnetic flux

Φ of the MFT respectively, (5) is the first law of ther-

modynamics (Q is the heat per unit mass, V = 1/ρ is

the specific volume), (6) is the balance between internal

pressure (P = Pg + B2

8π ) and external pressure (Pe), (7)

is the equation of hydrostatic equilibrium for the disk, (8)

is the equation of state (Rg is the universal gas constant,

µ = 2.3 is the molecular weight), (9) is the energy per

unit mass and γ is the adiabatic index.

The first term on the right-hand side of Equation (1)

F b = (ρ − ρe) g , (10)

is the buoyant force, which is the difference be-

tween gravitational force and the force arising from

Archimedes’ principle, and g is gravitational accelera-

tion.

We study the one-dimensional problem of MFT mo-

tion in the z-direction, so v = (0, 0, v), r = (0, 0, z)

and g = (0, 0, gz). Equality (6) shows that the MFT is

lighter than the ambient gas, i.e. ρ < ρe. Therefore, the

buoyant force F b = (0, 0, Fb) causes the MFT to move

upward. Drag force ρfd = (0, 0, ρfd) counteracts the

motion. Aerodynamic drag force (see Parker (1979))

fd = −ρev
2

2

Cd

ρπa2
, (11)

where Cd is the drag coefficient ∼ 1. Turbulent drag

force (Pneuman & Raadu 1972)

fd = −πρe

(

νtav3
)1/2

ρπa2
, (12)

where νt is the turbulent viscosity. The latter is estimated

as (Shakura & Sunyaev 1973)

νt = αvsH, (13)

where α is a non-dimensional constant characterizing the

efficiency of turbulence,

vs =

√

RgTe

µ
(14)

is the isothermal speed of sound and H is the scale height

of the disk.

Turbulent drag force (Eq. (12)) is taken into account

inside the disk. Aerodynamic drag force (Eq. (11)) is

considered above the disk.

The disk is assumed to be in hydrostatic equilibrium

in the z-direction. The vertical component of stellar grav-

ity,

gz = −z
GM⋆

r3

(

1 +
z2

r2

)−3/2

, (15)

where M⋆ is the mass of the star.

The system of equations (1-9) can be reduced to

dv

dt
=

(

1 − ρe

ρ

)

gz + fd, (16)

dz

dt
= v. (17)

a = a0

(

ρ

ρ0

)−1/2

, (18)

B = B0

ρ

ρ0

, (19)

dρ

dt
=

hcPT + UT ρegzv

PT

(

Uρ −
Pe

ρ2

)

− UT (Pρ + Cmρ)

, (20)

dT

dt
=

ρegzv

(

Uρ −
Pe

ρ2

)

+ hc (Pρ + Cmρ)

UT (Pρ + Cmρ) − PT

(

Uρ − Pe

ρ2

) , (21)

ρe = ρme−
z
2

2H , (22)

where a0, ρ0 and B0 are the initial radius, density and

magnetic field strength of the MFT respectively, the sub-

script T means derivative with respect to T (with con-

stant ρ), the subscript ρ means derivative with respect to ρ

(with constant T ), hc is the heating power per unit mass,

Cm =
B2

0

4πρ2
0

, H = vs/Ω is the scale height of the disk,

vs =
√

RgTe/µ is the isothermal sound speed and

Ω =

√

GM⋆

r3
(23)

is the Keplerian angular velocity.

Equations (18) and (19) follow from mass and mag-

netic flux conservation (Eqs. (3) and (4)). Equations (20)

and (21) are derived from (5, 6 and 7). Heating power

per unit mass is defined as hc = dQ/dt. In the diffusion

approximation

hc ≃ − 8

3κRρ2

σRT 4 − σRT 4
e

a2
, (24)

where κR is the Rosseland mean opacity and σR is

the Stefan-Boltzmann constant. We determine κR as the

power-law function of gas density and temperature fol-

lowing Dudorov & Khaibrakhmanov (2014).
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Formula (22) is the solution of hydrostatic equilib-

rium Equation (7) in the isothermal case, Te =const. We

determine the surface of the disk as the locus z = 3H .

Above the surface, temperature is constant Te and den-

sity declines with height according to Equation (22) to

the point where ρe becomes equal to the density of the

interstellar medium ρism = 3.8 × 10−20 g cm−3.

3 MODEL OF THE DISK

We investigate the dynamics of the MFT in the accre-

tion disk of a T Tauri star. We use our MHD model

of accretion disks (Dudorov & Khaibrakhmanov 2014)

to calculate the structure and magnetic field of the

disks. Let us describe briefly the features of the model

(see for details Dudorov & Khaibrakhmanov (2014) and

Khaibrakhmanov et al. (2017)).

The model is an MHD-generalization of the Shakura

& Sunyaev (1973) model. We solve the MHD equations

in the stationary thin-disk that uses a thin stationary disk.

It is assumed that turbulence is the main mechanism of

angular momentum transport. The turbulent viscosity is

estimated according to (13). The model has two main pa-

rameters: α and accretion rate Ṁ .

The temperature of the disk is calculated from the

balance between viscous heating and radiative cooling.

We use low-temperature opacities from Semenov et al.

(2003). Heating by stellar radiation and cosmic rays in

the outer parts of the disk is also taken into account.

The magnetic field components are calculated from

the induction equation taking into account Ohmic diffu-

sion, magnetic ambipolar diffusion, magnetic buoyancy

and the Hall effect. Ionization fraction is determined

from the equation of collisional ionization (see Spitzer

(1978)) considering ionization by cosmic rays, X-rays

and radioactive decay, radiative recombinations and the

recombinations on dust grains. Additionally, the evapo-

ration of dust grains and thermal ionization are included

in the model.

Outer boundary of the disk, rout, is determined as

the contact boundary, where the disk pressure equals the

pressure of the external medium.

In Figure 1 we plot the radial profiles of the mid-

plane temperature, surface density, midplane ionization

fraction, vertical magnetic field strength and midplane

plasma beta for a disk with α = 0.01 and Ṁ =

10−7 M⊙ yr−1. Stellar mass M = 1 M⊙. In the simula-

tion, we have cosmic ray ionization rate ξ0 = 10−17 s−1

and attenuation length RCR = 100 g cm−2, stellar X-ray

luminosity LXR = 1030 erg s−1 and mean dust grain size

ad = 0.1 µm.

Figure 1 shows that the surface density and temper-

ature gradually decrease with distance from the star. The

temperature is ∼ 5000 K near the inner edge of the disk

and 15 K near its outer edge at rout = 220 au. In our

model, the radial dependences of all physical quantities

are power-law functions of the distance. Indexes of the

power laws depend only on the parameters of opacity.

The indexes change throughout the disk as the opacity

changes. That is why the dependences T (r) and Σ(r)

appear as piecewise-linear functions on a logarithmic

scale in Figure 1. Typical slope of the temperature pro-

file pT = −0.9 in range 1− 100 au, and the typical slope

of the surface density profile is pΣ = −0.7. The latter is

consistent with observations indicating that pΣ ∈ [0.4, 1]

(Andrews et al. 2009).

The radial profile of Bz is more complex. In the in-

nermost part of the disk, r < 0.8 au, the ionization frac-

tion is high, x > 10−10 and the magnetic field is frozen

in gas. The radial profile of Bz follows the surface den-

sity profile in this region, and Bz ≃ 170 G at the inner

edge of the disk rin = 0.027 au. The “dead” zone is sit-

uated at r > 0.8 au, where the ionization fraction is very

low. Magnetic ambipolar diffusion reduces the magnetic

field strength by 1–2 orders of magnitude in this region,

so that typical Bz(3 au) = 0.1 G. Near the outer edge

of the disk, the magnetic field is frozen in gas and its in-

tensity is 4 × 10−3 G. The plasma beta is not constant

in the disk. It is ∼ 100 near the inner edge of the disk,

∼ 104 − 105 inside the “dead” zone and ∼ 10 near the

outer edge of the disk.

4 RESULTS

In this section, we present the results of simulations of

the MFT dynamics in the accretion disks. The system

of dynamical Equations (16, 17, 20, 21) is solved with

the help of the explicit fourth order Runge-Kutta method

with automatic selection of the time step and relative ac-

curacy ε = 10−6. At each time step, the radius and mag-

netic field strength of the MFT are calculated with the

help of relations (18–19).

We assume that the MFT forms inside the disk at

height z0 = [0.5, 1, 1.5]H , in thermal equilibrium with

the surrounding gas, T0 = Te, and with velocity u0 = 0.

We specify the initial magnetic field strength of the MFT
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Fig. 1 The structure of the disk with α = 0.01 and Ṁ = 10−7 M⊙ yr−1 around a star with M = 1 M⊙. Top left: surface density,

top right: midplane temperature, bottom left: midplane ionization fraction, bottom right: vertical magnetic field strength (left y-axis,

black line) and plasma beta (right y-axis, grey line). Grey dashed lines with numbers depict typical slopes.

using plasma beta definition,

β0 =
8πPg0

B2
0

, (25)

where Pg0 is the initial gas pressure inside the MFT.

Initial density is determined from the condition of pres-

sure equilibrium (6) at t = 0 in terms of β0,

ρ0 =
Pe(z0)

RgT0

µ

(

1 +
1

β0

) . (26)

Adiabatic index of the molecular hydrogen gas γ = 7/5.

4.1 Fiducial Run

Let us first consider the typical picture of MFT dynam-

ics. In the fiducial run, the dynamical Equations (16,

17, 20 and 21) are solved assuming that the MFT is at

the distance r = 0.027 au inside the disk. Parameters

of the disk at this distance are as follows: temperature

Te = 4830 K, midplane density ρm = 2 × 10−6 g cm−3,

scale height H = 6.2 × 10−4 au and magnetic field

strength Bz = 170 G. Initial parameters of the MFT are:

a0 = 0.1H , β0 = 1 and z0 = 0.5H . In Figure 2, we

plot the profiles of the velocity, drag and buoyant forces,

densities ρ and ρe, and MFT radius.

The left panel of Figure 2 shows that initially MFT

accelerates to the velocity ≃ 0.7 km s−1 almost in-

stantly, because the turbulent drag force is much less than

the buoyant force. After this acceleration, the drag force

and buoyant force become nearly equal, ft <∼ fb, and the

MFT moves with increasing velocity. The acceleration

decreases when the MFT rises to height z ≃ 2.5 − 3H .

Above the disk, z > 3H , the acceleration tends to zero,

as the buoyancy and aerodynamic drag forces become

very small. The MFT moves by inertia with nearly con-

stant velocity, v ≃ 2 km s−1.

The MFT moves in a highly non-uniform medium.

The right panel of Figure 2 shows that the MFT expands

during its motion and its density decreases. External den-

sity also decreases with height. The difference in densi-

ties reduces from 50 % at the starting point to nearly zero

at z > 3H , i.e. the degree of buoyancy decreases. The

radius of the MFT becomes larger than the height of the

disk at z ≃ 4H . Further motion of the MFT cannot be

investigated in the frame of the slender tube approxima-

tion. We assume that the MFT dissipates at z ≃ 4H .

The dissipation of the MFTs in the atmosphere of the

disk leads to the formation of a non-stationary magne-

tized corona. The heating of the corona by dissipation

of the magnetic field rising from the disk has also been

found and discussed by Galeev et al. (1979) and Stella

& Rosner (1984) in the context of accretion disks around

black holes and by Miller & Stone (2000) in application

to disks around classical T Tauri stars.



90–6 S. Khaibrakhmanov et al.: Magnetic Flux Tube Dynamics and YSO Variability

4.2 Dependence on Parameters

The dynamics of MFT depends on the initial position

of the MFT inside the disk. In Figure 3, we present the

dependence of the MFT velocity on the initial height

and distance from the star. We consider three distances,

r = 0.027 au (close to the inner boundary of the disk),

r = 0.15 au (Te = 2025 K, ρm = 4.1 × 10−8 g cm−3,

H = 0.0053 au, Bz = 29.5 G) and r = 0.8 au (outer

zone of the thermal ionization region, where Te = 970 K,

ρm = 8.3×10−10 g cm−3, H = 0.045 au, Bz = 0.14 G).

The dynamics of the MFTs rising from z0 = 0.5H ,

z0 = 1H and z0 = 1.5H are considered.

Figure 3 shows that the MFTs rapidly accelerate in

the beginning, like in the fiducial run (see Sect. 4.1).

After that, the MFTs rise with increasing velocity. Above

the disk, z > 3H , the MFTs move with a constant veloc-

ity, that is ∼ 1 km s−1 at r = 0.8 au and 2 − 2.5 km s−1

at r = 0.027 au. Our simulations show that rise times to

the surface of the disk are 0.5 Porb, 0.8 Porb and 1.2 Porb

for the MFTs with z0 = 0.5H , z0 = 1H and z0 = 2H ,

respectively (Porb is the rotation period).

4.3 Terminal Velocity of the MFT

As was shown in the previous section, after the initial

acceleration, the MFT moves at a constant velocity, that

is determined from the balance between the buoyant and

drag forces. In the case of aerodynamic drag, we obtain

the equality

∆ρgz =
ρev

2
b

2

Cd

πa2
, (27)

where ∆ρ = ρe−ρ. The difference in densities in thermal

equilibrium is (see Eq. (6))

∆ρ =
B2

8πv2
s

. (28)

Substituting (28) into Equation (27), it is easy to derive

the formula for calculating the terminal velocity (Parker

1979)

vb = va

(

π

Cd

)1/2
( a

H

)1/2 (z0

H

)1/2

, (29)

where

va =
B√
4πρ

(30)

is the Alfvén speed. Formula (29) shows that the termi-

nal velocity of the MFT with a ∼ 1H at z0 ∼ 1H ap-

proximately equals va. For convenience, we express the

terminal velocity in terms of plasma beta and local speed

of sound vs

vb = vs

√

2

β

(

π

Cd

)1/2
( a

H

)1/2 (z0

H

)1/2

. (31)

Figure 4 shows dependences of the terminal velocity

on the MFT radius for various plasma betas and initial

heights z0. Terminal velocities range from 2 to 50 km s−1

for radii in range [0.1, 1]H . The higher the initial height

z0 is, the more the terminal velocity of the MFT be-

comes. The MFTs with weak magnetic field (β = 10)

move slowly with a velocity smaller than the speed of

sound. The MFTs with strong magnetic field (β = 0.1)

accelerate to velocities ∼ 40− 50 km s−1 characterizing

molecular outflows. Generally speaking, a rising MFT

can cause the outflows.

4.4 Buoyancy-driven Outflows

In Sections 4.1–4.3 we show that the MFT can form out-

flows from the disk. The buoyancy extracts magnetic flux

from the disk over the time scale that the MFT rises to the

surface of the disk. As we discussed in the Introduction,

the toroidal magnetic field is permanently amplified in

the region of thermal ionization. When the magnetic field

reaches a state with β ∼ 1, the MFTs form, rise from

the disk and carry away the excess magnetic flux. Time

scale of the magnetic field amplification can be esti-

mated from the induction equation. In the approxima-

tions of the accretion disk model, the time scale of the

azimuthal magnetic field amplification (see Dudorov &

Khaibrakhmanov (2014)),

tgen =
2

3

|Bϕ|
|Bz|

Ω−1
(z

r

)−1

≃ 2.12Porb

(

z/r

0.05

)−1 |Bϕ|
|Bz|

.

(32)

Formula (32) shows that tgen ≃ 2Porb at height z = 1H .

Comparison of rise times discussed in Section 4.2

and estimate (32) shows that the rise time of MFTs

is less than tgen. Therefore, the considered buoyancy-

driven outflows are periodic. The period of the outflows

will be on the order of the magnetic field amplification

time scale, i.e. several rotation periods.

We propose that periodically rising MFTs can con-

tribute to the variability of radiation emitted by YSOs. In

the region r = [0.5, 0.8] au, temperature T <∼1500 K and

MFTs contain dust grains. Such rising MFTs can absorb

stellar radiation and re-emit it in infrared (IR). This pro-

cess can be responsible for the IR-variability of YSOs.
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The time scale of the variability would be on the order

of the magnetic field amplification time scale, i.e. rota-

tion periods. This time scale ranges from several days at

r = 0.027 au to several months at r = 0.8 au.

5 CONCLUSIONS AND DISCUSSION

In this paper, we investigate the dynamics of MFTs in

the accretion disks of young stars. In our previous paper,

the adiabatic motion of MFTs was considered (Dudorov

& Khaibrakhmanov 2016). Now we include the radia-

tive heat exchange between the MFT and surrounding

medium in the model. A disk in hydrostatic equilib-

rium is considered. The density, temperature and mag-

netic field strength of the disk are calculated with the

help of our MHD model of accretion disks (Dudorov &

Khaibrakhmanov 2014; Khaibrakhmanov et al. 2017).

We investigate the dynamics of the MFT with vari-

ous initial radii a0 and plasma beta β0 formed at different

distances from the star, r = [0.027, 0.15, 0.8] au, and at

different heights above the midplane of the disk, z0 =

[0.5, 1, 2]H . An accretion disk with turbulence param-

eter α = 0.01 and accretion rate Ṁ = 10−7 M⊙ yr−1

around solar mass T Tauri star is considered.

The simulations show that MFTs rise from the disk

to the atmosphere with velocities up to ≃ 50 kms−1. The

farther from the star the MFT formed, the less its ter-

minal velocity. We divide the MFTs into two categories.

Small MFTs (radius less than ∼ 0.1H) cannot accelerate

to speeds more than 10 km s−1. Large MFTs having radii

more than ∼ 0.1H can reach velocities up to 50 km s−1.

The time needed for the MFT to rise to the surface

of the disk is on the order of the rotation period. This

time is less than the time scale of the toroidal magnetic
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field amplification, tgen. Therefore, the MFTs form in-

side the disk and float from it periodically over time

scales ∼ tgen, that range from several days to several

months in the region of thermal ionization. The MFTs

catastrophically expand above the disk.

The MFTs with weak magnetic field (β = 10)

rise slowly with speeds less than the speed of sound.

The MFTs with β = 1 form an outflowing magnetized

corona. Strongly magnetized MFTs (β = 0.1) cause out-

flows with velocities 20−50 km s−1. The outflow veloc-

ity is consistent with the velocity of molecular outflows

from YSOs (see reviews Ray et al. (2007) and Frank et al.

(2014)).

The MFTs that formed in the region of the disk with

T = [1000, 1500]K contain dust particles. The rising

MFTs will periodically absorb stellar radiation and re-

emit it in IR. We propose that this process can contribute

to the observational IR-variability found in many YSOs

(see, for example, Flaherty et al. (2016)). Shadowing of

the outer disk regions by periodically rising MFTs can

also appear as IR-variability of the disk.

It should be noted that the specific mechanism of

magnetic field generation is not important from the point

of view of the dynamics of MFTs. Our conclusions can

also be generalized for a dynamo-generated magnetic

field in the disks.

In this work, an isothermal disk was considered.

Several works investigated influence of radiation trans-

fer on the vertical structure of protoplanetary disks (see,

for example,Akimkin et al. (2013) and reference therein).

We will consider the disk’s thermal structure in detail in

our next paper. We will investigate the influence of the

magnetic field of the disk on MFT dynamics. It is also

an interesting task to compare theoretical variability due

to periodically rising MFTs with the IR-periodicity of

YSOs.
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Chrysostomou, A. 2007, Protostars and Planets V, 231

Sakimoto, P. J., & Coroniti, F. V. 1989, ApJ, 342, 49

Samus, N. N., & Li, Y., RAA (Research in Astronomy and

Astrophysics), 2018, 18, 88

Schramkowski, G. P. 1996, A&A, 308, 1013

Semenov, D., Henning, T., Helling, C., Ilgner, M., & Sedlmayr,

E. 2003, A&A, 410, 611

Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337

Spitzer, L. 1978, Physical Processes in the Interstellar Medium

(New York: Wiley-Interscience)

Stella, L., & Rosner, R. 1984, ApJ, 277, 312

Torkelsson, U. 1993, A&A, 274, 675

Turner, N. J., Fromang, S., Gammie, C., et al. 2014, Protostars

and Planets VI, 411

Vasil, G. M., & Brummell, N. H. 2008, ApJ, 686, 709

Wissink, J. G., Hughes, D. W., Matthews, P. C., & Proctor,

M. R. E. 2000, MNRAS, 318, 501


