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Abstract We studied the difference in behavior of total energy and its thermal component during the

radiative cooling of partially ionized hydrogen gas. Our calculations were fulfilled for the conditions in

the atmosphere of a cool star. It is shown that the attenuation of total energy loss does not interfere with

the cooling rate.
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1 INTRODUCTION

Gorbatskii (1961) suggested the model of a radiative

shock wave for solving the problem of bright lines in the

spectra of Mira type stars. He took into account the dif-

ference between the electron temperature Te and the tem-

perature of hydrogen atoms and protons Tai. The mul-

tiple scattering of Lyα radiation was investigated in a

two-level model. Later the problem was considered by

Fox & Wood (1985). They used a ten-level model of hy-

drogen supposing that all plasma components — atoms,

ions, and electrons — have a single value of current tem-

perature. Fadeyev & Gillet (2000, 2004) solved the prob-

lem in a two-temperature approach including a five-level

model. Belova et al. (2014) considered a more realistic

25 level model of a hydrogen atom, according to the

Inglis–Teller equation, in a two-temperature approach.

As follows from the shock wave calculation, for exam-

ple Fadeyev & Gillet (2004) and Belova et al. (2014), the

Lyman and Balmer lines are locked in the cooling region.

The multiple scattering of radiation in the frequencies

of discrete transitions increases the population of excited

states.

In this paper we investigate some features of radia-

tive cooling behind the shock wave by comparing the

cooling rate to total energy loss due to radiative pro-

cesses. In the literature (for example, Kaplan & Pikel’Ner

1979), the cooling function is used to describe the radia-

tive loss. It is useful in “quasi stationary” processes when

ionization and recombination compensate each other at

the current value of slowly varying temperature. In this

case, the radiative loss is equal to the cooling rate. The

other situation takes place behind the shock wave where

non-stationary processes occur. The gas heated by the

viscous jump is being excited and ionized by electron

impact. Both processes effect the electron temperature

without altering the total energy.

2 COOLING, HEATING AND TOTAL ENERGY

LOSS

Let us introduce the total energy loss rate L as the dif-

ference between the radiative loss rate LL and the energy

input rate LI from a photosphere

L = LL − LI, (1)

where

LL =
∑

u>l

A∗

ul (1 + n∗

ω(νlu)) Eluυu +Nex
∑

k

Rk, (2)

and

LI = 4π

[

∑

l<u

Blu · n∗

ω(νlu) · Eluυl +
∑

k

Pkυk

]

. (3)
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Here indices l, u and k are values of principal quantum

number, Elu is the energy gap between levels; Ne is the

electron number density; x is the hydrogen ionization de-

gree, υk = Nk/NH is the relative population in the k-th

state, and NH is the total number density of protons and

hydrogen atoms. The relation between the radiative tran-

sition probability Aul and the Einstein absorption coef-

ficient Blu is Blu = (u/l)2Aul. The photon occupation

number is designated as nω(ν). For photospheric radia-

tion, we use the diluted blackbody approximation

nω(ν) =
W

ehν/kBTph − 1
,

where W is the dilution factor equal to 1/2, Tph is the

temperature of the photosphere and kB is Boltzmann’s

constant. Symbol “∗” means that the escape probability

wlu is taken into account with A∗

ul = Aul · wlu and

nω(νlu)∗ = nω(νlu) · wlu; the summation is over all

u and l such that u > l. The value of wlu is calculated

in the frame of the Biberman–Holstein approximation

(Biberman et al. 1982). The line profile is caused by the

Doppler shift in the rather rarefied atmosphere of a giant

star like Mira Ceti (Ne < 1013 cm−3), hence it follows

that

wlk =
(

2τlk ·

√

π ln τlk

)

−1

,

where τlk is the optical depth at the center of the line.

The energy input by photoionization is equal to

Pk = W · gk

∫

∞

νk

σk(ν)Bν(Tph) dν.

The Kramers’ approximation is used for the photoion-

ization cross section σk; Bν(Tph) is the Plank function.

Factor gk is equal to e−η1 for k = 1 and gk = 1 for k>1,

where ηk is the optical depth at the photoionization edge.

The symbol Rk designates recombination loss per

one electron–proton pair,

Rk = (1 + ηk)−1
×

∫

∞

0

skvhν (1 + nω) f(ε) dε.

hν = ε + χk.

The multiplier before the integral accounts for scattering

at the threshold frequency for photoionization. Here sk

is the recombination cross section calculated from σk,

χk is the ionization potential of the level k, f(ε) is the

Maxwellian distribution function on the electron energy

ε and v is the free electron velocity. Our calculations

(Sect. 5 of this paper) show that the cooling gas is opaque

at the threshold frequency for photoionization from the

ground level and it is transparent for other series.

The cooling rate C is defined as the difference be-

tween the rate of thermal energy loss CC and the rate of

its gain CH

C = CC − CH . (4)

Here CC includes

– electron impact excitation

Cex = Ne ·

∑

l<u

qluυlElu, (5)

– impact ionization

Cion = Ne ·

∑

k

qkχkυk,

– and photorecombination

Crec = NeNp

(

Rk − χk
rk

1 + ηk

)

,

where rk is the recombination coefficient

rk =

∫

∞

0

skv (1 + nω) f(ε) dε.

The heating rate CH is the sum of

– electron impact deactivation

Hdeact = Ne ·

∑

l<u

qulυuElu, (6)

– photoionization

Hphotion =W ×

∑

k

gkυk

×

∫

∞

νk

σk(ν)
Bν(Tph)

hν
(hν − χk) dν,

– and triple recombination

Htriple = N2
e x

∑

k

γkχk.

The impact rates qlu and qk were taken from Johnson

(1972). The triple recombination coefficients γk were

calculated from qk using the principle of detailed balanc-

ing.

3 CASE WHEN ENERGY LOSS IS EQUAL TO

HEATING RATE

Let us show that energy loss is equal to the cooling rate

in stationary conditions. Consider a simplified case when

the effects of free-bound processes and photospheric ra-

diation are omitted (W = 0, Rk = rk = Cion =
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Htriple = 0). υ
(s)
k is designed as the solution of a sta-

tionary system of equations
[

∑

l<k

(A∗

kl + qklNe) +
∑

u>k

qkuNe

]

υ
(s)
k

−

∑

u>k

(A∗

uk + qukNe) υ(s)
u

−

∑

l<k

qlkNeυ
(s)
l = 0.

(7)

The balance Equation (7) causes the identical one

L
(s)
L = C(s)

ex − C
(s)
deact. (8)

It means that the radiative loss is equal to the difference

between the excitation cooling and the deactivation heat-

ing rates. There is no question here of the relationship

between the loss of total energy and its thermal compo-

nent, since they are equal to each other.

The situation is more varied when partially ionized

hydrogen is irradiating behind a shock wave. For exam-

ple, the inequality

L<C (9)

takes place, as follows from our direct calculations

(Belova et al. 2014), for a shock velocity less than

100 km s−1. This problem is investigated in detail.

4 NON-STATIONARY COOLING

CALCULATIONS

Behind the shock front, the hydrogen ionization degree

and the relative population of discrete levels are non-

stationary. They can be found by solving the system of

equations:

dυk

dt
= −

[

qkNe + pk

+
∑

k<u

(qkuNe + Bku · n∗

ω(νku))

+
∑

k>l

(A∗

kl (1 + n∗

ω(νlk)) + qklNe)

]

υk

+ (rk + γkNe)Nex

+
∑

u>k

(A∗

uk (1 + n∗

ω(νku)) + qukNe) υu

+
∑

l<k

(Blk · n∗

ω(νlk) + qlkNe) υl,

(10)

where pk is the photoionization rate

pk = 4πW · gk

∫

∞

νk

Bν(Tph)

hν
σk(ν) dν.

The relative populations υk and x obey the normalization

condition
∑

k

υk + x = 1. (11)

The equations for the heat energy and the electron tem-

perature were given in Belova et al. (2014). The preshock

temperature T0 is assumed to equal 3200 K, the gas num-

ber density N0 is 1012 cm−3, the ionization degree is de-

termined by the Saha equation at temperature T0 and the

shock velocity u0 is 50 cm s−1. The equations for elec-

tron temperature and thermal energy were solved by the

explicit Euler scheme. The system of Equations (10)–

(11) is solved using the implicit Eulerian scheme, while

the iterations are performed using the Newton method.

5 EFFECT OF SCATTERING IN SPECTRAL

LINES

The solid lines in Figure 1 represent the radiation loss

rate L and the cooling rate C behind the shock front.

The dashed curve describes the evolution of the elec-

tron temperature Te over a given time span. It is clearly

seen that the cooling rate C exceeds the radiative loss

rate L. At first, the difference is small, then it grows with

time and reaches one order of magnitude at the moment

of maximum electron temperature. The significant dis-

crepancy between C and L is maintained during the time

of the bulk of radiative energy loss.

Figure 2 illustrates the effect of scattering on the total

energy loss.

This shows the dependence on time of optical depths

in Lyα, Hα, Hβ, Pα and at the Lyman and Balmer limits.

The Lyman lines and continuum radiation are locked al-

most immediately after the front passes. The shocked gas

remains transparent for a long time in the Balmer lines.

At the late stage of radiative energy loss, the scattering in

lines of this series becomes significant.

The effect of electron impact ionization and deac-

tivation on emission in lines is illustrated by the rela-

tion Ωul

Ωul =
(qul + qu)Ne

A∗

ul

(12)

which we call the “attenuation factor.” The value of

1/Ωul gives the approximate evaluation of the escape

probability at Ωul>1. The escape probability is close to

one at Ωul<1.

Figure 3 represents Ωul as a function of time for

Lyα, Hα, Hβ and Pα. It is plainly seen that the energy
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Fig. 1 Radiative energy loss rate (L) and cooling rate (C); the dashed line shows the time dependence of Te.
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Fig. 2 Optical depths in Lyα, Hα, Hβ, Pα and at the Lyman and Balmer limits as functions of time t.

loss in Lyα is reduced approximately 100 times com-

pared to the moment of maximum electron temperature.

The radiation energy is transformed into internal (qu)

and thermal (qul) gas energy. In the case of transparent

gas, the radiative loss is defined mainly by Lyα emis-

sion. Hence, the attenuation of energy loss is close to the

one of Lyα; it is obvious when comparing the L-line in

Figure 1 with the Lyα-line in Figure 3.

The input of different spectral series and photore-

combination in the radiative loss L is shown in Figure 4:

Lyman Ly, Balmer H, Paschen P, and Brackett Br; letter

Σ designates the input of all others spectral series from

Pfund (l = 5) till l = 14.

It is clearly seen that the Balmer and Paschen lines

determine radiative loss. The Brackett lines are about

an order of magnitude weaker. The total input of higher

series is even smaller. The Lyman lines, which are the

strongest lines in the spectra of many cosmic objects, are

weaker here than the Balmer and Paschen ones by more

than two orders of magnitude.

6 GAS COOLING WHEN LINE RADIATION IS

LOCKED

We introduce the parameter κ, which is equal to the ratio

of the heating rate by deactivation to the cooling one by

excitation

κ =
Hdeact

Cex
, (13)

which describes the return of thermal energy. The value

of κ differs less than 5% from the full ratio CH/CC. If

we fix the lower level l and sum Equations (5) and (6)

over all upper levels u, we obtain the value κl for the
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Fig. 3 Solid lines represent the dependence of Ω on time for Lyα, Hα, Hβ and Pα; dashed curve is the evolution of electron

temperature Te; the dotted one is the electron number density Ne.
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Fig. 4 The input of different spectral series of hydrogen atom into radiative energy losses L: Ly — Lyman, H — Balmer, P —

Paschen, Br — Brackett, Σ — the total input of other series; R is the input of photorecombination.
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Fig. 5 The evolution of deactivation by electron impact: η — total effect, ηl — input of series from Ly to Br.

corresponding spectral series

κl =

∑

u>l

qulυuElu

υl

∑

u>l

qluElu
. (14)

At small values of κ and κl, the logarithmic representa-

tion is useful

η = lg(1 − κ), ηl = lg(1 − κl). (15)

The values of η and ηl are illustrated in Figure 5.
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Fig. 6 The effect of ionization on cooling.

At the top of the figure is the dashed line represent-

ing η, and in its lower part are the values of ηl for the

spectral series from Lyman (l = 1) till Brackett (l = 4).

The effectiveness of the return of thermal energy due

to deactivation is small during the time span from pass-

ing the front till the electron temperature maximum at

t < 0.892 s. From this moment, κ begins to grow up to

90%. Thus, the total loss of C is at least 10% of Cex.

It was previously shown that the radiative energy loss is

reduced approximately 100 times. Hence, the value of L

must be lower than C by about one order of magnitude,

as is seen in Figure 1. In other words, the total energy

loss is weakened to a greater extent than the cooling rate.

More detailed information showing the behavior of

individual spectral series is presented in the lower part

of Figure 5. In the first three spectral series, deactivation

is insignificant, but its effect increases monotonically at

higher values of l.

The decrease of ten times by C in Figure 5 is con-

nected with the value of the ratio Cion/Hdeact, which is

shown in Figure 6. This ratio tends to 0.1 which means

that only 10% of the thermal energy is converted into in-

ternal energy.

7 CONCLUSIONS

It is necessary to take the ionization from excited states

into account when calculating the radiative cooling be-

hind a shock wave propagating through partially ionized

hydrogen gas.

The radiation loss rate during non-stationary cool-

ing can be significantly less than the cooling rate. The

main cause is ionization by electron impact from excited

states. The physical meaning is that ionization by elec-

tron impact does not affect the total energy of gas: the

thermal energy of electrons is pumped to the internal en-

ergy of hydrogen atoms. As a result, the thermal energy

decreases rapidly. At the same time the total energy loss,

which is due only to the radiation, may be small in the

case of locked radiation. The contents of our paper are

reviewed in Samus & Li (2018).

References

Belova, O. M., Bychkov, K. V., Bychkov, E. S. & Morchenko,

E. S. 2014, Astronomy Reports, 91, 745 (in Russian)

Biberman, L. M., Vorob ev, V. S., & Yakubov, I.

T., Kinetika Neravnovesnoi Nizkotemperaturnoi Plazmy,

Moscow: Nauka, 1982. Translated under the title Kinetics

of Nonequilibrium Low-Temperature Plasma (New York:

Plenum) 1987, 2

Fadeyev, Y. A., & Gillet, D. 2000, A&A, 354, 349

Fadeyev, Y. A., & Gillet, D. 2004, A&A, 420, 423

Fox, M. W., & Wood, P. R. 1985, ApJ, 297, 455

Gorbatskii, V. G. 1961, Soviet Ast., 5, 192

Johnson, L. C. 1972, ApJ, 174, 227

Kaplan, S. A., & Pikel’Ner, S. B. 1979, Fizika Mezhzvezdnoi

Sredy (Moskva: Nauka)

Samus, N. N., & Li, Y., RAA (Research in Astronomy and

Astrophysics), 2018, 18, 88


