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Abstract In this work we present a stellar structure model from the f(R)-gravity point of view capa-

ble of describing some classes of stars (white dwarfs, brown dwarfs, neutron stars, red giants and the

Sun). This model is based on f(R)-gravity field equations for f(R) = R + f2R2, hydrostatic equi-

librium equation and a polytropic equation of state. We compare the results obtained with those found

by Newtonian theory. It has been observed that in these systems, where high curvature regimes emerge,

stellar structure equations undergo modifications. Despite the simplicity of this model, the results are

satisfactory. The estimated values of pressure, density and temperature of the stars are within those de-

termined by observations. This f(R)-gravity model has proved to be necessary to describe stars with

strong fields such as white dwarfs, neutron stars and brown dwarfs, while stars with weaker fields, such

as red giants and the Sun, are best described by Newtonian theory.

Key words: cosmology: theory — stars: general — massive — brown dwarfs — white dwarfs —

neutron

1 INTRODUCTION

f(R)-gravity is a class of theories that represent an ap-

proach to gravitational interaction. In this context, gen-

eral relativity (GR) has to be extended in order to solve

several issues. This approach considers modifications of

the Einstein-Hilbert action in order to include higher-

order curvature invariants with respect to the Ricci scalar

(Schmidt 2007; Sotiriou & Faraoni 2010). From an as-

trophysical and cosmological point of view, the objec-

tive is to explain phenomena such as dark energy and

dark matter under a geometric pattern (Capozziello et al.

2004, 2005, 2007; Martins & Salucci 2007; Böhmer et al.

2008; Nojiri & Odintsov 2007a; Battye et al. 2016; Hu

& Sawicki 2007; Tsujikawa 2010) with the possibility

that gravitational interaction depends on scales. In this

sense, in principle, these theories do not require the in-

troduction of new particles and preserve all successful

results from Einstein’s theory, based on the same funda-

mental physical principles. It is also known that some

f(R) gravity models can pass tests performed in the

weak-field of the solar system (Hu & Sawicki 2007). In

addition, a considerable number of viable f(R) models

are known, among which we highlight Nojiri & Odintsov

(2003, 2007b), Faulkner et al. (2007), Faraoni (2006) and

Cognola et al. (2008). Furthermore, no extended gravity

model, until this moment, can handle all phenomenol-

ogy ranging from the quantum scale to the cosmologi-

cal scale (Nojiri & Odintsov 2011). Another problem is

that the description of the f(R) theory is mostly equiv-

alent to the description associated with the hypothesis of

dark components. This interpretation arises from the fact

that the degrees of freedom present in the f(R) theory

can be expressed by an effective energy-momentum ten-

sor able to give rise to dark matter effects (Capozziello

et al. 2012; Sotiriou & Faraoni 2010). From this picture

emerges the necessity of observations capable of preserv-

ing or excluding one of these theories.

In this framework, several works related to relativis-

tic stars considering extended gravity theories have been

developed. In Cooney et al. (2010), using the method

of perturbative constraints and corrections of the form

Rn+1, they showed that the predicted mass-radius re-
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lation for neutron stars differs from that calculated in

GR. In Capozziello et al. (2016), the mass-radius di-

agram for a static neutron star was obtained in f(R)

gravity for two functions: f(R) = R + αR2(1 + γR)

and f(R) = R1+ǫ. New terms related to curvature

corrections emerged and modified the evolution of the

mass-radius relation. In Astashenok et al. (2017), realis-

tic models of relativistic stars in f(R) = R+αR2 grav-

ity have been explored. In this context, the authors pre-

sented a study on the existence of neutron and quark stars

for various α with no intermediate approximation in the

system of equations. On the other hand, in Astashenok

et al. (2015b), quark star models with realistic equation

of state in nonperturbative f(R) gravity have been con-

sidered. The authors showed that it is possible to discrim-

inate modified theories of gravity from GR due to the

gravitational redshift of the thermal spectrum emerging

from the surface of the star. In Arapoğlu et al. (2016),

a stellar structure model in f(R) = R + αR2 theory

was considered, using the method of matched asymp-

totic expansion to handle the higher order derivatives in

field equations. Solutions were found for uniform density

stars matching the Schwarzschild solution outside the

star. The mass-radius relations were obtained, in which

the dependence of maximum mass on α could be ob-

served. In Astashenok et al. (2013), neutron star mod-

els in perturbative f(R) have been considered with re-

alistic equations of state. The mass-radius relations for

f(R) = R + βR
[

exp(−R

R0
) − 1

]

and R2 models with

logarithmic and cubic corrections were obtained. In the

case of cubic corrections, stable star configurations at

high central density were obtained. Such an effect could

give rise to more compact stars than in GR. In Alavirad

& Weller (2013), considering a logarithmic f(R) theory,

the authors showed that the model exhibits a chameleon

effect which completely eliminates the effect of the mod-

ification on scale exceeding a few radii, but close to the

surface of the neutron star, the deviation from GR can

significantly affect the surface redshift. In Astashenok

et al. (2014), the authors showed that for a simple hy-

peron equation of state it is possible to obtain the maxi-

mal neutron star mass (which satisfies the recent observa-

tional data) in higher-derivative models with power-law

terms as f(R) = R + γR2 + βR3. In Astashenok et al.

(2015a), the authors studied neutron stars with strong

magnetic fields. They took into account models derived

from f(R) and f(G) theories where functions of the

Ricci curvature invariantR and the Gauss-Bonnet invari-

ant G were respectively considered. In this model, the

maximal mass of a neutron star had a considerable in-

crease in f(R) with cubic corrections.

In the model discussed in this work we propose

second-order corrections in the Ricci scalar adopting

f(R) = R + f2R2. Such orders in the correction are

an extension of GR and are particularly interesting in

cosmology, since they allow the construction of a self-

consistent inflationary model (Starobinsky 1980). We

present the results obtained for a stellar model in hydro-

static equilibrium according to the f(R)-gravity theory.

The goal is to control precisely how the results deviate

from those obtained through GR in order to see how

strong gravity regimes affect the pressure, temperature

and density. We also compare these results with those

related to the Newtonian theory, already known in the lit-

erature (Chandrasekhar 1957).

In our model we consider a polytropic equation of

state, since this equation plays an important role in stellar

structure models. This equation correctly represents the

stellar gas behavior and, consequently, solves the funda-

mental problem of these structures together with the hy-

drostatic equilibrium equation. The motivation to employ

the polytropic equation in the study of stellar structure is

the simple nature of the polytropic structure and its cor-

respondence with known classes of stars. Such simplic-

ity provides a basis for the incorporation of additional

effects (such as rotation), and thus an insight into the na-

ture of the effects on true stars (Horedt 2004).

The interest of this model, in the present context, is

manifested in the fact that, due to the expressive gravita-

tional field, the interiors of stars can be seen as appropri-

ate places to test alternative theories of gravity. In these

regions, high curvature regimes can emerge and modify

the stellar structure. In this way, we aim to show that

the pressure, temperature and density can be consistently

reached by extended theories of gravity, such as f(R)-

gravity for f(R) = R + f2R2 and how the expected

changes occur in the values of these quantities.

This paper is organized as follows: In Section 2 we

derive the modified Poisson and Lane-Emden equations

through the Newtonian limit of f(R)-gravity. In Section

3 we obtain the modified stellar structure equations. In

Section 4 we present the numerical solutions for pres-

sure, temperature and density obtained for neutron stars,

brown dwarfs, white dwarfs, red giants and the Sun, and

we compare those with results obtained by Newtonian

theory. Finally, we draw our conclusions in Section 5. In

this work we will denote R as the radius of the star and

R as the Ricci scalar.
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2 THE LANE-EMDEN EQUATION FOR A

MODEL DESCRIBED BY f(R) THEORY

Considering a spherically symmetric self-gravitating sys-

tem in equilibrium, we adopt the hydrostatic equilibrium

equation presented below

dφ

dr
=

1

ρ

dp

dr
, (1)

where ρ(r) is the matter density, p is the pressure and φ

is the gravitational potential. Equation (1) is a Newtonian

limit of the equation resulting from conservation of

the stress-energy tensor for a perfect fluid in hydro-

static equilibrium. It can be also achieved through the

Newtonian limit of the Tolman-Oppeheimmer-Volkoff

equation (the equation employed to describe a spheri-

cally symmetric astrophysical system in equilibrium in

GR (Rezzolla & Zanotti 2013; Landau & Lifshitz 1987)).

We assume a polytropic equation of state

p = kργ , (2)

where k is the polytropic constant and γ is the polytropic

exponent. Then we insert Equation (2) into Equation (1),

obtaining

dφ

dr
= γkργ−2 dρ

dr
. (3)

For γ 6= 1, integration of the above equation results in

ρ =
(γ − 1

γk

)
1

γ−1

φ
1

γ−1 =

[

φ

(n + 1)k

]n

, (4)

where the chosen integration constant is φ = 0 on

the surface (ρ = 0). The constant n is known as the

polytropic index and is defined as n = 1
γ−1 . Through

Equations (2) and (4), we obtain the following expres-

sion for the pressure

p =
ρφ

(n + 1)
. (5)

To describe a stellar structure model by f(R)-

gravity (Capozziello & Faraoni 2011; Capozziello & de

Laurentis 2011) we adopt the action represented below

S =

∫

d4x
√
−g
[

f(R) + χLm

]

, (6)

where the Ricci scalar is only a function of metric tensor

R ≡ R(g), f(R) = R+f2R2 and χ = 8πG, with G de-

noting the gravitational constant. It is worth mentioning

that we adopt the metric (−, +, +, +) and natural units.

By varying the action according to metric formalism,

we obtain the modified Einstein field equation in f(R)

theory

f ′(R)Rµν − 1

2
gµνf(R) + (gµν� −∇µ∇ν)f ′(R)

= −χTµν,

(7)

where f ′(R) = df(R)
dR

and Tµν is the energy-momentum

tensor.

The trace of the above field equation reads

f ′(R)R− 2f(R) + 3�f ′(R) = −χT σ
σ . (8)

In this model we will address the situation where parti-

cles in the system move at a very low speed (compared

to the speed of light) and the gravitational field which

they are subjected to is considered weak and static. Such

requirements refer to the Newtonian limit (Weinberg

1972). In this way, writing Equations (7) and (8) in this

limit, we have

R(2)
00 +

R(2)

2
+

1

3m2
∇2R(2) = −χρ, (9)

(

1 +
1

m2
∇2
)

R(2) = −χρ, (10)

where m2 = − 1
6f2

. Considering (1 + 1
m2∇2) as an op-

erator, we can pass this term to the right-hand side of the

equation and expand it in a Taylor series to the order of

m−2. Hence we rewrite Equation (10) as

R(2) ≈ −χ
(

1 − 1

m2
∇2
)

ρ. (11)

It is important to emphasize here that the validity of this

equation is assured for all the cases studied in this paper,

since the term 1
m2∇2 should always be small. This fact

can be understood by observing that m is directly related

to the coefficient f2 and that it must be small since it is

a correction of GR. There are some works where bounds

for this coefficient are estimated and in all cases small

values are presented for this correction coefficient (Berry

& Gair 2011; Aviles et al. 2013).

Substituting the Newtonian limit for the temporal

component of the Ricci tensor given by R(2)
00 = ∇2φ

(Weinberg 1972) and inserting Equations (4) and (11)

in (9), we obtain in spherical coordinates the following

equation

∂2φ

∂r2
+

2

r

∂φ

∂r
+

4πG

3m2[(n + 1)k]n
∂2φn

∂r2

+
8πG

3m2[(n + 1)k]n
1

r

∂φn

∂r

= − 4πG

[(n + 1)k]n
φn.

(12)
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By defining dimensionless variables

z =
r

ξ
, ω(z) =

φ

φc

=
( ρ

ρc

)
1
n

, (13)

where the index c refers to the center of the star and

ξ =

√

[(n + 1)k]n

4πG
φ

(1−n)
c , (14)

we obtain the Lane-Emden equation for this f(R)-

gravity model

d2ω

dz2
+

2

z

dω

dz
+ ωn +

1

3m2ξ2

d2ωn

dz2

+
2

3m2ξ2

1

z

dωn

dz
= 0.

(15)

Making m → ∞, i.e. f2 → 0, we recover the Lane-

Emden equation for the model described by Newtonian

gravity (see Capozziello et al. 2011). Through this equa-

tion it is possible to determine the physical quantities of

the system such as pressure, density and temperature.

Therefore, such models allow a simple description of

stars and planets.

It is worth mentioning that the modified Lane-

Emden equation was initially obtained in Capozziello

et al. (2011) and subsequently in Farinelli et al. (2014).

In the analysis presented in these cited articles and also in

this work, the field equations for f(R) gravity (in metric

formalism), the polytropic equation and the hydrostatic

condition, in the Newtonian limit, were considered as a

system of equations. The difference lies in the fact that

in Capozziello et al. (2011) and Farinelli et al. (2014),

the modified Lane-Emden equation results in an integro-

differential equation while in this work, it results only in

a second-order differential equation. This happens due to

the approach applied in Equation (10). Due to this ap-

proximation, we were able to write the modified Lane-

Emden equation as shown in (15). However, we also ver-

ified that both cases present approximately the same so-

lutions.

3 THE STELLAR STRUCTURE EQUATIONS

ACCORDING TO f(R)-GRAVITY

Through the solution of the Lane-Emden equation we

can write expressions for the physical quantities of stel-

lar structure such as radius, mass, temperature, matter

density and pressure. Certain values of n provide a de-

scription for a class of stars, for example, for n = 1 the

solution represents a neutron star, for n = 1.5 we have

the closest solution to completely convective stars such

as red giants and brown dwarfs, and for n = 3 the so-

lution corresponds to a fully radiative star such as the

Sun and stars with degenerate nuclei like white dwarfs

(Chandrasekhar 1957; Hansen et al. 2004). Searching for

a star description in this work, we analyze solutions only

for the following values of n: 1, 1.5 and 3.

Through Equations (13) and (14), we obtain the ra-

dius R = ξz(n) of the star given by

R =

√

[(n + 1)k]n

4πG
φ

(1−n)
c z(n), (16)

where k is the polytropic constant and z(n) is the first

zero of the solution. Since the boundary of the star is in-

dicated by ω = 0, i.e. where z = z(n), in Newtonian the-

ory we have radius of the star R and mass M of the star

defined through the gravitational potential as (Eddington

1926)

R = (r)ω=0 , GM =
(

− r2 dφ

dr

)

ω=0
. (17)

Through the dimensionless variables, we write

R′ = (z)ω=0 = z(n) , M ′ =
(

− z2 dω

dz

)

ω=0
. (18)

Therefore, the known data will be the radius R and mass

M (see Eddington 1926).

In the same way, in the f(R) theory, the radius and

mass of the star will be the same (they are data), so we

again define

R = (r)ω=0, GM =
(

− r2 dφ

dr

)

ω=0
. (19)

In dimensionless variables we write Equation (18) with

corrections, obtaining

R′
f(R) = (z)ω=0 = z(n), (20)

M ′
f(R) =

[

(

− z2 dω

dz

)

+
1

3m2ξ2

(

− z2 dωn

dz

)

]

ω=0

.(21)

Thus R′
f(R) and M ′

f(R) are corrections to R′ and M ′ due

to modified gravity, and R and M are the known data.

Therefore, in the f(R)-gravity model we can write

R

R′
f(R)

=

√

[(n + 1)k]n

4πG
φ

(1−n)
c . (22)

Note that in this case we have additional correction terms

due to the f(R)-gravity. It is also important to note that

the values of z(n) for the Newtonian model and f(R)-

gravity model described by (18) and (20) differ from each

other since they were derived from different solutions of
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the Lane-Emden equation (standard equation and modi-

fied equation for the f(R) theory).

The mass M(z) interior to z is given by

(Chandrasekhar 1957)

M(z) =

∫ ξz

0

4πρr2dr = 4πξ3ρc

∫ z

0

z2ωndz. (23)

Using the Lane-Emden equation (15), we integrate over

the entire star, obtaining

M = 4πξ3ρc

[

(

− z2 dω

dz

)

+
1

3m2ξ2

(

− z2 dωn

dz

)

]

z(n)

.(24)

Substituting expression (14) that defines ξ and expression

(4), we have

M = 4π

{

[(n + 1)k]n

4πG
φ(1−n)

c

}
3
2

× φn
c

[(n + 1)k]n

×
[

(

− z2 dω

dz

)

+
1

3m2ξ2

(

− z2 dωn

dz

)

]

z(n)

.

(25)

Here we define a parameter α as

α = mξ = m

√

[(n + 1)k]n

4πG
φ

(1−n)
c . (26)

Actually α is the free parameter of this model related

to correction f2 from modified gravity theory. From this

definition, we rewrite Equation (25) as

GM =

{

[(n + 1)k]n

4πG

}
1
2

× φ
(3−n)

2
c

×
[

(

− z2 dω

dz

)

+
1

3α2

(

− z2 dωn

dz

)

]

z(n)

.

(27)

According to (21), we can rewrite (27) as

GM

M ′
f(R)

=

{

[(n + 1)k]n

4πG

}
1
2

φ
(3−n)

2
c . (28)

Here M is the mass data of the star and M ′
f(R) is the

correction calculated from the Lane-Emden solution.

Central condensation is defined as the ratio between

the central density of the configuration and its mean den-

sity. Thus through the mean density of a star with radius

R = ξz(n) and expression (24) for mass, we obtain

ρc

ρ̄
=

(

− 3

z

dω

dz
− 1

α2

1

z

dωn

dz

)−1

z(n)

. (29)

In order to write φc as a function of mass and radius, we

multiply (22) and (28), obtaining

GM

M ′
f(R)

R′
f(R)

R
= φc. (30)

Thus, by replacing (29) and (30) in (5) in the central re-

gion (where z = 0) and through the definition of ω by

(13) and the polytropic equation of state (2), we find an

expression for the pressure

p =
ρ̄

(n + 1)

GM

M ′
f(R)

R′
f(R)

R

×
(

− 3

z

dω

dz
− 1

α2

1

z

dωn

dz

)−1

z(n)

ω(n+1).

(31)

The central pressure pc is defined for ω = 1.

To determine the central temperature of the configu-

rations, we consider the ideal gas law and Equation (13),

obtaining

T =
pcµmµ

ρckB

ω, (32)

where kB is the Boltzmann constant, µ is the atomic

mass and mµ is the atomic mass unit. Using (5) and (30),

we write (32) as

T =
Gµmµ

(n + 1)kB

M

M ′
f(R)

R′
f(R)

R
ω, (33)

from which we define the central temperature Tc when

ω = 1. It is observed here that for α → ∞, i.e.

m → ∞ and f2 → 0 (keeping ξ constant), we recover

stellar structure equations for the Newtonian model (see

Chandrasekhar 1957; Eddington 1926).

4 THE POLYTROPIC SOLUTIONS

In this section, we obtain polytropic solutions for the stel-

lar structure model according to Newtonian theory and

f(R)-gravity theory for the following classes of stars:

neutron stars, brown dwarfs, white dwarfs, red giants and

the Sun. We present the results for pressure, temperature

and density inside the star according to the value of n and

the value of α which is related to f2.

The curves that describe the behavior of the pres-

sure inside the stars were obtained through expression

(31) for the f(R) theory and the same expressions with

f2 = 0 for the Newtonian model (see Chandrasekhar

1957; Eddington 1926). We numerically solve the Lane-

Emden equation for the respective cases in order to ob-

tain ω as a function of z, consequently p as a function of
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z, and finally, as a function of the distance r from center

to surface (where r = R) of the star. It is worth noting

that in order to compare the curves, for all cases, we have

normalized the radius.

To represent a neutron star in the solution n = 1,

we choose a star, with mass M = 2.01 M⊙ and radius

R = 1.87 × 10−5 R⊙, as PSR J0348+0432 (Antoniadis

et al. 2013). In the same way, we obtain the pressure val-

ues for a star described by n = 1.5 with mass M =

0.053 M⊙ and radius R = 0.1 R⊙, exemplified by brown

dwarf Teide 1 (Rebolo et al. 1996). Similarly, for n = 1.5

we calculate the pressure for a red giant star with mass

M = 1.5 M⊙ (Ohnaka et al. 2013; Tsuji 2008) and ra-

dius R = 44.2 R⊙ (Richichi & Roccatagliata 2005), rep-

resented by Aldebaran. For n = 3, we obtain the pressure

in a white dwarf with mass M = 1.5 M⊙ (Teerikorpi

et al. 2009) and radius R = 0.008 R⊙ (Holberg et al.

1998), exemplified by Sirius B, and also use the Sun.

Below we have curves with pressure values at the cen-

ter and the surface of the stars for some values of α.

The chosen values for α in this work were made af-

ter many computational tests. We verified that for val-

ues greater than 5, the Newtonian theory was always re-

covered for all cases studied. Thus we set an upper limit

at α = 5 and we investigated what would be the val-

ues of α which provide results (for pressure, temperature

and density) closest to the observational data for the cho-

sen stars. According to these tests for the chosen stars,

in general, the values which provide results closest to

the observational data were α = 0.5, 1, 5. It is also

important to explain that it is not possible to calculate

the surface pressure of the star exactly where ω = 0. In

this case, according to Equation (31), when ω → 0, we

have p → 0. So in order to solve this problem, we make

an approximation. We choose a point near the surface

(point where ω is close to zero, but not zero) to calculate

the surface pressure. This does not cause a problem be-

cause, as was verified in computational tests, the values

obtained for the pressure in this region near the surface

do not vary much (small variations are only in decimal

digits). Therefore, we consider this approximation to ob-

tain pressure on the surface. The same applies to surface

temperature and density.

According to Zhao (2015), the estimated core pres-

sure in a neutron star is 5.01×1034 Pa, therefore as can be

seen through Figure 1(a) the central pressure results that

are closest to this estimated value are those correspond-

ing to the Newtonian model and f(R)-gravity model

with α = 1 and α = 5.

In the case of a brown dwarf, we verify through

Figure 1(d) that central pressure values for α = 1, α = 5

and the Newtonian model have the same order of mag-

nitude as the expected value for this kind of star, about

1016 Pa according to Auddy et al. (2016). As can be seen

in Figure 1(g), all values obtained for the core pressure

in the reported red giant have the same order of magni-

tude as expected for a star in that category, approximately

108 Pa. For a white dwarf, analyzing Figure 1(j) we con-

clude that among the values of core pressure found, those

that best fit the estimated value (approximately 4.95 ×
1024 Pa in accordance with Teerikorpi et al. (2009)) are

obtained for the Newtonian model and f(R)-gravity with

α = 5. Through Figure 1(m) we observe that, for the

Newtonian model and α = 5, we find the best results for

pressure in the Sun’s core, since according to Williams

(2016) the estimated value is 2.477 × 1016 Pa.

In order to analyze the behavior of the temperature

in the same stars, we use Equation (33) for the f(R)-

gravity model and the version of these equations for the

Newtonian theory (Chandrasekhar 1957). It should be re-

membered that each type of star has an estimated value

for atomic mass µ according to its composition (see ta-

ble 1). Also, in order to obtain the temperature as a

function of R (normalized), we have solved the Lane-

Emden equation with the temperature equations men-

tioned above. Likewise, the surface temperature was cal-

culated considering an ω value close to it. According to

Hong et al. (2016), the expected value for the central

temperature of a neutron star is 1.50 × 1011 K, therefore

observing Figure 1(b) we conclude that the results clos-

est to this value are obtained for α = 0.5 and α = 1.

Unfortunately, satisfactory data for surface temperature

of this star were not found in the literature. As can be

seen in Figure 1(e), the results that best fit the expected

central and surface temperature values for this brown

dwarf correspond to α = 1, since the surface tempera-

ture is 2700 K and the core temperature is 2.7 × 106 K,

according to Auddy et al. (2016).

As can be seen in Figure 1(h), the central temper-

atures in this red giant have the same order of mag-

nitude for all α values considered. However, an exact

value for temperature in the center of a star like that

is not known, since data found in the literature diverge.

Therefore it was not possible to confront the values ob-

tained for the models portrayed in this work in a secure

way. The surface temperature in this red giant, according

to its spectral classification, is about 3.8 × 103 K (Gray

et al. 2006). Thus we find that the best values are those
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Fig. 1 Behavior of pressure, temperature and density within some classes of stars (neutron star, brown dwarf, red giant, white dwarf

and the Sun) described by Newtonian and f(R)-gravity stellar structure models. The f(R)-gravity model adopted here considers

f(R) = R+ f2R
2. The curves in black represent the Newtonian model results, the dot-dashed curves represent the f(R)-gravity

model results for α = 0.5, the blue curves are for α = 1 and the red curves are for α = 5.

related to α = 5 and the Newtonian model. In the case

of a white dwarf, we verify from Figure 1(k) that all val-

ues for the central temperature are one or two orders of

magnitude higher than what is expected for this star. In

compliance with Teerikorpi et al. (2009), the estimated

surface temperature is 2.52 × 104 K and estimated cen-

tral temperature is 2.20× 107 K. For the surface temper-

ature, the value relative to α = 1 generates the best re-

sult. According to Williams (2016), the estimated surface

temperature of the Sun is 5780 K and its central tempera-

ture is 1.571×107 K. Thus, as can be seen in Figure 1(n),

among the values obtained for temperature in the Sun’s

core, those that best fit the data are related to α = 5 and

the Newtonian model. For the surface temperature, all

values are compatible with the data.

To determine the behavior of matter density in the

stellar interior, we solve Equation (29) considering the

mean density calculated through the mass M and the ra-

dius R of the star. Undoubtedly it is expected in all sit-

uations that the density will decrease as it approaches
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Table 1 Estimates of atomic mass and composition (mass frac-

tion) for each type of star. The mass fraction of hydrogen is

represented by X, the mass fraction of helium by Y and the

heavy metals by Z (Wilking et al. 1999; Cercignani & Kremer

2002; Asplund et al. 2009).

Star Composition (Mass Fraction) µ

Neutron Star Neutrons 1.00

Brown Dwarf X = 0.70, Y = 0.28, Z = 0.02 0.62

White Dwarf X = 0, Y = 0, Z = 1 2.00

Red Giant X = 0, Y = 0.98, Z = 0.02 1.34

Sun X = 0.73, Y = 0.25, Z = 0.02 0.60

the surface as observed with temperature and pressure.

The density at the surface can be obtained considering a

point near the interface of the star that is connected with

the outside where ω vanishes, according to the bound-

ary conditions adopted. For a neutron star (see Fig. 1(c)),

we have the case where all the curves coincide, so the

values obtained for the central and superficial density do

not present considerable differences. Therefore, in this

situation, all values of central density are close to the

reported value for a neutron star with the aspects de-

scribed above. According to Zhao (2015) the expected

value of the core density is 1.50 × 1018 kg m−3. In the

case of a brown dwarf, the central density is estimated

between 103 kg m−3 and 106 kg m−3. Therefore, through

Figure 1(f), we conclude that the core density result-

ing from the models discussed in this work presents

values within the order of magnitude expected for a

brown dwarf with the characteristics mentioned previ-

ously (Burrows & Liebert 1993; Rebolo et al. 1996). For

red giants, the core densities, shown in Figure 1(i), have

the same order of magnitude. Again, data found in the lit-

erature for this star are not congruent, which makes it dif-

ficult to compare with the results obtained. For the cen-

tral density of a white dwarf, according to Figure 1(l), the

best results are those found for α = 0.5 and α = 1, since

the estimated value is 3.30 × 1010 kg m−3, in compli-

ance with Teerikorpi et al. (2009). Observing Figure 1(o),

we verify that the central densities obtained for the Sun

present values with an order of magnitude lower than

that assured by the data: 1.622 × 105 kg m−3 according

to Williams (2016), including the Newtonian polytropic

model, which is considered as a reasonable model for de-

scribing the Sun.

Through Figure 1, it has been found that in all

cases, curves show a more rapid decrease as α de-

creases. Therefore, the more the model f(R) departs

from Newtonian theory, the lower the predicted pressure,

temperature and density in the center of the star.

5 CONCLUSIONS

In this work we analyzed stellar structure from the point

of view of f(R)-gravity. The reason that led us to adopt

such an approach is the fact that higher-order curva-

ture corrections can emerge in intense gravitational field

regimes, as occurs within stars. In this scheme, it is rea-

sonable to assume that the emergence of these correc-

tions may generate effects on pressure, temperature and

density, for example. Thus, in the stellar structure model

equations, new terms related to the curvature correc-

tions lead to different behaviors of these magnitudes. It is

worth mentioning that since these quadratic terms arise in

strong field regimes, in the solar system scale we have the

weak field scheme where only linear terms of the Ricci

scalar R are relevant.

In order to perform the analysis of stellar structure

under the focus of this extended theory of gravity, we

started with an action that represents the f(R)-gravity

models, adopting as function f(R) = R+f2R2, the hy-

drostatic equilibrium equation and the polytropic equa-

tion of state. These equations are employed in the non-

relativistic approximation, making the model a simple

description of the complex behavior of these stellar ob-

ject classes. The goal is to illustrate the effects of the

f(R)-gravity theory adopted in this work on an easily

understandable model. According to this assumption, we

numerically solved the equations responsible for stellar

structure, evidencing the role that the corrections in the

curvature play in these equations. In this way, the ex-

pressions for pressure, density and temperature depend

strictly on the values of these corrections. Interpreting

these additional terms as corrections of GR, we control

deviations from the model with respect to Einstein’s the-

ory. It is worth mentioning that in solutions from the

f(R)-gravity model, we noticed the presence of an ex-

tra degree of freedom α related to the correction f2.

Through Figure 1(a) – 1(o), temperature, pressure

and density of different classes of stars, described by

Newtonian theory and the f(R)-gravity model, were

compared numerically. These quantities were plotted

against the normalized radius of the star. Observing these

graphics, we found that by increasing the correction

term f2, and consequently decreasing α (according to

Eq. (26), keeping ξ constant, α and f2 are inversely pro-

portional), these physical quantities within the star ex-

hibit a faster decrease and lower core values. In this

way, the more the extended theory moves away from

Newtonian theory (more α decreasing), the lower the
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pressure and the temperature become inside the star. With

respect to density, for n = 1 the curves coincide for all

values of α chosen, including for the Newtonian case. For

the other values of n, we observed the same behavior that

was described for the pressure and temperature: the lower

α, the lower the central density of the star and the faster

the curve decreases. All this leads us to believe that the

magnitude of gravitational corrections changes the stellar

structure. Therefore, by increasing the value of parameter

f2, the original pressure, density and temperature of GR

are affected by a term that modifies the mass and radius

of the star in some way. It is important to emphasize that

we did not use exotic matter, only the usual (baryonic)

matter. We adopted the Jordan frame, so that the results

of the gravitational sector were corrected while the mat-

ter sector was not affected. Thus, the geodesic structure

was not changed and the standard polytropic state equa-

tion could be assumed.

By analyzing the graphics it can be seen that, in gen-

eral, the best description of neutron stars, brown dwarfs

and white dwarfs was achieved by the parameter α = 1.

This fact corroborates the expected behavior of the phys-

ical quantities in stars with intense gravitational fields.

It is worth mentioning that this value of α represents a

case in which curvature is more accentuated and, conse-

quently, the gravitational field is more intense. Therefore,

in this work we show that, in these cases, for a bet-

ter description, a model of stellar structure according to

the f(R)-gravity theory is needed, since the contribu-

tion of the corrections in the quantities is more expres-

sive. Another issue to be discussed is based on the anal-

ysis of results obtained for neutron stars. For these stars,

some results found did not show significant differences

between the values obtained by the f(R) and Newtonian

models, although the model with α = 1 was closer than

the observed values for this star. Differences as appar-

ent as those observed in the white dwarfs were expected,

since neutron stars also have intense gravitational fields.

We justify this fact by noting that the equation of state

used here (polytropic equation) is not the most adequate,

since it does not consider the quantum effects present in

this type of star. The red giants and the Sun (stars with

weak fields) were better represented by the Newtonian

model and α = 5 (in all cases reported in this work, the

curves corresponding to this parameter value are almost

coincident with the Newtonian’s curve). This reinforces a

fact observed in the graphics: for values α = 5, we have

already been able to recover the Newtonian description

for the stars. In this way, we can conclude through this

work that in the case where the associated gravitational

field is weak, the best description is obtained through a

Newtonian model, not necessarily the approach through

an f(R) theory.

As demonstrated, this work was intended to indicate

the possibility of describing some classes of stars in poly-

tropic models under a different assumption about grav-

ity. The study of these systems in this approach may be

important for testing f(R)-gravity theories, since strong

gravitational field regimes are located in stars. Despite

the simplicity of the model, the results are satisfactory.

The estimated values for pressure, density and temper-

ature are within those determined by observations. The

results of this work can be extended to stars with mag-

netic and rotating fields, for example, and for different

equations of state.

We also emphasize that the results obtained in

this work could not be compared with other results

from other articles, including those cited throughout this

manuscript, except in the case of Newtonian theory,

whose comparison was performed and presented here.

Until now, all papers found in the literature have different

motivations and objectives from those explored by us.

To sum up, we have determined the density, pressure

and temperature fields for stars by using an f(R)-gravity

model and compared with the results that came out from

the Newtonian theory. The stars analyzed were of two

types: with strong fields such as white dwarfs, neutron

stars and brown dwarfs and with weak fields such as red

giants and the Sun. The f(R)-gravity model has proved

to be necessary for the description of stars with strong

fields, and as was expected the Newtonian theory pro-

vides a good description for stars with weak fields.
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