Comparison between TeV and non-TeV BL Lac Objects

Chao Lin and Jun-Hui Fan

Center for Astrophysics, Guangzhou University, Guangzhou 510006, China; fjh@gzhu.edu.cn
Astronomy Science and Technology Research Laboratory of Department of Education of Guangdong Province, Guangzhou 510006, China

Received 2015 October 1; accepted 2016 March 21

Abstract BL Lacertae objects (BL Lacs) are the dominant population of TeV emitting blazars. In this work, we investigate whether there are any special observational properties associated with TeV sources. To do so, we will compare the observational properties of TeV detected BL Lacs (TeV BLs) with non-TeV detected BL Lac objects (non-TeV BLs). From the 3rd Fermi/LAT source catalog (3FGL), we can obtain 662 BL Lacs, out of which 47 are TeV BLs and 615 are non-TeV BLs. Their multi-wavelength flux densities (F_{γ}, F_{α}, F_{γ} and F_{α}), photon spectral indexes (α_{γ}^p and α_{α}^p), and effective spectral indexes ($\alpha_{\gamma\alpha}^{p\gamma}$ and $\alpha_{\gamma\alpha}^{p\alpha}$) are compiled from the available literature. Then the luminosities ($\log L_{\gamma}$, $\log L_{\alpha}$, $\log L_{\gamma}$, $\log L_{\alpha}$) are calculated. From comparisons, we find that TeV BLs are different from low synchrotron peaked BLs and intermediate synchrotron peaked BLs, but TeV BLs show similar properties to high synchrotron peaked (HSP) BLs. Therefore, we concentrated on a comparison between TeV HSP BLs and non-TeV HSP BLs. Analysis results suggest that TeV HSP BLs and non-TeV HSP BLs exhibit some differences in their $\alpha_{\gamma\alpha}^{p\gamma}$, but their other properties are quite similar.

Key words: galaxies: active — BL Lacertae objects: general — gamma rays: galaxies

1 INTRODUCTION

Blazars are a subclass of active galactic nuclei (AGNs). They have high and variable polarization, large and rapid variation, superluminal motions, highly energetic GeV (even TeV) γ-ray emissions, etc (Wills et al. 1992; Zhang & Fan 2008; Gupta et al. 2008; Romero et al. 2002; Abdo et al. 2010b; Bastieri et al. 2011; Fan et al. 2013a, 2014; Ackermann et al. 2015). Blazars can be divided into two subclasses, namely, flat spectrum radio quasars (FSRQs) and BL Lacertae objects (BL Lacs). BL Lacs show no (or very weak) emission line features but FSRQs display strong emission lines. However, BL Lacs and FSRQs show quite similar continuum emission properties. BL Lacs can be divided into radio selected BL Lacertae objects and X-ray selected BL Lacertae objects from surveys or low synchrotron peaked (LSP, $\nu_{\text{peak}} < 10^{14}$ Hz), intermediate synchrotron peaked (ISP, 10^{14} Hz $< \nu_{\text{peak}} < 10^{15}$ Hz), and high synchrotron peaked (HSP, $\nu_{\text{peak}} > 10^{15}$ Hz) BL Lacs from the description by Abdo et al. (2010c) (also see Fan et al. 2014, 2016, submitted; Ackermann et al. 2015). In 2015, we set different limits: LSP ($\nu_{\text{peak}} < 10^{14}$ Hz), ISP (10^{14} Hz $< \nu_{\text{peak}} < 10^{16}$ Hz), and HSP ($\nu_{\text{peak}} > 10^{16}$ Hz, Fan et al. 2015). Thanks to the work of the Energetic Gamma Ray Experiment Telescope (EGRET), γ-ray astronomy has made great strides forward. As the second generation of γ-ray detectors, the Fermi/LAT satellite was launched on 2008 June 11 and has detected many blazars at γ-ray energies (Abdo et al. 2010b; Nolan et al. 2012; Lott et al. 2015; Acero et al. 2015; Ackermann et al. 2015). The 3rd Fermi Large Area Telescope source catalog (3FGL) includes 3033 sources in the range 100 MeV–300 GeV. Such a large sample of sources gives us a nice opportunity to analyze the nature of γ-ray emissions from blazars.

Highly energetic emissions, as high as TeV, are also detected from some blazars, and most of them have also been detected by Fermi/LAT (Ackermann et al. 2015). From TeVCat\(^1\), we found that there were 176 sources detected in the TeV energy range until March, 2016. These sources were included in TeV catalogs called the “Default Catalog” and “Newly Announced.” The energy threshold for the TeVCat sources is not uniform, but the energy is typically greater than 100 GeV (Acero et al. 2015). The known extragalactic TeV sources are mainly BL Lacs, but we want to investigate what kind of BL Lacs are TeV emitters, so we compared the known TeV BLs with BL Lacs detected in Fermi/LAT.

In this work, we compile BL Lacs from 3FGL and then compare observational properties of TeV BL Lacs and non-TeV BL Lacs, and try to see whether there is any difference between them. In Section 2, we give a sample, in Section 3, we show some results and in Section 4, we provide some discussion and conclusions.

\(^1\) http://tevcat.uchicago.edu/
2 SAMPLE

Based on the 3FGL (Acero et al. 2015), the third catalog of AGNs detected by the Fermi–LAT (3LAC) is presented (Ackermann et al. 2015). 3LAC not only compiles the γ-ray data of AGNs detected by Fermi–LAT during the first four years, but also collects the fluxes at different bands (radio, optical and X-ray) and some other data. From 3LAC, we can obtain 662 Fermi BL Lacs, their redshift, spectral energy distribution (SED) classification (based on the synchrotron peak frequency), radio flux (_flux), spectral energy distribution (SED) classification (based on the synchrotron peak frequency), radio flux (F_R), X-ray flux (F_X) at 0.1–2.4 keV, γ-ray flux (F_γ) at 1–100 GeV, and γ-ray power-law photon index (α_X^ph). The effective spectral indexes (α_0^ph and α_OX) for BL Lacs are from the website version of 3LAC. For some sources in 3LAC, if there were not data available in the 3LAC website, we looked for them in the NASA/IPAC Extragalactic Database (NED)3. For optical data, if the V band magnitude was not available in 3LAC and NED, we used the R band magnitude from NED and α_O = 1.0 to estimate it. For the 662 Fermi BL Lacs, 332 BL Lacs had available SDSS V band magnitude from 3LAC, and 24/60 BL Lacs had available V/R band magnitude from NED. For X-ray data, if X-ray flux was not available in 3LAC, we compiled the data from the BZCAT version 5.0.0 4 (Massaro et al. 2015) and NED (April, 2015), and the corresponding X-ray photon indexes (α_X^ph) were from the corresponding references.

Combining the 662 Fermi BL Lacs and the TeV sources listed in table 13 of Ackermann et al. (2015), we could obtain a sample of 47 BL Lacs with both TeV and GeV emissions, which are listed in Table 1. Since the TeV sample of Ackermann et al. (2015) was from TeVCat, the TeV sources in this work are the ones detected in the range E ≥ 100 GeV. For the remaining 615 Fermi BL Lacs that have no TeV emissions, we did not list their data in the present work.

3 RESULTS

In this work, luminosity is calculated using νL_ν = 4πd_L^2νF_ν, where d_L is the luminosity distance. The Cosmology Calculator 1 5 from NED is used to compute the luminosity distance (Wright 2006). Here we adopt H_0 = 73 km s^{-1} Mpc^{-1}, Ω_M = 0.27 and Ω_Λ = 0.73. All the fluxes are K-corrected. The flux in the source rest frame is F_ν^∗ = F_ν(1 + z)^α-1 and α (F_ν ∝ ν^-α) is the energy spectral index (Kaplanade 2013). α_R = 0.0 and α_O = 1.0 are adopted for radio and optical bands respectively, α_X = α_X^ph - 1 and α_γ = α_X^ph - 1. Most of the X-ray spectral indexes are given for 0.1–2.4 keV band, but there is a spectral index in the hard X-ray band, then we use the spectral index in the hard X-ray band instead. If redshift and X-ray photon index are unknown, then averaged values ≤ z ≤ 2.4; X-ray and γ-ray photon spectral indexes are 1.03 ≤ α_X^ph ≤ 4.28 and 1.26 ≤ α_X^ph ≤ 2.81 respectively; radio, optical, X-ray and γ-ray luminosities are in the ranges: 36.30 erg s^{-1} ≤ log νL_R ≤ 44.10 erg s^{-1}, 40.29 erg s^{-1} ≤ log νL_O ≤ 47.03 erg s^{-1}, 39.45 erg s^{-1} ≤ log νL_X ≤ 46.45 erg s^{-1}, and 39.24 erg s^{-1} ≤ log νL_γ ≤ 47.33 erg s^{-1} respectively; effective spectral indexes satisfy −0.13 ≤ α_0^ph ≤ 0.96 and 0.43 ≤ α_OX ≤ 2.52. The corresponding averaged values are listed in Table 2, and the corresponding Kolmogorov-Smirnov (K-S) test results are listed in Table 3, in which, Col. (1) gives two tested samples, Col. (2) tested parameter, Col. (3) number of two samples, Col. (4) average value and standard deviation, Col. (5) K-S statistic d_{max}, and Col. (6) two-tailed significance probability p. The sample with “∗” is only for sources with available redshift and p is the probability for the two distributions to come from the same distribution. The corresponding histograms and cumulative probabilities are shown in Figures 1–9.

For the whole sample, the redshift is in a range of 0.002 ≤ z ≤ 2.471; X-ray and γ-ray photon spectral indexes are 1.03 ≤ α_X^ph ≤ 4.28 and 1.26 ≤ α_X^ph ≤ 2.81 respectively; radio, optical, X-ray and γ-ray luminosities are in the ranges: 36.30 erg s^{-1} ≤ log νL_R ≤ 44.10 erg s^{-1}, 40.29 erg s^{-1} ≤ log νL_O ≤ 47.03 erg s^{-1}, 39.45 erg s^{-1} ≤ log νL_X ≤ 46.45 erg s^{-1}, and 39.24 erg s^{-1} ≤ log νL_γ ≤ 47.33 erg s^{-1} respectively; effective spectral indexes satisfy −0.13 ≤ α_0^ph ≤ 0.96 and 0.43 ≤ α_OX ≤ 2.52. The corresponding averaged values are listed in Table 2, and the corresponding Kolmogorov-Smirnov (K-S) test results are listed in Table 3, in which, Col. (1) gives two tested samples, Col. (2) tested parameter, Col. (3) number of two samples, Col. (4) average value and standard deviation, Col. (5) K-S statistic d_{max}, and Col. (6) two-tailed significance probability p. The sample with “∗” is only for sources with available redshift and p is the probability for the two distributions to come from the same distribution. The corresponding histograms and cumulative probabilities are shown in Figures 1–9.

From Tables 2 and 3, and the corresponding Figures 1–9, we can see that, for redshift, TeV BLs are clearly different from non-TeV BLs, HSP BLs and ISP+LSP BLs with probabilities for the corresponding two groups to come from the same distribution being p < 10^{-5}, suggesting that the redshift of TeV BLs is lower than those of the other groups. For the X-ray photon index, TeV BLs are not different from non-TeV BLs, HSP BLs or ISP+LSP BLs. For the γ-ray photon index and radio luminosity, TeV BLs are clearly different from non-TeV BLs and ISP+LSP BLs, but not different from HSP BLs. For optical luminosity, TeV BLs are marginally different from non-TeV and ISP+LSP BLs, but not different from HSP BLs. For X-ray luminosity and the effective optical-X-ray spectral index, there is not much difference between TeV and non-TeV BLs or HSP BLs, but TeV BLs are different from ISP+LSP BLs. For γ-ray luminosity and the effective radio-optical spectral index, TeV BLs are clearly different from non-TeV BLs.
Comparison between TeV and Non-TeV BLs

3.2 Correlations between γ-ray and Other Bands

Next we applied a linear regression analysis to fluxes and luminosities to investigate the correlation between γ-ray and other bands. For luminosity-luminosity correlations, we only considered the sources with available redshift, and obtained

\[\log \nu L_\gamma = (1.052 \pm 0.099) \log \nu L_R + (1.087 \pm 0.401) \]

for 36 TeV HSP BLs with a correlation coefficient \(r = 0.877 \) and a chance probability of \(p = 2.31 \times 10^{-12} \), and

\[\log \nu L_\gamma = (0.981 \pm 0.047) \log \nu L_R + (3.963 \pm 1.913) \]
for 157 non-TeV HSP BLs with \(r = 0.861 \) and \(p = 2.85 \times 10^{-47} \):

\[
\log \nu L_{\gamma} = (1.152 \pm 0.117) \log \nu L_{\alpha} - (7.611 \pm 5.242)
\]

for 25 TeV HSP BLs with \(r = 0.899 \) and \(p = 1.02 \times 10^{-9} \), and

\[
\log \nu L_{\gamma} = (1.069 \pm 0.059) \log \nu L_{\alpha} - (3.926 \pm 2.659)
\]

for 95 non-TeV HSP BLs with \(r = 0.883 \) and \(p = 2.89 \times 10^{-32} \);

\[
\log \nu L_{\gamma} = (0.869 \pm 0.149) \log \nu L_X + (5.375 \pm 6.633)
\]

for 36 TeV HSP BLs with \(r = 0.707 \) and \(p = 1.40 \times 10^{-6} \), and

\[
\log \nu L_{\gamma} = (0.756 \pm 0.048) \log \nu L_X + (10.638 \pm 2.143)
\]

for 151 non-TeV BLs with \(r = 0.788 \) and \(p = 2.95 \times 10^{-33} \).

The flux densities in the unit of mJy are calculated in radio at 1.4 GHz, optical at \(V \) band, X-ray at 1 keV and \(\gamma \)-ray at 2 GeV. For flux-flux correlations, we have

\[
\log F_{\gamma} = (0.752 \pm 0.126) \log F_X - (10.794 \pm 0.280)
\]

for 40 TeV HSP BLs with a correlation coefficient \(r = 0.696 \) and a chance probability of \(p = 6.00 \times 10^{-7} \), and

\[
\log F_{\gamma} = (0.299 \pm 0.045) \log F_X - (10.250 \pm 0.076)
\]

for 246 non-TeV HSP BLs with \(r = 0.389 \) and \(p = 2.66 \times 10^{-10} \);

\[
\log F_{\gamma} = (0.798 \pm 0.113) \log F_O - (9.590 \pm 0.109)
\]

for 27 TeV HSP BLs with \(r = 0.769 \) and \(p = 2.76 \times 10^{-6} \), and

\[
\log F_{\gamma} = (0.318 \pm 0.066) \log F_O - (9.780 \pm 0.030)
\]

for 131 non-TeV HSP BLs with \(r = 0.392 \) and \(p = 3.73 \times 10^{-6} \);

\[
\log F_{\gamma} = (0.073 \pm 0.184) \log F_X - (8.982 \pm 0.480)
\]

for 40 TeV HSP BLs with \(r = 0.064 \) and \(p = 69.3\% \), and

\[
\log F_{\gamma} = (0.054 \pm 0.039) \log F_X - (9.585 \pm 0.136)
\]

for 237 non-TeV BLs with \(r = 0.089 \) and \(p = 17.4\% \).

\[
\log F_{\gamma} = (0.744 \pm 0.147) \log F_X - (1.076 \pm 0.340)
\]

for 27 TeV HSP BLs with \(r = 0.711 \) and of \(p = 3.19 \times 10^{-5} \), and

\[
\log F_{\gamma} = (0.557 \pm 0.071) \log F_X - (1.047 \pm 0.116)
\]

for 131 non-TeV BLs with \(r = 0.567 \) and \(p = 1.58 \times 10^{-12} \).

All the results are listed in Table 4 and shown in Figures 10–11.

4 DISCUSSION AND CONCLUSIONS

In this paper, we compiled multi-wavelength data (\(\alpha_X^{ph} \), \(F_R \), \(F_O \), \(F_X \), \(F_{\gamma} \), \(\alpha_{\alpha}^{ph} \), \(\alpha_{\gamma}^{ph} \), \(\alpha_{\alpha O} \) and \(\alpha_{\gamma O} \)) for a sample of 662 BL Lacs from the 3LAC and some other references, calculated the luminosity and averaged values for \(z \), \(\alpha_X^{ph} \), \(\alpha_{\gamma}^{ph} \), \(\log \nu L_R \), \(\log \nu L_O \), \(\log \nu L_X \), \(\log \nu L_{\gamma} \), \(\alpha_{\alpha O} \) and \(\alpha_{\gamma O} \) for TeV BLs and the subgroups of BLs, and made some comparisons by using the K-S test and correlation analysis. The results are listed in Tables 2–4 and shown in Figures 1–12.
Fig. 2 The distribution of X-ray photon index (left panels) and the cumulative probability (right panels) for the whole sample (upper panels), and for the HSP BL Lacs (lower panels). In the upper panels the solid line stands for TeV sources, the dashed line for non-TeV sources, the dotted line for HSP, and the dash-dotted line for ISP+LSP. In the lower panels the solid line stands for TeV HSP BL Lacs and the dashed line for non-TeV HSP BL Lacs.

Fig. 3 The distribution of γ-ray photon index (left panels) and the cumulative probability (right panels) for the whole sample (upper panels), and for the HSP BL Lacs (lower panels). In the upper panels the solid line stands for TeV sources, the dashed line for non-TeV sources, the dotted line for HSP, and the dash-dotted line for ISP+LSP. In the lower panels the solid line stands for TeV HSP BL Lacs and the dashed line for non-TeV HSP BL Lacs.
Fig. 4 The distribution of radio luminosity (left panels) and the cumulative probability (right panels) for the whole sample (upper panels) and for the HSP BL Lacs (lower panels). In the upper panels the solid line stands for TeV sources, the dashed line for non-TeV sources, the dotted line for HSP, and the dash-dotted line for ISP+LSP. In the lower panels the solid line stands for TeV HSP BL Lacs, the dashed line for non-TeV HSP BL Lacs, the dotted line for TeV HSP BL Lacs with redshift and the dash-dotted line for non-TeV HSP BL Lacs with redshift.

Fig. 5 The distribution of optical luminosity (left panels) and the cumulative probability (right panels) for the whole sample (upper panels) and for the HSP BL Lacs (lower panels). In the upper panels the solid line stands for TeV sources, the dashed line for non-TeV sources, the dotted line for HSP, and the dash-dotted line for ISP+LSP. In the lower panels the solid line stands for TeV HSP BL Lacs, the dashed line for non-TeV HSP BL Lacs, the dotted line for TeV HSP BL Lacs with redshift and the dash-dotted line for non-TeV HSP BL Lacs with redshift.
Fig. 6 The distribution of X-ray luminosity (left panels) and the cumulative probability (right panels) for the whole sample (upper panels), and for the HSP BL Lacs (lower panels). In the upper panels the solid line stands for TeV sources, the dashed line for non-TeV sources, the dotted line for HSP, and the dash-dotted line for ISP+LSP. In the lower sub-panel the solid line stands for TeV HSP BL Lacs, the dashed line for non-TeV HSP BL Lacs, the dotted line for TeV HSP BL Lacs with redshift and the dash-dotted line for non-TeV HSP BL Lacs with redshift.

Fig. 7 The distribution of γ-ray luminosity (left panels) and the cumulative probability (right panels) for the whole sample (upper panels), and for the HSP BL Lacs (lower panels). In the upper panels the solid line stands for TeV sources, the dashed line for non-TeV sources, the dotted line for HSP, and the dash-dotted line for ISP+LSP. In the lower panels the solid line stands for TeV HSP BL Lacs, the dashed line for non-TeV HSP BL Lacs, the dotted line for TeV HSP BL Lacs with redshift and the dash-dotted line for non-TeV HSP BL Lacs with redshift.
Fig. 8 The distribution of effective spectral index α_{RO} (left panels) and the cumulative probability (right panels) for the whole sample (upper panels), and for the HSP BL Lacs (lower panels). In the upper panels the solid line stands for TeV sources, the dashed line for non-TeV sources, the dotted line for HSP, and the dash-dotted line for ISP+LSP. In the lower panels the solid line stands for TeV HSP BL Lacs and the dashed line for non-TeV HSP BL Lacs.

Fig. 9 The distribution of effective spectral index α_{OX} (left panels) and the cumulative probability (right panels) for the whole sample (upper panel), and for the HSP BL Lacs (lower panel). In the upper panels the solid line stands for TeV sources, the dashed line for non-TeV sources, the dotted line for HSP, and the dash-dotted line for ISP+LSP. In the lower panels the solid line stands for TeV HSP BL Lacs and the dashed line for non-TeV HSP BL Lacs.
Comparison between TeV and Non-TeV BLs

Fig. 10 Plot of the radio (top), optical (middle), and X-ray (bottom) luminosities against the γ-ray luminosity for HSP BL Lacs. In each panel, the plus symbols represent TeV HSP BL Lacs and the circle symbols represent non-TeV HSP BL Lacs.

Fig. 11 Plot of the γ-ray flux against the radio flux (left upper panel), the optical flux (right upper panel) and the X-ray flux (left lower panel) for HSP BL Lacs. A plot of the optical flux against the radio flux for HSP BL Lacs is in the right lower panel. In each panel, the plus symbols represent TeV HSP BL Lacs and the circle symbols represent non-TeV HSP BL Lacs.

4.1 Averaged Values

TeV BLs and non-TeV BLs: From Tables 2 and 3 and Figures 1–9, we can see a clear difference between TeV BLs and non-TeV BLs in γ-ray photon spectral index (α_γ) with a probability for the two groups to come from the same distribution being $p < 10^{-8}$, that is $p < 10^{-13}$ in redshift (z), $p < 10^{-4}$ in radio luminosity ($\log \nu L_R$) and γ-ray luminosity ($\log \nu L_\gamma$), and $p < 10^{-7}$ in effective radio-optical spectral index (α_{RO}). However, there is no clear difference in X-ray photon spectral index ($\alpha_X^{(0)}$), optical luminosity ($\log \nu L_O$), X-ray luminosity ($\log \nu L_X$) or
the TeV emissions from sources with high redshift may be absorbed by cosmic background emissions. Therefore, it is hard to detect TeV emissions from high redshift. For non-TeV BLs, they are strongly beamed in radio and γ-ray bands, so their radio and γ-ray luminosities are higher than those for TeV BLs. Also, the non-TeV BLs in this work are mainly LBLs and IBLs, which show their synchrotron peak frequencies in the range of infrared to optical bands. Their radio emissions are luminous, which also results in the difference in the effective spectral index \(\gamma_{\text{ph}} \) with \(\gamma_{\text{ph}} \) in non-TeV BLs being larger than that in TeV BLs.

TeV BLs and LBLs/IBLs: The difference between TeV BLs and LBLs/IBLs is clear in \(\gamma_{\text{ph}} \), \(z \), \(\log \nu L_R \), \(\log \nu L_X \), \(\log \nu L_O \), \(\alpha_{\text{RO}} \) and \(\alpha_{\text{OX}} \), but it is not clear in \(\alpha_{\text{ph}} \) (\(p = 7.06\% \)). For BL Lacs, the X-rays are from synchrotron emissions generated by HBLs whose peak emissions are in the range of UV/X regions, and the summation of synchrotron emissions and inverse Compton emissions generated by LBL/IBL (Fan et al. 2012), which result in there being no clear difference in their X-ray spectral indexes.

TeV BLs and HSP BLs: There is almost no difference between TeV BLs and HSP BLs in \(\gamma_{\text{ph}} \), \(\alpha_{\text{ph}} \), \(\log \nu L_R \), \(\log \nu L_X \), \(\log \nu L_O \) or \(\alpha_{\text{OX}} \), but there is a marginal difference in \(\log \nu L_X \) with \(p = 1.38\% \) and in \(\alpha_{\text{RO}} \) with \(p = 1.55\% \). Therefore, when we only considered the TeV HSP BLs and non-TeV HSP BLs, we found a clear difference in redshift (\(z \) with \(p < 10^{-6} \)), a marginal difference in γ-ray photon spectral index (\(\alpha_{\gamma} \) with \(p = 2.08\% \)) and
radio to optical spectral index (α_{RO} with $p = 1.06\%$), but no difference in other parameters between TeV HSP BLs and non-TeV HSP BLs. In those different parameters (z, α_{γ}, α_{RO}), the averaged values of TeV HSP BLs are lower than those of non-TeV HSP BLs. Does that mean HSP BLs with lower redshift, harder α_{γ} and smaller α_{RO} are good candidates for being TeV emitters? If so, then we can use α_{γ}, α_{RO} and redshift (z) to predict TeV HSP BL Lacs.

From the above analyses, we can clearly see that TeV BL Lacs are different from LBLs/IBLs, but are similar to HSP BL Lacs. If we only take HSP BL Lacs into account, then we find that TeV HSP BL Lacs are quite similar to non-TeV HSP BL Lacs except that there is a difference in redshift and marginal differences in α_{γ} and α_{RO} as shown in the lower panel of Figure 12, which demonstrates $\alpha_{RO} < 0.45$ and $\alpha_{\gamma} < 2.03$ for TeV HSP BL Lacs.

Taking only TeV and non-TeV HSP BLs into account, we can see that the flux densities for TeV HSP BLs are averagely higher than non-TeV HSP BLs: They are 2.161 ± 0.536 (TeV HSP) vs 1.631 ± 0.458 (non-TeV HSP) for $F_{\nu R}$; 0.594 ± 0.581 (TeV HSP) vs -0.174 ± 0.422 (non-TeV HSP) for $F_{\nu \gamma}$; -2.564 ± 0.510 (TeV HSP) vs -3.419 ± 0.589 (non-TeV HSP) for $F_{\nu X}$; and -9.169 ± 0.576 (TeV HSP) vs -9.768 ± 0.392 (non-TeV HSP) for $F_{\nu \gamma}$. The differences can also be seen from Figure 11.

Those differences indicate that TeV HSP BLs tend to have higher fluxes than non-TeV ones. The fluxes of non-TeV HSP BLs may be very low in the TeV band so that they cannot be detected, thus more sensitive telescopes are

<table>
<thead>
<tr>
<th>Sample</th>
<th>Parameter</th>
<th>N</th>
<th>Average</th>
<th>d_{max}</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>TeV / non-TeV</td>
<td>z</td>
<td>43 / 193</td>
<td>$0.157 \pm 0.116 / 0.336 \pm 0.322$</td>
<td>$0.436 < 10^{-5}$</td>
<td></td>
</tr>
<tr>
<td>TeV / ISP+LSP</td>
<td>α_{γ}</td>
<td>41 / 116</td>
<td>$2.273 \pm 0.369 / 2.377 \pm 0.447$</td>
<td>$0.371 < 10^{-3}$</td>
<td></td>
</tr>
<tr>
<td>TeV HSP / non-TeV HSP</td>
<td>α_{γ}</td>
<td>36 / 157</td>
<td>$0.170 \pm 0.125 / 0.374 \pm 0.341$</td>
<td>$0.502 < 10^{-6}$</td>
<td></td>
</tr>
<tr>
<td>TeV / non-TeV</td>
<td>α_{γ}</td>
<td>41 / 165</td>
<td>$2.273 \pm 0.369 / 2.377 \pm 0.567$</td>
<td>$0.187 < 10^{-14}$</td>
<td></td>
</tr>
<tr>
<td>TeV / ISP+LSP</td>
<td>α_{γ}</td>
<td>41 / 85</td>
<td>$2.273 \pm 0.369 / 2.377 \pm 0.644$</td>
<td>$0.233 < 10^{-6}$</td>
<td></td>
</tr>
<tr>
<td>TeV HSP / non-TeV HSP</td>
<td>α_{γ}</td>
<td>34 / 82</td>
<td>$2.295 \pm 0.350 / 2.353 \pm 0.483$</td>
<td>$0.131 < 10^{-6}$</td>
<td></td>
</tr>
<tr>
<td>TeV / non-TeV</td>
<td>α_{γ}</td>
<td>47 / 615</td>
<td>$1.827 \pm 0.156 / 2.038 \pm 0.246$</td>
<td>$0.471 < 10^{-8}$</td>
<td></td>
</tr>
<tr>
<td>TeV / ISP+LSP</td>
<td>α_{γ}</td>
<td>47 / 286</td>
<td>$1.827 \pm 0.156 / 1.875 \pm 0.200$</td>
<td>$0.137 < 32.68%$</td>
<td></td>
</tr>
<tr>
<td>TeV HSP / non-TeV HSP</td>
<td>α_{γ}</td>
<td>47 / 353</td>
<td>$1.827 \pm 0.156 / 2.143 \pm 0.206$</td>
<td>$0.691 < 10^{-19}$</td>
<td></td>
</tr>
<tr>
<td>TeV HSP / non-TeV HSP</td>
<td>α_{γ}</td>
<td>40 / 246</td>
<td>$1.798 \pm 0.129 / 1.888 \pm 0.207$</td>
<td>$0.243 < 2.08%$</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Col. (1) gives the two tested samples, Col. (2) tested parameter, Col. (3) number in both samples, Col. (4) averaged values and standard deviations, Col. (5) K-S statistic d_{max}, Col. (6) two-tailed significance probability p. The samples with "*" are only for the sources with available redshift, and p is the probability for the two distributions to come from the same distribution.
required. As we noted, BL Lacs have rapid and large variations, so the TeV emissions are likely to cycle. Therefore, some TeV sources cannot be detected in the TeV band sometimes, and a long term TeV monitoring program could detect more BL Lacs. In addition, the difference in fluxes between TeV HSP BLs and non-TeV HSP BLs could be another criterion to predict TeV emitter candidates.

4.2 Correlations

From luminosity-luminosity correlation analysis of TeV HSP BL Lacs, we can see that there is a close correlation between γ-ray luminosity and the lower energetic bands. Those correlation coefficients and chance probabilities are: \(r = 0.877 \) and \(p = 2.31 \times 10^{-12} \) for \(\log \nu L_\gamma \) vs \(\log \nu L_R \), \(r = 0.899 \) and \(p = 1.02 \times 10^{-9} \) for \(\log \nu L_\gamma \) vs \(\log \nu L_O \), and \(r = 0.707 \) and \(p = 1.40 \times 10^{-6} \) for \(\log \nu L_\gamma \) vs \(\log \nu L_X \), see Table 4 and Figure 10. We also found that the slopes of correlations for TeV HSP BLs are similar to those for non-TeV HSP BLs, and the \(\log \nu L_\gamma \) vs \(\log \nu L_R \) correlation is strongest. The strong γ-ray vs radio correlation was also discussed by other authors (Dondi & Ghisellini 1995; Muecke et al. 1997; Xie et al. 1997; Zhou et al. 1997; Fan et al. 1998, 2012, 2015, 2016, submitted; Cheng et al. 2000; Yang & Fan 2005; Giroletti et al. 2010, 2012; Pushkarev et al. 2010; Linford et al. 2011; Yang et al. 2012b,a, 2014; Li et al. 2015).

For luminosity-luminosity correlation, it is known that all luminosities are correlated with redshift (\(z \)), therefore luminosity-luminosity correlation may be caused by the redshift effect (Kendall & Stuart 1979). In this case, one should remove the redshift effect. To do so, we used the method introduced by Padovani (1992) as in our previous work (Fan et al. 2013b, 2015). If variables \(x \) and \(y \) are correlated with a third one \(k \), then the correlation between \(i \) and \(j \) should exclude the \(k \) effect. In this sense, for three variables \(i, j, k \), if the correlation coefficients of the relation between any two variables of them are expressed as \(r_{ij}, r_{ik}, r_{jk} \) respectively, then for the correlation coefficient \(r_{ij} \) to be excluded, the \(k \) effect is expressed as

\[
 r_{ij,k} = \frac{r_{ij} - r_{ik}r_{jk}}{\sqrt{(1 - r_{ik}^2)(1 - r_{jk}^2)}}.
\]

When the method is applied to the correlations between any two luminosities, the correlation coefficients after removing the redshift effect are: for \(\log \nu L_\gamma \) vs \(\log \nu L_R \), \(r_{\gamma R,z} = 0.743 \) with a chance probability \(p_{\gamma R,z} = 7.17 \times 10^{-7} \) for TeV HSP BLs, and \(r_{\gamma R,z} = 0.400 \) with \(p_{\gamma R,z} = 4.52 \times 10^{-7} \) for non-TeV HSP BLs. For \(\log \nu L_\gamma \) vs \(\log \nu L_O \), \(r_{\gamma O,z} = 0.811 \) with \(p_{\gamma O,z} = 3.52 \times 10^{-6} \) for TeV HSP BLs, and \(r_{\gamma O,z} = 0.375 \) with \(p_{\gamma O,z} = 3.0 \times 10^{-4} \) for non-TeV HSP BLs. In those flux-flux correlation analysis: namely \(r = 0.696 \) with \(p = 6.00 \times 10^{-7} \) for \(\log F_\gamma \) vs \(\log F_O \), \(r = 0.769 \) with \(p = 2.76 \times 10^{-6} \) for \(\log F_\gamma \) vs \(\log F_R \), and \(r = 0.064 \) with \(p = 69.3% \) for \(\log F_\gamma \) vs \(\log F_X \). For the non-TeV HSP BLs, results show that the correlation coefficients are less than those in TeV HSP after removing the redshift effect, and all the correlation coefficients are less than 0.4, which is very different from the correlation before removing the redshift effect. The results are also consistent with those for flux-flux correlation analysis: \(r = 0.389 \) with \(p = 2.66 \times 10^{-10} \) for \(\log F_\gamma \) vs \(\log F_R \), \(r = 0.392 \) with \(p = 3.73 \times 10^{-6} \) for \(\log F_\gamma \) vs \(\log F_O \), and \(r = 0.089 \) with \(p = 17.4\% \) for \(\log F_\gamma \) vs \(\log F_X \).

For flux-flux correlations, both TeV HSP BLs and non-TeV HSP BLs show strong correlations in \(\log F_\gamma \) vs \(\log F_R \), \(\log F_\gamma \) vs \(\log F_O \), and \(\log F_\gamma \) vs \(\log F_R \) with chance probabilities being \(p < 10^{-4} \). In those flux-flux correlations, the slopes of TeV HSP BLs are steeper than those of non-TeV HSP BLs, but the corresponding intercepts are very close, which suggest that TeV HSP BLs tend to have higher energy photons (Fig. 11). However, for both
Comparison between TeV and Non-TeV BLs

103–13

TeV and non-TeV HSP BLs, no correlation was found between log \(F_{\gamma} \) and log \(F_X \).

Dondi & Ghisellini (1995) found correlations between \(\gamma \)-ray luminosity and lower energy bands (including the radio, optical and X-ray bands) of blazars, and the \(\gamma \)-ray vs radio band correlation still exists even after removing the redshift effect. However, they did not discuss the correlations of \(\gamma \)-ray vs optical or \(\gamma \)-ray vs X-ray since they thought that optical and X-ray emissions were contaminated by other emissions. Our results are consistent with theirs. The correlation between X-ray and \(\gamma \)-ray emissions are obtained by some surveys in a long period of observations or some samples of blazars (Li et al. 2013; Bi et al. 2014; Fraija et al. 2015). For example, Fraija et al. (2015) found a strong correlation between the GeV \(\gamma \)-rays and the optical/hard-X ray emissions for Mrk 421 associated with the flare in 2013. However, no correlation was found between \(\gamma \)-ray and the X-ray band for PKS 1510-089 during its high activity period from 2008 to 2009 (Abdo et al. 2010a). From our analysis, there is no correlation between \(\gamma \)-ray and X-ray flux, suggesting that the \(\gamma \)-ray and X-ray emissions are composed of different emission components even though the X-ray emissions in HSP BL Lac are from the synchrotron self-Compton (SSC) process (Fan et al. 2012).

For spectral index correlation, we can see that there is an anti-correlation between \(\alpha_{OX} \) and \(\alpha_{RO} \) for TeV HSP BL Lacs and non-TeV HSP BL Lacs: \(\alpha_{OX} = -(1.445 \pm 0.373)\alpha_{RO} + (1.545 \pm 0.108) \) for 36 TeV HSP BL Lacs with a correlation coefficient \(r = -0.554 \) and a chance probability \(p = 4.59 \times 10^{-4} \), and \(\alpha_{OX} = -(1.422 \pm 0.180)\alpha_{RO} + (1.634 \pm 0.063) \) for 232 non-TeV HSP BL Lacs with a correlation coefficient \(r = -0.462 \) and a chance probability \(p = 1.10 \times 10^{-13} \). The corresponding plots are shown in the upper panel of Figure 12.

4.3 Mechanism

\(\gamma \)-ray emissions are still an interesting topic for blazars, and the Fermi mission has provided us with a good opportunity to re-visit the \(\gamma \)-ray mechanism by detecting a lot of blazars (Abdo et al. 2010b, Nolan et al. 2012, Acero et al. 2015; Ackermann et al. 2015). As we discussed in our previous work (Fan et al. 2013a, 2014), the \(\gamma \)-ray emissions are mainly due to soft photons up-scattered by Inverse Compton onto relativistic electrons, or to synchrotron emission/pion decay of secondary particles produced in a proton-induced cascade (Mannheim & Biermann 1992; Mannheim 1993; Cheng & Ding 1994). For LBLs, they have low peak synchrotron emissions with \(\log \nu_p < 14.0 \) Hz and their inverse Compton emissions peak at \(\log \nu IC < 1 \) GeV while for HBLs, they have a synchrotron peak frequency of \(\log \nu_p > 15 \) Hz and their inverse Compton emissions peak at \(\log \nu IC > 100 \) GeV (Abdo et al. 2009). Therefore, the emissions in the 1–100 GeV region correspond to the inverse-Compton emission tail, which have a soft spectrum for LBLs, and the emissions in the 1–100 GeV region correspond to the inverse-Compton emissions before reaching the peak emissions and have a flat spectrum for HBLs. That is why TeV HSP BLs have a flat spectrum (Fan et al. 2012). In this sense, we think that SSC will be responsible for \(\gamma \)-ray emissions for HBLs and particularly for TeV HSP BLs. Fortunately, the SEDs of some blazars can be fitted by a one-zone SSC model in some surveys (Sambruna et al. 2000; Albert et al. 2007; Aleksić et al. 2015a). Aleksić et al. (2015b) found that the SSC model gives a satisfactory description of the observed multi-wavelength spectral energy distribution for PG 1553+113 during the flare. Zhang et al. (2012) compiled the broadband SED data for 24 TeV BL Lac objects and found that these SEDs can be explained well with the SSC model. Abdo et al. (2014) believed the TeV emissions from Mrk 421 are produced by leptonic SSC emissions. After three years of observations of Mrk 421, they found that the TeV activity, measured in what is called duty cycle, which is consistent with the X-ray activity and therefore favors the SSC emission mechanism. If we use the SSC model to explain the TeV radiation, the HSP BL Lacs, which have high-synchrotron-peaked frequency, will have more probability to produce TeV radiation. Our results of \(\gamma \)-ray and radio correlations obtained by luminosity-luminosity and flux-flux relationships also support an SSC process for \(\gamma \)-rays.

4.4 Conclusions

In this work, we compiled the radio, optical, X-ray and \(\gamma \)-ray data for a sample of 662 Fermi BL Lacs (47 are TeV BL Lacs and 615 are non-TeV BL Lacs) from 3LAC (Ackermann et al. 2015) and other references, calculated the flux density and luminosity, compared the averaged \(\gamma \)-ray emissions in the 1–100 GeV region correspond to the inverse-Compton emissions before reaching the peak emissions and have a flat spectrum for HBLs. That is why TeV HSP BLs have a flat spectrum (Fan et al. 2012). In this sense, we think that SSC will be responsible for \(\gamma \)-ray emissions for HBLs and particularly for TeV HSP BLs. Fortunately, the SEDs of some blazars can be fitted by a one-zone SSC model in some surveys (Sambruna et al. 2000; Albert et al. 2007; Aleksić et al. 2015a). Aleksić et al. (2015b) found that the SSC model gives a satisfactory description of the observed multi-wavelength spectral energy distribution for PG 1553+113 during the flare. Zhang et al. (2012) compiled the broadband SED data for 24 TeV BL Lac objects and found that these SEDs can be explained well with the SSC model. Abdo et al. (2014) believed the TeV emissions from Mrk 421 are produced by leptonic SSC emissions. After three years of observations of Mrk 421, they found that the TeV activity, measured in what is called duty cycle, which is consistent with the X-ray activity and therefore favors the SSC emission mechanism. If we use the SSC model to explain the TeV radiation, the HSP BL Lacs, which have high-synchrotron-peaked frequency, will have more probability to produce TeV radiation. Our results of \(\gamma \)-ray and radio correlations obtained by luminosity-luminosity and flux-flux relationships also support an SSC process for \(\gamma \)-rays.

Acknowledgements This work is partially supported by the National Natural Science Foundation of China (Grant
References

Bi, X., He, W., Tian, J., & Ge, S. 2014, Journal of Astrophysics and Astronomy, 35, 329
Brinkmann, W., Yuan, W., & Siebert, J. 1997a, A&A, 319, 413
Li, H.-Z., Chen, L.-E., Jiang, Y.-G., & Yi, T.-F. 2015, RAA (Research in Astronomy and Astrophysics), 15, 929
Lott, B., Cavazzuti, E., Ciprini, S., Cutini, S., & Gasparetti, D. 2015, in IAU Symposium, 313, Extragalactic Jets from Every Angle, eds. F. Massaro, C. C. Cheung, E. Lopez, & A. Siemiginowska, 12
Yang, J., Fan, J., Nie, J., & Yang, R. 2012a, Science China Physics, Mechanics, and Astronomy, 55, 2179
Yang, J., Fan, J., & Yuan, Y. 2012b, Science China Physics, Mechanics, and Astronomy, 55, 1510