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Abstract Stokes inversion calculation is a key process in resolving polarization information on radiation
from the Sun and obtaining the associated vector magnetic fields. Even in the cases of simple local thermo-

dynamic equilibrium (LTE) and where the Milne-Eddington approximation is valid, the inversion problem
may not be easy to solve. The initial values for the iterations are important in handling the case with mul-
tiple minima. In this paper, we develop a fast inversion technique without iterations. The time taken for

computation is only 1/100 the time that the iterative algorithm takes. In addition, it can provide available
initial values even in cases with lower spectral resolutions. This strategy is useful for a filter-type Stokes
spectrograph, such as SDO/HMI and the developed two-dimensional real-time spectrograph (2DS).

Key words: Sun: magnetic fields — methods: statistical — methods: data analysis — techniques: polari-
metric

1 INTRODUCTION

Stokes inversion calculation is a key process in resolving
polarization information on radiation from the Sun and cal-
culating the associated vector magnetic fields, which are

important for studying the evolution, radiation and the fun-
damental causes of various solar activities.

Even for the cases in local thermodynamic equilibrium
(LTE) and where the Milne-Eddington approximation is

valid, the inversion problem may not be easy to solve. The
most commonly used method is nonlinear least squares
fitting. Two main instruments for measurement of vecto-

rial magnetic fields, the HINODE/spectro-polarimeter (SP)
and Solar Dynamics Observatory(SDO)/Helioseismic and
Magnetic Imager (HMI), both depend on this method.

Related references can be found in Auer et al. (1977),
Landolfi et al. (1984), Skumanich & Lites (1987), Lites
et al. (1988) and Su & Zhang (2004).

According to the work by Wittmann (1974), Lites et al.
(1988) and Rees et al. (1989), the radiative transfer equa-
tions for Stokes parameters can be written as

dI

dτc
= KI − j , (1)

where I denotes the four Stokes parameters I, Q, U and

V , τc is the optical depth, K is the total absorption matrix,
and j is the total emission vector.

In the simple cases of LTE and where the Milne-
Eddington approximation is applicable, we can solve these

equations analytically and generate Stokes profiles with the
following parameters,

– Magnitude of magnetic field B;

– Doppler broadening ∆λD;

– The line-of-sight component of macro velocity vlos;
– Inclination ψ;
– Azimuthal angle φ;

– Ratio between the absorption coefficient at the line
center and the continuous extinction coefficient at the
reference wavelength η0;

– S0 and S1 in the representation of the source function

SC = S0 + S1τc under the Milne-Eddington approxi-
mation.

For example, Figure 1 shows a comparison between
synthetic and observed profiles for HINODE/SP data
(Kosugi et al. 2007).

The profiles are extracted from a sunspot at the bound-
ary between the penumbra and umbra of active region AR
10930, and the spectral position is close to 6302.493 Å. A

pixel with V/I ≈ 60% is selected to make V look clearer.
Some experts on instruments may think this is impossi-
ble, but this truly comes from HINODE/SP data. Actually,

the scale of V/I does not influence the inversion procedure
much, which is the main topic of this paper, so we just trust
this data point.

Now we need to consider the inversion procedure with

respect to the synthetic process. The objective is to obtain
the above input parameters from observed Stokes profiles.
The least squares fitting method can be applied during the

inversion process, with the objective function,

χ2 =
4
∑

i=1

m
∑

j=1

1

w2
i

[yij − Fij (x)]2 , (2)
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Fig. 1 Comparison between synthetic and observed Stokes profiles.

where y represents the observed values, x stands for the
unknown physical parameters as mentioned above, F sig-
nifies the synthetic Stokes parameters, and w stands for

the weights of I, Q, U and V . Here index i represents
I, Q, U and V , index j stands for the different wave-
lengths and p signifies the solar atmosphere parameters.

As an example, the program VFISV (Borrero et al.
2011) which is adopted by SDO/HMI uses the modi-
fied Levenberg-Marquardt algorithm to solve the nonlinear

least squares problem. This algorithm is one kind of itera-
tive optimization method, most of which relies on local lin-
earization. This kind of method usually ignores the global

information during the iteration and does not behave so
well for problems with multiple minima. The empirical ev-
idence provided by Teng & Deng (2014) demonstrates that
the most effective method to deal with the multi-minima

problem so far is a random-jump strategy. When the iter-
ation goes to a local minimum, by this strategy, the algo-
rithm will allow a random jump to some point close to a

potentially smaller minimum. However, a fixed amount of
iterations are required to make the random-jump effective.
They cost much more computing time than finding one lo-

cal minimum.

So with the motive of developing a fast method to
handle the huge amount of data coming from future in-
struments, another kind of method which relies on a set

of training samples is under consideration. Rees et al.
(2000) and Socas-Navarro et al. (2001) implemented prin-
cipal component analysis to reduce the dimension of the

Stokes profile. They considered the synthetic spectra as-
sociated with known model parameters as training data
and used the nearest neighbor method to find the clos-

est model which can fit the observation best. Carroll &
Staude (2001), Socas-Navarro (2005) and Carroll et al.
(2008) then applied artificial neural networks, which are

another artificial intelligence technique, to the analysis of

Stokes profiles. They trained the network using the inver-
sion model for the magnetic field vector, velocity and tem-
perature classification by a synthetic sample set. They ap-

plied a preprocessing stage to project the observed profile
onto the hypersurface defined by the synthetic profile be-
fore substitution in the model.

In this paper, we will apply quadratic regression,
which is another kind of sample-based approach, to this
problem. The main structure in the magnetogram can be
captured by this approach much faster than the iterative

method. If more accuracy is needed, it can also provide
available initial values for the iterations. The structure
of this paper is depicted as follows. In Section 2, we

give a short introduction to the iterative optimization al-
gorithm that VFISV uses. In Section 3, we describe the
quadratic regression methods and illustrate some compar-

isons between the results obtained by classical iterations
and quadratic regressions. In Section 4, we apply the re-
sults gained by the quadratic regressions to the initial val-

ues for the iterative algorithm described in Section 2 and
find an obvious improvement over the fixed initial values.
Finally, we will conclude in Section 5 with a discussion of
this approach.

2 THE ITERATIVE ALGORITHM

The iterative algorithm used by VFISV to solve the non-
linear least squares problem is the modified Levenberg-

Marquardt algorithm listed below:

(1) Set x := x0, τ := τ0 and n = 0.
(2) If n > nmax, algorithm terminates.

(3) Calculate the synthetic Stokes profile F (x) and its
Jacobi matrix J(x) with respect to x.

(4) Calculate the objective function χ2 and its gradient g
with respect to x.
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(5) Solve the equation (JTJ + τD)s = −g, where D is

a diagonal matrix with the same diagonal element as
JTJ .

(6) Set xpre = x+s, again calculate the objective function

χpre at xpre, and set n = 0.
– If χpre < χ, set x = xpre, decrease τ and go to

step 2 for the next iteration.

– If n ≥ nmax, set s as a random step in some range,
set x = x+ s, and go to step 2.

– If χpre ≥ χ, increase τ , set n = n + 1 and go to
step 5.

During this algorithm, two additional limiting procedures
are considered. For each step,

– If s is too long, shrink it to satisfy |s| < slim to prevent
the solution from being too far from the initial point.

– If xpre
i < xmin

i (or xpre
i > xmax

i ), set xi = xmin
i (or

xi = xmax
i ) and fix xi in the following iterations un-

til the next jumping to make the results meaningful in
physics, where the limit values are shown in Table 1, in

which Ic represents the maximal Stokes I value along
the spectral line.

The classical Levenberg-Marquardt algorithm has a
global convergence property which means the iterations
must converge to a stable point, wherever we set the initial

value. However, this parameter space has many local min-
ima where the algorithm can converge. It does not perform
so well for a problem with multi-minima. So, a random-

jump strategy is considered at Step 6 in the modified al-
gorithm, by which the iteration will more probably con-
verge to a global minimum than the classical algorithm.
However, it suffers from being time-consuming, because a

fixed amount of iterations are required for each pixel.

Figure 2 is a comparison between the results of the
classical and modified algorithm for a quiet region of the
Sun. The classical algorithm may cause convergence to a

local minimum and cause many bad pixels.

Figure 3 presents inversion results for an active region
by the modified algorithm. The observed data come from
HINODE/SP.

3 A FAST INVERSION METHOD BY USING

QUADRATIC REGRESSION

In this section we will introduce a fast inversion method by
using quadratic regression. This kind of approach is based
on a database training process, which relies on some pre-
selected samples with known inversion results and Stokes

parameters. In this paper, selected inversion results by the
iterative algorithm are taken into account as the training
database. However, this approach does not directly depend

on the physical model that is used to generate the Stokes
profiles, and the properly selected samples are the only re-
sources used to in the method.

The key point is to consider each unknown parame-

ter x as a quadratic function of the whole observed Stokes

profile y which can be expressed as

x = fH,a,b(y) = yTHy + aT y + b . (3)

For example, if we consider 10 points along the wavelength

of a spectral line, the vector y has 40 components, the coef-
ficient vector a has 40 components, b is a scalar coefficient
and the symmetric coefficient matrix H has 820 different

components that are located in the upper triangular part.
A training process is needed to pre-calculate the coef-

ficients in H , a and b. Least square errors are minimized
between the selected training database and the parameters

calculated by the quadratic expressions. Actually, we need
to solve the optimization problem

arg min
f∈P2

m
∑

j=1

[

f(yj) − xj

]2

, (4)

where P2 is the function space composed of all the

quadratic functions, and {(xj , yj), j = 1, . . . ,m} is the
training set composed of independent and identically dis-
tributed samples and assumed to be randomly drawn from

an unknown distribution of (x, y).
By the law of large numbers, the objective function in

Equation (4) must converge to the expectation

E
[

(f (y) − x)
2
]

, (5)

called risk as m → ∞. So, the statistical basis of this

method is to find a suitable function f to obtain the mini-
mal risk, which is based on Bayesian decision theory.

Notice that this training process is easy to solve, be-

cause it is a linear least squares problem. After the training
process, the inversion results can be obtained within about
1/100 of the computing time required for the iterative al-

gorithm.
To demonstrate this approach, we apply it to the data

from two instruments - HINODE/SP (Kosugi et al. 2007)
and SDO/HMI (Schou et al. 2012). Before the training pro-

cess is applied, a sample set is required to be compiled.
Because this approach does not directly rely upon the phys-
ical model when performing the iterative fitting method de-

scribed in Section 2, the samples are only used for training
the neural network. Properly selected samples are the key
point for the successful implementation of this approach.

Figure 4 shows the distribution of magnetic fields as
measured by all pixels within 13 active regions. The values
contained in about 90% of the pixels are less than 500 G.
In order to ensure samples include information about the

full range of magnetic fields, we select a fixed amount of
samples in each interval of 100 G. This composes a training
set with a total of 18 690 samples, which account for 3%
of the data from all the active regions.

For HINODE/SP, Figure 5 shows the inversion results
by the quadratic regressions for the same region and data

as shown in Figure 3.
Figures 6 – 8 illustrate the results for SDO/HMI. The

main structure in the magnetogram can be captured by the

regressions in both cases.
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Table 1 Limits used by the Modified Levenberg-Marquardt Algorithm

Parameter
Lower limit

xmin

Upper limit
xmax

Step limit

slim

B (G) −7000 7000 2000
∆λD (cm) 5 × 10−11 8 × 10−10 1 × 10−10

vlos (cm s−1) −7 × 105 7 × 105 1 × 105

ψ No limit No limit 20◦

φ No limit No limit 20◦

η0 1 300 25
S0 0.05Ic 1.5Ic 0.3Ic
S1 0.05Ic 1.5Ic 0.2Ic
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Fig. 2 Comparison between classical (left) and modified (right) algorithm for a quiet region.
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Fig. 3 Inversion results using the modified Levenberg-Marquardt algorithm applied to AR 10930 with HINODE/SP data for B, ψ, φ
and vlos in Fig. 5 from (1) to (4) respectively.
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Fig. 5 Inversion results by using quadratic regression applied to AR 10930 with HINODE/SP data for B, ψ, φ and vlos from (1) to (4)
respectively.

For accuracy, we also calculated the average errors be-
tween the inversion and trained pictures for various ranges

of magnetic fields, which are listed in Table 2. In order
to estimate the error bounds caused by the disturbance of
the sample values, the quadratic mean or root mean square

(RMS)

ē =

√

∑n

i=1 [xi − fH,a,b (yi)]
2

n
(6)

is used here, where xi, i = 1, . . . , n represents the original
values obtained by the iterative algorithm using all the pix-

els in a region, and yi represents the Stokes parameters in
the same pixel as xi.

In detail, let x̃i denote a perturbed value with respect
to xi and assume

|x̃i − xi| < ε. (7)

For brevity, let f denote the resulting function trained by

samples extracted from {xi} and f̃ denote that trained by
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Fig. 6 Comparison between the real and trained results for region 1 with SDO/HMI data.
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Fig. 7 Comparison between the real and trained results for region 2 with SDO/HMI data.
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Fig. 8 Comparison between the real and trained results for region 3 with SDO/HMI data.

samples extracted from {x̃i}. If we use the notation

|u|2 =

(

n
∑

i=1

u2
i

)
1

2

, (8)

f and f̃ can be approximately written as

f = arg min
f∈P2

T (f) = arg min
f∈P2

|f(y) − x| , (9)

f̃ = arg min
f∈P2

T̃ (f) = arg min
f∈P2

|f(y) − x̃| . (10)
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Table 2 RMS of the Errors between the Real and Trained Results for Different Ranges of Magnetic Fields (G)

Region Parameter (0, 1000) (1000, 2500) > 2500 Full range

1
B 1.22E+02 1.21E+02 1.22E+02 1.21E+02

ψ 1.11E+01 9.48E+00 6.85E+00 1.05E+01

2
B 2.73E+02 3.70E+02 2.52E+02 3.20E+02

ψ 2.40E+01 2.40E+01 1.17E+01 2.35E+01

3
B 1.23E+02 1.50E+02 1.36E+02 1.34E+02

ψ 9.91E+00 8.34E+00 7.76E+00 9.24E+00

Actually, in the training process defined by Equation (4),
the summation extends over the selected training samples,
but in Equations (9) and (10), it extends over all the pix-

els in a region. This difference leads to the generalization

error described in the machine learning literature, which
is not easy to estimate. Cucker & Smale (2002) gave a de-

tailed description for this. In this paper, we just neglect this
difference for simplicity.

Now for all f ∈ P2,
∣

∣

∣
T (f) − T̃ (f)

∣

∣

∣

= ||f(y) − x| − |f(y) − x̃||
≤ |x− x̃|

≤

√

√

√

√

n
∑

i=1

(xi − x̃i)
2

≤
√
nε, (11)

and Equations (9), (10) and (11) imply
∣

∣

∣
T (f)− T̃ (f̃)

∣

∣

∣
≤

√
nε. (12)

Then the quadratic mean with respect to the differences
between the predicted results by f and f̃ can be calculated
by

f(y) − f̃(y)

=
1√
n

∣

∣

∣
f(y) − f̃(y)

∣

∣

∣

≤ 1√
n

(

T (f) + T̃ (f̃) + |x− x̃|
)

≤ 1√
n

(

2T (f) +
∣

∣

∣
T (f) − T̃ (f̃)

∣

∣

∣
+ |x− x̃|

)

. (13)

Finally, according to Equations (6), (7) and (12),

f(y) − f̃(y) ≤ 2ē+ 2ε. (14)

For example, if we assume the error of B observed by
HMI is bounded by 50 G, and consider the perturbed error
of B in region 1, we can obtain

ε = 50 G, (15)

ē = 121 G, (16)
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Fig. 11 Inversion results of B by using the modified Levenberg-Marquardt algorithm on decreasing spectral resolutions from (1) to (6)
with fixed initial values.
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Fig. 12 Inversion results of B by the modified Levenberg-Marquardt algorithm on decreasing spectral resolutions from (1) to (6) with
quadratic regression using initial values.
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Fig. 13 Average errors between the maximum resolution and decreasing resolutions for two initial value strategies, with solid lines for
the fixed initial values and dashed lines for the quadratic regressions, and for B, ψ, φ and vlos from (1) to (4) respectively.

from Table 2, and the bound on the perturbed error is (2 ×
121 + 2 × 50 = 342)G.

We can also derive other information from the
quadratic expression. For example, the derivative of each

obtained parameter with respect to I, Q, U and V at each
wavelength can be calculated by

∇x = 2Hy + a. (17)

Figure 9 illustrates the derivatives of the magnetic field B.

4 APPLICATION OF THE FAST INVERSION

METHOD TO GENERATING INITIAL VALUES

As an application of the quadratic regression, we can
use it to generate initial values for the above modi-
fied Levenberg-Marquardt algorithm. One purpose of this

paper is to analyze data from the instrument “Two-
Dimensional Real-Time Spectrograph (2DS)” that is being
developed (Deng & Zhang 2009). It is a filter-type magne-

tograph which can observe the polarized filtergram at eight
wavelength points within a spectral line simultaneously.

Because of its low spectral resolution, the above iter-
ative algorithm needs to be validated with data that have

decreasing resolutions. So, we define a step in wavelength
that decreases the resolution of HINODE/SP data.

Figure 10 is an illustration when step = 3. We tried

steps from 1 to 6. Figure 11 shows the results for differ-
ent spectral resolutions using a fixed initial value near the
value around the center.

If we use the quadratic regression as the initial value,
we can obtain the results shown by Figure 12. They ob-
viously behave better than the fixed initial value for low

spectral resolutions.

Finally, from the average errors shown in Figure 13,
we can more clearly see the advantage of using the initial
values derived by quadratic regression. These four graphs
illustrate the average errors between the maximal resolu-

tion (step = 1) and decreasing resolutions (various steps
along the horizontal axis), with solid lines for a fixed ini-
tial value and dashed lines for the quadratic regression. For

example, with step = 5 and a fixed initial value, an aver-
age error over 3000 G makes the magnetic fields unavail-
able, but with values from the quadratic regression used as

initial values, the average error is about 100 G and is only
reasonable for 1/5 of the sample points along the wave-
length.

5 CONCLUSIONS

In this paper, we propose a fast inversion technique based
on quadratic regressions. The CPU time consumed for this

method is only about 1/100 what the iterative algorithm
takes. If more accuracy is required, this technique can also
provide initial values for the iterative algorithm.

Because this approach does not directly rely upon the
physical model in the process used for the iterative fit-
ting method, properly selected samples are essential to the
training results. In order to ensure the samples include in-

formation about the full range of magnetic fields, a fixed
amount of samples in each interval of 100 G are selected in
this paper, composing a training set with 3% of the points

in both the training and validation datasets.

For the case with low spectral resolutions, bad pixels
may even occur with the random-jump strategy if an un-

reasonable initial value is adopted. Although the quadratic
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regression cannot substitute the random-jump strategy, it

can provide good initial values in this situation.
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Socas-Navarro, H., López Ariste, A., & Lites, B. W. 2001, ApJ,

553, 949

Su, J.-T., & Zhang, H.-Q. 2004, ChJAA (Chin. J. Astron.

Astrophys.), 4, 365

Teng, F., & Deng, Y.-Y. 2014, RAA (Research in Astronomy and

Astrophysics), 14, 1469

Wittmann, A. 1974, Sol. Phys., 35, 11


