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Abstract We use a simple dynamical model which consists of a harmaitlator and a spherical com-
ponent, in order to investigate the regular or chaotic dattareof orbits in a barred galaxy with a central
spherically symmetric nucleus. Our aim is to explore howlihsic parameters of the galactic system in-
fluence the nature of orbits, by computing in each case theeptage of chaotic orbits, as well as the
percentages of different types of regular orbits. We alse gimphasis to the types of regular orbits that
support either the formation of nuclear rings or the bartattture of the galaxy. We provide evidence that
the traditionale; orbital family does not always dominate in barred galaxy aiedince we found several
other types of resonant orbits which can also support theetatructure. We also found that sparse enough
nuclei, fast rotating bars and high energy models can stippergalactic bars. On the other hand, weak
bars, dense central nuclei, slowly rotating bars and lowggneodels favor the formation of nuclear rings.
We also compare our results with previous related work.
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1 INTRODUCTION tion of nuclear rings is due to the effect of the non axially
symmetric potential of the bar in an area with plenty of in-

It is well known to astronomers that axial symmetry interstellar gas. A key role in this mechanism is played by the
galaxies is only a first approximation. In essence, galaxtorque of the bar, which causes the gas to form the nuclear
ies exhibit deviation from axial symmetry, which can berings (Kim et al. 2012b). Observations show that the rate
very small or more extended. In the latter category, we mayf star formation in the nuclear rings is not only different
include the case of barred galaxies. Observations indicai@ several types of barred galaxies but also varies signif-
that a large percentage of disk galaxies, about 65%, shoantly with time (e.g., Buta et al. 2000; Benedict et al.
bar-like formations (e.g., Eskridge et al. 2000; Sheth et al2002; Comeron et al. 2010).
2003). Observations also show that barred galaxies may The formation and evolution of dust lanes and nuclear
display different characteristics. There are galaxies\wit rings have been extensively studied using numerical simu-
a prominent barred structure and also galaxies with fainfgtions (e.g., Piner et al. 1995; Englmaier & Gerhard 1997;
weak bars. Moreover, there are also barred galaxies Witk}'laciejewski et al. 2002; Regan & Teuben 2003; Thakur
massive and less massive bulges. In some cases, the fornegl. 2009). The formation of nuclear rings from the reso-
tion of the central bulges is the result caused by dynamic{ant interaction of gas with the potential of the bar appears
instabilities in the disk (Kormendy & Kennicutt 2004).  not to be consistent with recent studies indicating thatehe

In fact, bars are non-axisymmetric structures that cafiormations are probably due to a different mechanism (e.g.,
redistribute the angular momentum of a galaxy, thus favorkim et al. 2012a). According to this mechanism, there is
ing the transport of gas through them to the inner regiona centrifugal barrier which cannot be overcome by the in-
where it may trigger star formation and play an importantflowing gas. This barrier is responsible for the formation
role in the evolution of these stellar systems (e.g., Mufiozof the nuclear rings. Finally, recent research reveals that
Tufion et al. 2004; Sheth et al. 2005). In this way, considthe more massive the bar is, the smaller the formed nuclear
erable changes occur in the morphology and structure afngs are. Here we should mention that the observational
barred galaxies. Such a change is exhibited by a significanfata justify the above results (Comeron et al. 2010).
increase in the mass of the bulge in galaxies with bars (e.g., Over recent decades, a huge amount of research work
Friedli & Martinet 1993; Marinova & Jogee 2007). has been devoted to understanding the orbital structure

An important and striking phenomenon in barredin barred galaxy models (e.g., Athanassoula et al. 1983;
galaxies is associated with nuclear rings, which are acPfenniger 1984; Combes et al. 1990; Athanassoula 1992;
tive sites of new star formation (e.g., Knapen et al. 1995Pfenniger 1996; Kaufmann & Contopoulos 1996; Olle &
Mazzuca et al. 2008; Sandstrom et al. 2010; Hsieh et aPfenniger 1998; Pichardo et al. 2004). The reader can find
2011). Some scientists have the impression that the formanore information about the dynamics of barred galaxies
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in the reviews by Athanassoula (1984); Contopoulos &vestigate how the presence and the amount of dark matter
Grosbol (1989); Sellwood & Wilkinson (1993). We would influences the regular or chaotic nature of orbits as well as
like to point out that all the above-mentioned referenceshe behavior of the different families of resonant orbits.

on the dynamics of barred galaxies are exemplary rather Taking into account all the above, there is no doubt
than exhaustive. However, we should like to discuss brieflyhat knowing the overall orbital structure in the central re
some of the recent papers on this subject. Skokos et ajions of barred galaxies is an issue of paramount impor-
(2002a) conducted an extensive investigation regardimg thtance. For this reason, we decided to use a simple model
stability and morphology of both two-dimensional (2D) that describes local motion near the central area of a barred
and three-dimensional (3D) periodic orbits in a fiducialgalaxy. Our aim is to investigate the regular or chaotic-char
model representative of a barred galaxy. The work wagacter of motion and to study how the different families of
continued in the same vein in Skokos et al. (2002b), whererbits are affected by varying the physical quantities en-
the influence of the system’s parameters on the 3D periering the model. Here we must point out that the present
odic orbits was revealed. Moreover, Kaufmann & Patsisarticle belongs to a series of papers (Zotos & Carpintero
(2005) presented evidence that in 2D models with suffi2013; Caranicolas & Zotos 2013; Zotos & Caranicolas
ciently large bar axial ratios, stable orbits having prégrel 2013; Zotos & Caranicolas 2014) that have as their main
shapes play a dominant role in the bar structure. Manos &bjective the orbit classification (not only regular versus
Athanassoula (2011) estimated the fraction of chaotic andhaotic but also separating regular orbits into differegtr
regular orbits in both 2D and 3D potentials by computingular families) in different galactic gravitational poteds.
several sets of initial conditions and studying how thesérhus, we decided to follow a similar structure and apply
fractions evolve when the energy and also basic parametetise same numerical approach to all of them.

of the model, such as the mass, size and pattern speed ofthe The structure of the present paper is as follows: In
bar, vary. Computing the statistical distributions of swwhs  Section 2 we present a detailed description of the prop-
position coordinates, Bountis et al. (2012) quantified wealerties of our gravitational galactic model. All the differ-
and strong chaotic orbits in 2D and 3D barred galaxy modent computational methods used in order to determine the
els. A time-dependent barred galaxy model was utilizedtharacter of orbits are described in Section 3. In the fol-
in Manos et al. (2013) in order to explore the interplaylowing, Section 4, we explore how the basic parameters
between chaotic and regular behavior of star orbits wheinvolved in the dynamical system influence the percent-
the parameters of the model evolve. Finally, in Caranicolaages of all types of orbits and which of them support ei-
& Papadopoulos (2007); Caranicolas & Zotos (2010), weher a bar or ring structure. Our article ends with Section 5,
conducted an investigation only regarding the issue of regwhere the conclusions and the discussions of this research
ular vs chaotic orbits in simple barred spiral potentialsare presented.

In the present paper on the other hand, we shall try to

contribute to this active field by classifying ordered asbit 2 PROPERTIES OF THE GALACTIC MODEL

into different regular families and monitor how their rates

evolve when basic quantities of the system vary. The total gravitational potentiab(x,) consists of two
components: the bar potentid), and the central, spherical

Lees & Schwarzschild (1992), in a thorough pioneer'componentt’n. For the description of properties of the bar

ing study, a_nal_yzed the _orb|tal content in the coo_rd_mathe use the following simple harmonic oscillator potential
planes of triaxial potentials and also in the meridional

plane of axially symmetric model potentials, focusing on w2
regular families. Few years later, Carpintero & Aguilar Py (z,y) = 5 (a?2 + ay2) ) (1)
(1998) developed a method based on the analysis of the
Fourier spectrum of the orbits which can not only distin-where« is a parameter corresponding to the strength of
guish between regular and chaotic orbits, but also betweeahe bar, while the parameteris used for consistency of
loop, box and other resonant orbits either in 2D or 3D po+the galactic units.
tentials. This spectral method was improved and applied The spherically symmetric nucleus is modeled by a
in Muzzio et al. (2005) in order to identify the different Plummer potential (e.g., Binney & Tremaine 2008)
kinds of regular orbits in a self-consistent triaxial madel
The same code was improved even further in Zotos & B —GM,

arpintero (2013), when the influence of the central nu- \/m
cleus and of the isolated integrals of motion (angular mo-
mentum and energy) on the percentages of orbits in thelere G is the gravitational constant, whiléf,, and ¢,
meridional plane of an axisymmetric galactic model com-are the mass and the scale length of the nucleus, respec-
posed of a disk and a spherical nucleus were investigatetively. This potential has been used successfully in thé pas
In two recent papers, Caranicolas & Zotos (2013) andn order to model and therefore interpret the effects of
Zotos & Caranicolas (2013), analytical dynamical modelghe central mass component in a galaxy (see, e.g. Hasan
describing the motion of stars in both disk and elliptical& Norman 1990; Hasan et al. 1993; Zotos 2012a; Zotos
galaxies containing dark matter were used in order to in& Carpintero 2013). At this point, we must make clear
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that Equation (2) is neither intended to represent the povariational equations

tential of a black hole nor that of any other compact ob- . ) : )

ject, but just the potential of a dense and massive nucleus. (0x) = di, (dy) =6y,
Therefore, any relativistic effects are out of the scope of D?Dogp D* gy

this work. (6x) = — 52 bz — 920y Sy + 204,67,
The 2D ®(x,y) was chosen because we believe that . D2 i '
it is an approximation for describing local motion near the ~ (69) = — 990z ox — oy oy — 2,0 (6)

central parts of a barred galaxy. Our choice was motivated . o

by two reasons: (i) the small number of input parameters of  Consequently, the corresponding Hamiltonian to the
Equation (1) is an advantage concerning the performanc@ffective potential given in Equation (3) reads

and speed of the numerical calculations in comparison with P

other much more complicated potentials describing bars Hy = 5 (° +9°) + @en(,y) = Ey, (7)
(i.e. the Ferrers bar, Ferrers 1877) and (ii) it corresponds

to a constant density profile which, however, can be aswherex andy are momenta per unit mass, conjugateto

sumed when studying local motion very close to the galac‘:’mdy respectively, whilefZ; is the numerical value of the

tic center, like in our case. Furthermore, the same poteﬁl—‘?“mbi integral,. which is_ ponservgd. Thl.JS’ an o_rbit Wit.h a
' ' iven value for its Jacobi integral is restricted in its roati

tial has been used successfully in many previous work  regions in whiche: < @ hile all other regions are
for modeling the properties of local motion in the central gl N WNICHEy = @egr, WhI a9

parts of a galaxy (e.g., Caranicolas 1998; Caranicolas éorbldden with respect to the star.
Karanis 1998; Caranicolas & Papadopoulos 2005; Zoto
2011, 2012b). Note that the density corresponding to th

total potential®(z,y), on the other hand, is not constant o gistinguishing between order and chaos in our models
but it declines with increasing distance from the origin dueye yse the SALI method (Skokos 2001) (for more details

g COMPUTATIONAL METHODS

to the contribution of the spherical nucleus. on how the SALI method works see Zotos & Carpintero
The bar rotates counterclockwise at a constant angula013). We chose, for each value of the free parameter of
velocity (2y,. Therefore the effective potential is the potential, a dense grid of initial conditions in {he )

phase plane, regularly distributed in the area allowed by
the value of the energl/y. In all casesyy = 0, while g is
found from the Jacobi integral (Eqg. (7)). The distance be-
tween the points of the gird along theand: directions,

In our study, we use the well-known system of galacticOr in other words its density, was calibrated in such a way
units, where the unit of |ength is1 kpcy the unit of mass isSO that every grld contains around 15 000 orbits. For each
2.325 x 10"Mg, and the unit of time i9.9778 x 108 yr.  initial condition, we integrated the equations of motioh (5
The velocity unit is 10 kms!, the unit of angular momen- as well as the variational equations (6) with a double pre-
tum (per unit mass) is 10 km kpé s~!, while G is equal ~ cision Bulirsch-Stoer algorithm (e.g., Press et al. 1989).
to unity. The energy unit (per unit mass) is 1003m?.  all cases, the value of the Jacobi integral (Eq. (7)) was con-
In these units, the values of the involved parameters ar&erved better than one partifi—"*, although for most or-

w =10, a = 4, M,, = 50 (corresponding to 1.% 10°  bits, it was better than one partin—'2.

Der(r,y) = Bay) — 3% (P 497). @)

Mpg), ¢n = 0.25 and€2y, = 1. This set of the values of the All initial conditions of orbits are numerically inte-
parameters defines the Standard Model (SM). grated for10* time units which correspond to abola'?
The equations of motion are described by yr or in other words to about 100 Hubble times. This vast

time of numerical integration is justified due to the pres-
ence of the so called “sticky orbits"Therefore, if the in-
tegration time is too short, any chaos indicator will mis-
classify sticky orbits as regular ones (see Appendix A for
where the term-2 (2, x 7) represents the Coriolis force. more details and examples). In our work we decided to in-
Decomposing Equation (4) into itsandy parts, we obtain  tegrate all orbits for a time interval afo* time units in
order to correctly classify sticky orbits with sticky ped®
OPesr - 0Dt . of atleast 100 Hubble times. At this point, it should be clar-
o T === = 20E () fied that sticky orbits with sticky periods larger thae
time units will be counted as regular ones, since such ex-
where the dot indicates derivative with respect to time. ~ tremely high sticky periods are completely out of the scope
In the same vein, the equations describing the evo2f our res_ea_rch._ . '
The distinction between order and chaos is only a first

lution of a deviation vectow = (dz,dy, &, dy) which for | . h Il orbital ¢ th
joins the corresponding phase space points of two initially>'€P for interpreting the overall orbital structure of the

ne?-rby orbits, ne?ded for the Calcu'?-tion of standard c_haos 1 A sticky orbit is a chaotic orbit which behaves as a regula fom a
indicators (SALI in our case), are given by the following long time period before revealing its true chaotic nature.

P =V —2(Qp x 7), (4)

;‘C‘:
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galactic system. The second and more important step isntil t = 50 time units, while all the parefiperiodic orbits

the classification of ordered orbits into different regularwere computed until one period was completed. The black
families. For this purpose we use the frequency analysithick curve circumscribing each orbit is the limiting curve
of Carpintero & Aguilar (1998) for categorizing regular in the (z, y) plane defined a® ¢ (x, y) = Ej.

orbits. About thirty years ago, Binney & Spergel (1982, In Table 1 we provide the type, the initial conditions
1984) proposed a computational method, dubbed “spe@nd the values of the variable parameters for all the de-
tral dynamics” for the task of orbit classification, while picted orbits. In the resonant cases, the initial condgion
later onSidlichovsky & Nesvorny (1996) and Carpintero & and the period},.. correspond to the parent periodic or-
Aguilar (1998) substantially improved this method. Zotosbits. Here we would like to point out that resonant 1:2 type
& Carpintero (2013) further refined the numerical code forb orbits and resonant 1:3 orbits are only present in galaxy
classifying orbits in the meridiondR?, =) plane. The very models with relatively high orbital energy’; > 100).

same algorithm was used in all the papers of this series: At this point, we would like to clarify some issues re-
Zotos & Carpintero (2013); Caranicolas & Zotos (2013);garding the nomenclature of the orbits in our model. In
Zotos & Caranicolas (2013); Zotos & Caranicolas (2014)earlier related articles, orbits in barred galaxies aralgu
aswell as in Muzzio et al. (2005) and Carpintero & Muzzioclassified into four main categories: the family which

(2012). consists of elongated orbits along the bar, famiiigsand
x5 the orbits of which are also elongated but perpendicular
4 NUMERICAL RESULTS to the bar and the retrograde family (e.g., Contopoulos

& Papayannopoulos 1980). In the present case however,

In this section, we shall present all the numerical resultgve decided to follow for consistency the same classifica-
of our research. We numerically integrate several sets dfon used in all previous papers of this series, according to
orbits in order to distinguish between regular and chaotigvhich the orbits are separated into three main categories:
motion. We use the initial conditions of orbits mentioned(i) box orbits, (i)~ : m resonant orbits, and (iii) chaotic
in Section 3 in order to construct the corresponding grids@rbits. According to our notation, all resonant orbits have
always taking values inside the Zero Velocity Curve (ZVC)the following recognizable. : m oscillatory pattern: a
defined by resonant orbit completes oscillations perpendicular to

the major axis of the bar in the time that it takes the orbit

to performn circuits along the major axis. Furthermore,
(8) ) .

ann : m resonant orbit would be representedbydis-
o tinct islands of invariant curves in the;, ©) phase plane
In most cases, the value of the Jacobi integral was sef,q, distinct islands of invariant curves in tite, ) sur-

to E; = 1.5 and kept constant. However in the last subsect,ce of section. In our research, we searched for resonant
tion where we investigate the influence of the orbital en+pits 1, - m up ton,m < 9; therefore, for all higher

ergy, the value of the Jacobi integral is variable. We chosgsconant orbits the numerical code assigns “box” classi-
an energy level which givesy,.. ~ 1 kpc, wherézax fication (this is a usual technique in orbit classification),
is the maximum possible value of the coordinaten the \yhich is correct fom + m (high resonant box orbits, e.g.,
() phase plane, since our study is focused on local Mocaranjcolas & Barbanis 1982). As was pointed out in the
tion of stars. Once the values of the parameters are chQayiew of Sellwood & Wilkinson (1993) (p. 31), there are

sen, we compute a set of initial conditions as describedgyerg) different notations regarding the naming of the or-
in Section 3 and integrate the corresponding orbits calCusita| families in barred galaxies. Traditionally, orbitseea

lating the value of SALI and then classifying the regular,smedm - 1, wherem denotes the number of radial os-
orbits into different families. Each grid contains roughly gjjjations an orbit performs before it closes, whileorre-

a total of 15000 initial conditiongzo, ) of orbits with sponds to the number of turns of the orbit around the center
yo = 0, while v, is always obtained from the Jacobi in- ot ihe potential. Throughoutthe paper, we shall use the first

tegral (Eq. (7)). In each case, we only let one parametefiation which, from our point of view, is more descriptive
vary, while all the others have values according to the SMyq petter fits our computational procedures.

described in Section2. _ It is of particular interest to determine which types of
The numerical calculations show that in our barredreqgylar orbits support the barred structure in our galactic
galaxy model there are seven main types of orbits: (i) bonodel. Looking carefully at the main types of orbits shown
orbits; (i) 1:1 resonant orbits; (iii) 1:2 resonant orlditgpe Figure 1(a)—(f) it can be seen that the box and the 1:2
a); (iv) 1:2 resonant orbits (type b); (v) 2:3 resonant @bit (tynes a and b) resonant orbits are the ones we are look-
(vi) 3:4 resonant orbits, and (vii) chaotic orbits. Apadrir ing for. We also observe in Figure 2(a)—(f) that, apart from

the main families of orbits, however, several secondary reshe 7:9 resonant family, all the other secondary resonances
onances are also present.
In Figure 1(a)—(f) we present an example of each of 2 For every orbital family there is a parent (or mother) peidoa-

the six basic types of regular orbits, while Figure 2(a)—(f)b't’ the_it is, an_orblt that describes a c!qsed flgure._Pe_ngrlh_e initial
. conditions which define the exact position of a periodic tow® gener-

shows characteristic examples of the secondary resonagt quasi-periodic orbits that belong to the same orbitallfeand librate

orbits. The box orbit shown in Figure 1(a) was computechround their closed parent periodic orbit.

1
5.%"2 + Pog(x,y =0) = Ej.
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Fig. 1 Collection of the six basic types of orbits in our barred gglmodel: (a) box orbit; (b) 1:1 resonant orbit; (c) 1:2 resontype
a; (d) 1:2 resonant type b (figure-eight); (e) 2:3 resongme;tyf) 3:4 resonant orbit.
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Fig. 2 Characteristic examples of six secondary resonant omitaii barred galaxy model: (a) 1:3 resonant orbit; (b) 3:9mast
orbit; (c) 4:7 resonant type; (d) 5:7 resonant type; (e) Bbnant orbit; (f) 7:9 resonant orbit.

may support, more or less, the barred structure. In order tm particular, we compute the maximum values of the
quantify our search for orbits supporting the bar, we musaindy coordinates of the regular orbitg,, .. andy,., re-
define a mathematical criterion thus distinguishing whichspectively, along the numerical integration. Then, the ra-
types of orbits have the ability to support the bar. This is4i0 g = Zmax/ymax defines whether an orbit supports the
sue can be solved if we exploit the geometry of the orbitsbarred structure or not. The threshold value regarding the
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Table 1 Type, model and initial conditions of the orbits shown ingzig(a)—(f) and 2(a)—(f). In all caseg, = 0
andyj is found from the Jacobi integral, whilg,., is the period of the resonant parent periodic orbits.

Figure Type «a Cn Q Ey 0 o Tper
la box 4 0.50 1.0 1.5 —0.91000000 0.00000000 -
1b 1:1 2 0.25 1.0 15 0.41867323 0.00000000 0.33573521
1c 1:2 (type a) 4 0.25 1.0 15 0.60531937 9.66513936 0.4481220
1d 1:2 (type b) 4 0.25 1.0 593 2.84610131 0.00000000 0.618197
le 2:3 4 0.25 0.0 1.5 0.00000000 13.08286668 0.73057544
1f 34 4 0.25 0.0 1.5 0.09738430 7.70724765 0.96330681
2a 1:3 9 0.25 1.0 593 2.64862858 0.00000000 0.61518671
2b 35 4 0.25 0.5 15 0.88078044 0.00000000 1.21951427
2c 4.7 4 0.25 0.5 15 0.00000000 18.96771378 1.69575428
2d 5:7 2 0.25 1.0 15 0.92613552 0.00000000 2.19852734
2e 5:9 4 0.25 0.5 1.5 —0.97466418 0.00000000 2.16072089
2f 7:9 2 0.25 1.0 1.5 0.81782083 0.00000000 2.86034493
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—200 0 200 400 600 800
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. 10| —1:1
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Fig. 3 (a-upper left): The(z, E5) and (bupper right): the (x, z, Fy) characteristic curves of the orbital families for SM;| ¢ver left):
The (y, Ey) characteristic diagram for all the orbital families; I@er right): A (g, E5) diagram showing which types of resonant
families support the galactic bar. The color code is the samé panels.

ratio strongly depends on the strength of the bar. Our nu- One of the most interesting structures that are often
merical calculations suggest that a safe threshold for thebserved in barred galaxies are rings. There are three main
ratio is the valug/a. Therefore, all types of regular orbits types: (i) nuclear rings situated near the central nucl@ys,
with valuesg > \/a can support the barred structure. inner rings surrounding the bar and (iii) outer rings with a
relatively extended diameter. In this work, we investigate
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the orbital properties near the central region of the barred 0.15
galaxy and therefore, we only focus our study on nuclear

rings. Bars have a natural tendency to concentrate gas near 0.10¢
the nucleus but also can setup resonances which usually

act as focal points for the gas flow. The reader can find 0.05

more details about rings in barred galaxies in the review
of Knapen (2004). We argue that 1:1 resonant orbits with y 000
approximately0.5 < g < 1.5 (both prograde and retro-

grade) are the best candidates for supporting the nuclear
ring structure in barred galaxies. Thus, we shall pay spe-
cial attention to how the basic parameters of the system

-0.05

affect the amount of 1:1 resonant orbits. -o-10x
In Figure 3(a), we present a very informative di- Cois
agram, the so-called “characteristic” orbital diagram -10 -05 0.0 05 70

X

(Contopoulos & Mertzanides 1977; Contopoulos &
Barbanis 1985; Contopoulos & Magnenat 1985) for SMFig. 4 A highly unstabler; periodic orbitin SM. The initial con-
(except the 1:3 resonance for which= 9). It shows the ditions and more details are given in the text.

evolution of ther coordinate of the initial conditions of the

parent periodic orbits of each orbital family as a functién o high energy level$561 < Ej < 642). Moreover, we may
their orbital energyt; (Jacobi constant). Here we should say that in general terms higher resonant orbits such as the
emphasize that for orbits starting perpendicular toithe  3:5, 4:7 and 5:9 families can also support the bar, but the
axis, we only need the initial condition of, in ordertolo-  2:3 and 3:4 resonant families can only support it at low
cate them on the characteristic diagram. On the other hangnergies.

for orbits not starting perpendicular to theaxis (i.e., the It is widely accepted that galactic bars are in fact cre-
1:2 type a, 2:3, 3:4 and 47 families) initial conditionsdlik - ated by regular orbits which circulate around the so-called
position-velocity pairgxz, i) are required and, therefore, « ;. » periodic orbits (e.g., Skokos et al. 2002a,b) The

the characteristic diagram is now 3D, providing full in- orhits are elongated along the bar's major axis and usually
formation regarding the interrelations of the initial con-nayve the shape of simple ellipses. However, with increas-
Furthermore, the diagram shown in Figure 3(c) is anothegytremities.

type of ‘_‘characteristic"_diagram (Sellwood & Wilkinson In Figure 4, we present a highly unstable (Stability
1993; Binney & Tremaine 2008; Zotos 2013), where thengex (S.I.)= —17.24) z; periodic orbit in SM with initial
value of the Jacobi integrdl; is plotted against the coor- conditions:zy = 0.86508078, yo = 0, 7y = 6.31880018,
dinate where the minor axis of the bar crossesiffais.  hile the value ofyj, was obtained from the Jacobi inte-
As can be seen in Figures 1 and 2, all the higher resonagta| our numerical calculations indicate that, over the en
orbits encountered in our potential (|.e.,_the 2:3, 3:4, 3:5¢jre range ofF;, our galactic model does not support the
4:7 and 5:9 resonant orbits) have complicated shapes thiygytg family. This is true because the position of the par-
crossing the;/-ax!s multlplg times and at geve_ral positions. gnt periodic orbit in théz, i) phase plane is deeply buried
When constructing the diagram shown in Figure 3(c), W&y, the chaotic region (see Fig. 5(c)) without any indica-
considered where all these higher resonant orbits crossggl, of an existing stability island around the periodicroi
with higher absolute values gb. which could support:; quasi-periodic orbits. Moreover,

In the same vein, we decided to create a new type opur computations reveal that in our barred galaxy model
diagram which is called the “support diagram” and it isthex; periodic orbits are so unstabl§ (.| > 10) that it is
presented in Figure 3(d). In this diagram, we see the evdmpossible to create the corresponding characteristigecur
lution of the g parameter of the parent periodic orbits for (see Fig. 3).
each family as a function of the energy for SM. The aim In the literature, there are some isolated examples of
of this plot is to help us decide which types of resonant orbarred galaxy models, such as the “Cazes” bar (Barnes &
bits support the bar and which do not. The diagram work§ohline 2001), the “model B” of Skokos et al. (2002b)
as follows: the higher a curve is (in other words, greateand the “propeller” orbits in Kaufmann & Patsis (2005),
values ofg) corresponding to a particular resonant family,all of which have ther; orbital family that is no longer
the more supportive the barred structure is for this orbitathe dominant one and other types of regular orbits play
family. We observe that both types of the 1:2 family as wellthe leading role in supporting the barred structure. Thus,
as the 1:3 family highly support the bar, while on the otherour simple galactic model can be considered as a mem-
hand the 1:1 family has no contribution whatsoever to théver of this closed group. In our paper, we demonstrate that
bar (this family favors nuclear ring formation). Here we the role ofx; orbits can be successfully supplemented by
should note that the 1:2 type b family bifurcates from theother types of regular families of orbits which can also sup-
main 1:2 type a family and it is only present at relatively port the bar. From a mathematical point of view, whether
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an orbital family is present or not strongly depends on thef the main 1:1 resonant family) at the progrgde> 0)
choice of the potential describing the properties of the barside of the phase plane. The structure of the phase plane,
The vast majority of papers devoted to the subject of barredowever, changes drastically whan= 2. We observe in
galaxies utilize a Ferrers potential (Ferrers 1877) in ordeFigure 5(b) that the area occupied by 1:1 orbits has been
to model the bar. As it happens, the traditionalorbital  reduced and there are two distinct regions of stability; one
family dominates in galaxy models where a Ferrers potenat the right part of the grid corresponding to prograde 1:1
tial is used. However, this does not necessarily mean thatrbits and one at the left side corresponding to retrograde
21 orbits should always dominate the structure of the phasé:1 orbits. We see, on the other hand, that box orbits swarm
plane of all 2D bar potentials used to model realistic galacthe outer parts of the grid, while several resonant families
tic bars. In fact, in the present paper, we present evidencgich as the cases of 2:3, 3:4, 4.5, 5:7 and 7:9 emerge in-
that numerous resonant orbits can also support the barraitle the box area, thus producing sets of multiple stabil-

structure of a galaxy equally well. ity islands. We also have to notice the presence of a small
chaotic layer which defines the separation between 1:1 and
4.1 Influence of the Strength of the Bar box orbits. Things change even more as the strength of the

bar increases. Figure 5(c) shows the structure of the phase

To explore the influence of the strength of the baon the plane whem = 4, which corresponds to SM. It is evi-
orbital structure of the barred galaxy, we let it vary while dent that the chaotic layer has been transformed into a vast

fixing the numerical values of all the other parameters irfhaotic sea flooding the majority of the phase plane. The

our model according to SM and integrate orbits for the seRMmount of box and higher resonant orbits has been reduced
a = {1,2,3,...,10}. Once the values of the parameterss'gn'f'camly and those orbits are confined to the outer parts

were chosen, we computed a set of initial conditions as de2f the grid. Two additional resonances, that is the 1:2 (type
scribed in Section 3 and integrated the corresponding o@) @nd the 3:5, emerge. Whe‘”f 4 the potential of the
bits, computing the SALI of the orbits and then classifyingPar IS at integer reson.ance\ﬂa—l.z, so we anticipated
the regular orbits into different families. Here we shouldte existence of the 1:2 resonance. In Figure 5(d) where
point out that wherl.1 < a < 2 our model describes the @ = 6, we observe that the extent of the chaotic sea has
properties of a weak rotating bar, but wher 2, we have ~ 9oWn even further, mainly at the expense of box and 1:1
the presence of a strong bar. N orbits. In fact, there are only a few isolated points in the
grid corresponding to box orbits. On the contrary, the 1:2

In Figure 5(a)—(f) we present six grids of initial condi- stability islands have more than doubled their size.

tions(xg, 2o) of orbits that we have classified for different
values of the strength of the bar The numerical calcula- Figure 5(e) and (f), where = 8 anda = 10 respec-

tions reveal that when varies there are eight main types tively, indicates that a further increase in the strengtnef

of regular orbits. All the different regular families can be bar has only a minor influence on the orbital structure of
identified by the corresponding sets of islands which aréhe phase plane. This is true because the amount of chaotic
formed in the phase plane. In particular, we see the eightnd 1:2 (type a) orbits seems to saturate. The most visible
main families already mentioned: (i) box orbits occupy-differences are the following: (i) the 1:1 prograde stapili

ing the outer parts of the phase plane; (i) 1:1 resonant ofisland disappears; (ii) box orbits gain ground again ar (ii

bits surrounding the two central main periodic point; (iii) Some secondary resonances such as the 3:7 and 2:5 appear
1:2 resonant orbits (type a) producing two stability isisind inside the box region. It should be noticed that the islands
(iv) 1:3 resonant orbits generating three tiny islands at threpresenting the 1:3 resonance are so small that they appear
outer parts of the grid; (v) 2:3 resonant orbits displaying &2s isolated points in the grids of Figure 5(a)—(f).

set of three islands; (vi) 3:4 resonant orbits forming a $et o Figure 6(a) shows the resulting percentages of chaotic
four islands; (vii) 3:5 resonant orbits producing a chain ofprhits and those of the main families of regular orbits:as
five islands at the outer parts of the phase plane and (Viijaries. It can be seen that there is a strong correlation be-
5:7 resonant orbits corresponding to a set of seven islandgeen the percentages of most types of orbits and the value
inside the box region. The term “other” refers to all differ- of the strength of the bar. When the bar is abgent 1),
ent types of resonant orbits with 7o < 9 not included  the entire phase plane is covered by 1:1 resonant orbits. As
in the former categories. It is seen that apart from the sewhe strength of the bar is increased, however, the percentag
eral regions of regular motion, we observe the presence @ff 1:1 resonant orbits decreases rapidly at an exponential
a unified chaotic sea which surrounds all the islands of St%te' At the same time, the percentage of chaotic orbits in-
b|||ty The outermost b|aCk th|Ck curve iS the Z\VC deﬁned creases and Wh&m >3 Chaotic Orbits are the most popu_
by Equation (8). lated family, always occupying more than 50% of the phase
Whena = 1 the bar does not exist, the total potential plane. In particular, the largest amount of chaos, around
is integrable and as expected there is no evidence whatsé5%, is observed when = 5. On the other hand, when
ever of chaotic motion in the phase plane of Figure 5(a)a. > 5 the percentage of chaos is reduced almost linearly.
Almost the entire grid is covered by initial conditions cor- The box orbits exhibit the peak of their percentage (around
responding to 1:1 resonant orbits, while we observe a thid0%) ata = 2 and then for2 < a < 6 their rate is
layer of higher resonant 12:12 orbits (whichis a bifurcatio reduced, while forx > 6 this tendency is reversed. The



Determining the Type of Orbits in the Central Regions of BedrGalaxies 9

ecessee
QQuNas=
ggmuam_g
g
~
)
-~
oo e soee
QQuUuUN=am
22402RIRY

§

10
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Fig. 6 Evolution of the percentages of [&ft): the different types of orbits in our barred galaxy model émright): the types of regular
orbits supporting the formation of nuclear rings or a basedcture, when varying the strength of the bar

percentage of the 1:2 resonant orbits starts to grow when The evolution of the percentages of regular orbits sup-
« > 3 and it seems to saturate around 20% when 6.  porting a ring or barred structure as a function of the
At higher values of the strength of the bar that are studstrength of the bat is shown in Figure 6(b). As we ex-
ied, the percentages of box and 1:2 resonant orbits (type @)ained previously, we assume that only the 1:1 resonant
tend to a common value (around 20%), thus sharing twoerbits with 0.5 < ¢ < 1.5 support the formation of nu-
fifths of the entire phase plane. It is evident that in barredtlear rings, while all types of regular orbits with> /a
galaxies, varying the strength of the bar mainly shuffles thsupport the barred structure. Here we have to point out that
orbital content of all the other resonant orbits, whose perthe percentages do not refer to the total number of tested
centages present fluctuations at low values (less than 10%rbits (regular plus chaotic) in each grid but rather to the
Thus, taking into account all the above, we could say thatotal regular orbits. It is seen that for small valuescof

in barred galaxy models the strength of the bamostly  (« < 2.5), as is the case of a weak bar, almost all the regu-
influences box, 1:1, 1:2 (type a) and chaotic orbits. In factlar orbits favor the formation of nuclear rings. This is true
a large portion of 1:1 and box orbits turn into 1:2 (type a)because, as was discussed previously in Figure 5(a)—(b),
and chaotic orbits as the bar becomes stronger, or in oth#éne majority of the phase plane is covered by 1:1 regular
words, as the value ef increases. orbits. However, as the value of increases and the bar
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gains strength, the rate of 1:1 orbits which support ringghe 1:1 stability island is now located almost at the center
decreases rapidly, while at the same time the percentage of the grid, thus containing a mixture of prograde and ret-
regular orbits supporting a barred structure grows steadilrograde 1:1 orbits. It should also be pointed out that as the
and fora > 7 it seems to saturate around 85%. Thereforecentral nucleus becomes more dense (small valueg)of
we may conclude that rings are highly favored in weak bathere is an increase in the allowed velocityf the stars
models, but in galaxy models possessing strong bars onlyear the center of the galaxy.

o ) ;
roughly 5% of orbits support nuclear rings. The resulting percentages of chaotic and regular orbits

for the barred galaxy model as the scale length of the nu-
4.2 Influence of the Scale Length of the Nucleus cleuse, varies are shown in Figure 8(a). It is evident that
) _ box and chaotic orbits are the types of orbits mainly af-
Our next step is to reveal how the overall orbital structurggcted by the scale length of the nucleus. In particular, we
in our barred galaxy model is affected by the scale lengtiiee that when the central nucleus is very dease<(0.15)
of the nucleus:,. As usual, we let this quantity vary while the motion of stars is highly chaotic since about 90% of the
fixing the values of all the other parameters according t@ntire phase plane is covered by chaotic orbits. However,
SM and integrating orbits in the phase plane for the sejs the values of, increase and the nucleus becomes less
¢n = {0.05,0.10,0.15, ...,0.50}. Our numerical calcula-  gense ¢, > 0.2), the percentage of chaos displays a sharp
tions show that most of the main regular families are theyecrease and eventually vanishes whgn> 0.35. The
same as in the previous case. The only difference is thahte of box orbits, on the other hand, only starts to grow
in thg group of regular.families the 1:3 and 5:7 resonaniynen the nucleus is sparse enough & 0.2) and when
fam!l!es are now substituted by the 4:7 and 5:8 resonant - (.3 box orbits are the dominant type occupying about
families. two-thirds of the phase plane. It can be seen in Figure 8(a)
Figure 7(a)—(f) depicts six grids of initial conditions that all the other types of resonant orbits are considerably
(zo, o) Of orbits that we have classified for different val- less affected by the shifting ef,. The rate of 1:1 resonant
ues of the scale length of the nucletjs Again, all the orbits exhibits minor fluctuations for small values of the
different regular families can be identified by the corre-scale length, however, wher > 0.3 it increases, while
sponding sets of islands which are formed in the phasat the same time the percentage of the 1:2 (type a) reso-
plane. It is observed in Figure 7(a) that when the centrahant orbits vanishes. The evolution of the percentages of
nucleus is very dense, that is when = 0.05, the vast the 2:3, 3:5 and higher resonant families of orbits exhibit
majority of the phase plane is covered by chaotic orbitsa similar pattern; they start to grow whep > 0.15 and
but only the 1:1 resonant family survives. There is alsahey decrease far, > 0.35. The percentages of the 4:7
weak evidence of the 2:3 resonance, however, the corrend 5:8 resonant families on the other hand, only have non-
sponding initial conditions are few and deeply buried inzero values when, > 0.25 and then it seems they satu-
the vast chaotic sea. As we increase the value,adind rate around 2%. Therefore, increasing the scale length of
consequently the central nucleus becomes less dense, W nucleus (in other words the nucleus becomes less con-
see in Figure 7(b)4, = 0.1) and (c) ¢, = 0.2) that ad- centrated and dense) in barred galaxy models turns mainly
ditional regular families such as box, 1:2 (type a) and 3:5haotic orbits into box orbits, while resonant orbits assle
emerge inside the chaotic sea. Moreover, the extent of thaffected.
1:1 and 1:2 stability islands grows as the scale length of . .
the nucleus increases. The structure of the phase plane be- Figure S(b) shows_ the ev_olutlon of the percentages of
comes very interesting in Figure 7(d) where= 0.3. This regul_ar orbits supporting a ring or barred structuss a
is true for many reasons. First of all, the amount of chaos igunctlon of the scale length of the n_ucleu;5. We ab-
decreased and the prograde 1:1 stability island disaptpeaﬁs“;}rve that when the central nucleus is dense enough the

At the outer parts of the phase plane, box orbits take conlast majority of regular orbits support nuclear rings, how-

trol, but the 1:2 stability islands are significantly reddce ever, as the nucleus becomes less dense the rate of regu-

It can also be seen that the entire phase plane is swarmlaad orbits that support the bar grows constantly and when

by many types of resonant orbits producing several sets d¢f! > 0.25 1t domlnates._ At the same time, the percent-
stability islands. In particular, the 2:3 and 3:5 are the mos29¢€ of ring structure orbits decreases rapidly and sairate
populated resonant families ' around 20% when,, > 0.3. Thus, one may conclude that

i in barred galaxy models with dense nuclei only the for-
In Figure 7(e) and (f) we present the cases Whereaiion of nuclear rings is favored, but when the central
¢n = 0.4ande, = 0.5respectively, thatis when the central 1, cjeys is sparse enough about 40% of the total types of

nucleus is sparse enough. In both cases, the structure of thgy,|ar orbits support the barred structure and only 20% of
grid is similar and we observe that the entire phase plang,om support nuclear rings.

is only covered by regular orbits. In fact, a large portion of

the grid corresponds to box orbits, but all the resonant fam-

ilies exist inside the box region. We should notice that the

1:2 resonance is completely absent when the scale lengths according to SMa = 4, thus the threshold value for the ragids
of the spherical nucleus obtains high values. Furthermorg/a = 2.
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Fig. 8 Evolution of the percentages of [&ft): the different types of orbits in our barred galaxy model @mright): the types of regular
orbits supporting the formation of nuclear rings or a bastdcture, when varying the scale lengthof the central spherical nucleus.

4.3 Influence of the Angular Velocity velocity is given in Figure 9(a)—(f). As usual, all the dif-
ferent types of regular families can be easily identified by

The next parameter under investigation is the angular vethe corresponding sets of islands which are produced in
locity €, of the bar. We shall try to understand how thethe phase plane. In Figure 9(a) we present the case where
overall orbital structure in our barred galaxy model is in-(, = ( which means that the bar does not rotate. Due
fluenced by this parameter. Again, we let this quantity varyto the absence of rotation, the Coriolis force is zero and
while fixing the values of all the other parameters of ourtherefore, the phase plane is symmetrical with respect to
galactic model according to SM and integrating orbits inthez = 0 axis. We observe a unified chaotic domain at the
the phase plane forthe de¢ = {0,0.25,0.5,...,2.5}.The  central parts of the phase plane, but there are also numer-
numerical experiments indicate that in this case, the maigus stability islands corresponding to resonant families.
families of regular orbits are similar to those discussed inWhen(;, = 0.5, which is a model of a slowly rotating bar,
subsection 4.2. it can be seen in Figure 9(b) that the structure of the phase

In order to explore the structure of the phase planalisplays minor differences with respect to Figure 9(a)hwit
when )}, varies, we integrated orbits in several grids. Athe growth of the region occupied by chaotic orbits and the
sample of six grids of initial conditiongry, ) of orbits  depopulation of box, 2:3, 3:4 and higher resonant orbits
that we have classified for different values of the angular
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Fig.10 Evolution of the percentages of (eft): the different types of orbits in our barred galaxy modedl &b-right): the types of
regular orbits supporting the formation of nuclear ringadrarred structure, when varying the angular velocity otdue?,,.

being most visible. As the bar gains speed, this tendencsee that the angular velocity mainly affects the fraction
is continued in Figure 9(cX¥, = 1) and (d) €, = 1.5)  of box and chaotic orbits. When there is no rotation of
and as a result the 3:4 and higher resonant orbits are cortire bar (2, = 0), box and chaotic orbits seem to share
pletely absent. In Figure 9e whefg, = 2, we see that about 60% of the phase plane. As the value of the angu-
the prograde 1:1 stability island disappears, while the 2:8ar velocity increases and the bar gains speed, we observe
resonance has been depopulated so much that the cortbat the percentages of both box and chaotic orbits evolve
sponding initial conditions appear as isolated points @ th similarly but with different directions. Being more pregjs
grid. The region of box orbits, on the other hand, seemshe rate of box orbits decreases uifitii = 1.25, but for
to increase. It is evident from Figure 9(f), that in the casdarger values of the angular velocity it exhibits an inceeas
of a fast rotating bar{f;, = 2.5), the region of box or- The percentage of chaotic orbits, on the other hand, in-
bits increases even further, thus suppressing the 1:2 (typmeases rapidly, however, whéh, > 1.75 it displays a
a) stability islands. One may reasonably conclude that theinor decrease. Nevertheless, the motion of stars is highly
faster the rotation of the bar is, the more chaos is observezhaotic throughout as the percentage of chaotic orbits re-
in the barred galaxy. mains larger than any other individual regular family. In
Figure 10(a) shows the evolution of the resulting perfact, in most cases more than half of the phase plane is
centages of chaotic and regular orbits for the barred galaxgccupied by chaotic orbits and the peak (around 75%) is
model as the angular velocit,, varies. Once more we Observed wheii), = 1.75. One may see in Figure 10(a)
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that all the other types of resonant orbits are considerabliy initial conditions of regular orbits, while a weak chaoti
less affected by the shifting é1;,. The rate of the 1:1 res- layer exists at the central parts of the grid separating re-
onant orbits decreases, especially$yr > 1.25 when the  gions of box and 1:1 resonant orbits. We also observe the
prograde 1:1 stability islands starts to shrink until itagis ~ presence of several chains of stability islands inside the
pears completely from the phase plane. In the same veilbox region. These sets of stability islands are produced by
the percentage of the 1:2 resonant (type a) family exhibitsecondary resonances such as the 4:5, 5.6, 5:7, 6:7 and 7:9
a minor almost linear decrease. The rate of the 2:3 familyfamilies. The grid shown in Figure 11(b) whefg = 1
on the contrary, shows a rapid reduction and vanishes whes very similar to those discussed earlier in Figures 5(c)
Qp > 2. The 3:4 and higher resonant orbits seem to be unand 9(c). Figure 11(c) shows a grid whetg = 80 and
able to cope with the rotation of the bar and their rates are.,.x = 1.5 kpc. Here the area occupied by chaotic orbits
zeroed very quickly even at low speedy( > 0.75). Here  is reduced, as there is a considerable increase of the 1:2
we should point out that only the 5:9 resonant family is(type a) stability islands. The increase in the amount of 1:2
favored by the rotation of the bar since it is the only regu<{type a) resonant orbits continues in Figure 11(d) where
lar family that constantly augments its rate with incregsin E; = 290. In this case, box and 1:2 resonant orbits (type
Q. Therefore, increasing the angular velocity of the bara) share the majority of the phase plane. A weak chaotic
generally turns different types of regular orbits into cti@o layer is, however, still present, but the 1:1 resonance is
ones. confined to the center of the grid producing multiple stabil-
The evolution of the percentages of regular orbits suplty islands. The 1:2 resonance takes over almost the entire
porting either a ring or barred structure as a function ofPhase plane in Figure 11(e) wheflg = 593. In this case
the angular velocity of the ba,, is given in Figure 10(b). We should note that apart from the 1:2 type resonance, the
We observe that the majority of regular orbits support thel:2 type b (corresponding to figure-eight orbits) emerges at
barred structure throughout, but only about one-fifth of theh€ outer parts of the phase plane. Things are quite differ-
total regular orbits support the formation of nuclear rings €ntin Figure 11(f) wher&; = 780 andz.x = 4 kpc. We
In particular, for relatively small speed€( < 1.25) the ~ See asmall decrease in the extent of the 1:2 (type a) islands
rate of ring structure orbits increases, reaching about,2504U€ to the increase in the amount of box orbits at the outer
while for larger values of the angular velocity it saturatesParts of the phase plane, while 1:2 type b orbits disappear.
around 20% of the total regular orbits. At the same timeAt the center of the grid we can distinguish a well-formed
the rate of regular orbits supporting a barred structure disl:1 stability island, while in the neighborhood there is a
plays a small fluctuation around 45% and only in modelgnixture of delocalized initial conditions correspondiryg t
with fast rotating bars{, > 1.25) increases rapidly, oc- chaotic, 1:1 and higher resonant orbits.
cupying more than two-thirds of regular orbits. Therefore, | ooking at Figure 11(a)—(f) we see that, as the value of
we may conclude that slowly rotating bars support the forthe energy increases, in other words we study the motion
mation of nuclear rings, but fast rotating bars mainly favorof stars moving at larger distances from the galactic center

the barred structure. the 1:2 resonant orbits dominate the vast majority of the
phase plane. Here we should notice that according to SM
4.4 Influence of the Energy the value of the strength of the bards= 4, so the poten-

tial of the harmonic oscillator used for the description of

The last parameter under investigation is the total orbitalhe bar is at resonance; the 1:2 resonance to be more pre-
energyE;. In order to explore how the energy level affectscise. Thus, a natural and fair question arises: what happens
the overall orbital structure of our barred galaxy model o the phase plane if we change the value of the strength of
we use the normal procedure according to which we lethe bar? To give an answer to this question, we chose the
the energy vary while fixing the values of all the other pa-valuea = 9 (which also corresponds to integer resonance;
rameters of our galactic models according to SM. At thisl:3) and reconstructed the grid of initial conditions shown
point, we should point out that the particular value of thein Figure 11(e). Our results are given in Figure 12. Now,
energy determines the maximum possible value ofsthe the harmonic oscillator is at the 1:3 resonance and it can
coordinate(z,,.x ) On the(z, i) phase plane. To select the be seen that the 1:3 resonance prevails, while the 1:2 res-
energy levels, we chose those values of the energy whicnant orbits define two small stability islands confined to
give Zmax = {0.5,1,1.5,...,4}. Our numerical computa- the center of the grid. This is because the model assumes
tions show that the main families of regular orbits remain@ constant ratio of andy frequencies throughout, which

the same as those discussed in the previous two subsdtowever generally is not the case. Therefore, we conclude
tions. that for high values of the orbital energy corresponding to

star orbits moving sufficiently far from the central nucleus
(rmax > 1.5 kpc), the influence of the bar prevails over
that of the central nucleus.

Figure 11(a)—(f) shows six grids of initial conditions
(z0, o) Of orbits that we have classified for different val-
ues of the Jacobi integrddy. In Figure 11(a)E; = —77
which corresponds to local motion of stars moving very  In the following Figure 13(a) we present the evolu-
close to the central nucleus with,,,, = 0.5 kpc. Itis tion of the resulting percentages of chaotic and regular or-
seen that the vast majority of the phase plane is coverduits for the barred galaxy model as the value of the en-
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Fig. 12 Orbital structure of théx, &) phase plane of the barred galaxy model whes 9 and E; = 593, while the values of all the
other parameters are defined according to SM. We observéhthat3 resonant orbits occupy the vast majority of the pipéesee.

ergy 5 varies. We observe that when the motion of starsant orbits take over more than 80% of the entire phase
is at low energies, i.e., orbits which move very close toplane, although for larger values of energy their rates ex-
the galactic center, they are highly regular, with box anchibit a small decrease due to the simultaneous increase of
1:1 resonant orbits being the most populated families. Théhe box orbits. All the other resonant families seem to be
largest amount of chaotic orbits (around 65%) is observednmune to the increase in energy since their percentages
when the value of energy is near zero, but with increasare almost unperturbed throughout; all these families-prac
ing Ey their rate drops rapidly and at higher energy val-tically disappear wher; > 400. Taking into consider-
ues it eventually vanishes. The percentage of box orbitation all the above-mentioned analysis, we may conclude
displays strong fluctuations with sudden drops and peakshat in barred galaxy models the value of energy mostly
The rate of the 1:1 resonant orbits on the other hand, foaffects the chaotic, box, 1:1 and 1:2 (type a) resonant or-
Ej5 > 55, evolves almost monotonically, keeping a con-bits. We would like to point out that the 1:2 type b resonant
stant value around 5%. It is also seen that the percentagebits are only present in barred galaxy models with high
of 1.2 (type a) resonant orbits starts to grow sharply as soo@nough energy.

as the energy grows and whéfy > 100 the 1:2 (type a) Of particular interest is to interpret the evolution of the
family is the dominant type. In fact, we see that for highpercentages of regular orbits supporting a ring or barred
values of the Jacobi integrallf = 600) the 1:2 reso- structure as a function of the Jacobi integial Our nu-
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Fig. 13 Evolution of the percentages of (eft): the different types of orbits in our barred galaxy moded #b-right): the types of
regular orbits supporting the formation of nuclear ringadmarred structure, when varying the value of the Jacohjiaté’;.

Fig. 14 Grids of initial conditiong xo, 2o) when (ateft): E; = 1 and (bright): E; = 593. Each point is colored according to the value
of the ratiog, thus distinguishing between regular orbits supporting formation(0.5 < g < 1.5) and a barred structufg > 2).

merical results are given in Figure 13(b) where it can beport the formation of nuclear rings, while the 1:2 (type a
seen that the barred structure is always more favored. Tand b) resonant orbits support the barred structure of the
be more precise, for low energieBy < 20) only about galaxy.
25% of the total regular orbits support the formation of nu-
clear rings, while for larger values of energy the rate drops CONCLUSIONS
to around 5% and remains there throughout. On the con-
trary, we see that the percentage of regular orbits support this work, we used an analytic galactic gravitational
ing the bar grows rapidly with increasing energy, a|th0ugHﬂOde| which embraces the general features of a barred
in high energy modelsH; > 410) their percentage seems galaxy containing a spherical, dense and massive nucleus.
to saturate around 90%. Summarizing, low energy modelghe choice of the model potential for the description of the
support the formation of both nuclear rings and bars, whildar was made mainly taking into account the fact that near
high energy models are only favored for barred structureshe center of a galaxy the motion of stars can be approxi-
mated by harmonic oscillations. Our aim was to investigate
Figure 14(a)—(b) shows another perspective related thow the basic parameters of the Hamiltonian system influ-
the grids of Figure 11(b) and (e). Here, each initial condi-ence the level of chaos and also the distribution of regular
tion is colored according to the value of the ragiothus  families in our barred galaxy model. Our results strongly
distinguishing between regular orbits supporting ring for suggest that both the level of chaos and the distribution of
mation (0.5 < ¢g < 1.5) and a barred structurg > 2).  regular families are indeed very dependent on the parame-
It becomes evident that the 1:1 resonant orbits indeed supers of the galaxy. We believe that the presented outcomes
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can provide interesting information regarding the streetu
and properties of barred galaxies.

In our research, we chose to investigate the influence
of four basic quantities that are part of the galactic model,
namely the strength of the bar, the scale length of the nu-
cleus, the angular velocity of the bar and the value of the to-
tal orbital energy (Jacobi constant). We decided not to ex-
plore the influence of the mass of the nucleus for two main
reasons: (i) it has been extensively studied in earlier gork
(see, e.g. Hasan & Norman 1990; Hasan et al. 1993; Zotos
2012a; Zotos & Carpintero 2013) and (ii) in this model the
mass of the nucleus significantly affects the size of the grid
(in other words the values af,,,, andz,.), SO it was
impossible to set a constant energy level and then vary the
mass of the nucleus. We also tried to find out which regular
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support the formation of nuclear rings, using thealue integration time

as the only criterion for this task. The main results of our ) . -
research can be summarized as follows: Fig. A.1 Evolution of the total number of orbits classified as reg-

1)

)

®3)

(4)

®)

ular in the SM model, using the SALI chaos indicator, as afunc

. —7
is the fact that the traditional; orbital family does ~Value of SALIwas fixed at0™".

not always dominate th? s-truct-urgs of all 2D barred(6) A strong correlation between the value of the energy
galaxy models, thus verifying similar outcomes (see,

. i ’and the percentages of chaotic, box, 1:1 and 1:2 reso-
ﬁ.g.fBarnezgc thhI|2r;)e0520?1d Sléokoshet al. 2002:)'(1 nant orbits was found to exist. Moreover, low energy
aurmann & Fatsis )- Indeed, we have presented . 5dels support the formation of both nuclear rings and
numerical evidence that several resonant orbits which bars, while high energy models only favor the barred
are not related to the; family can support the bar. !

structure.
In our barred galaxy model, several types of regular or-
bits exist, but there are also extended chaotic domains We consider the present results as an initial effort and
separating the areas of regularity. In particular, a larg@also a promising step in the task of understanding the or-
variety of resonant orbits (i.e. 1:1, 1:2, 1:3, 2:3, 3:4,bital structure of barred galaxies. Taking into account tha
3:5, 4:7, 5:7, 5:8, 5:9 and higher resonant orbits) ar@ur outcomes are encouraging, it is in our future plans to
present, thus making the orbital structure richer. Herauitilize a logarithmic potential for describing the proper-
we must clarify that by the term “higher resonant or-ties of the bar, thus expanding our investigation in global
bits” we refer to resonant orbits with a rational quo- motion as well as into three dimensions, exploring how
tient of frequencies made from integerss, which of  the basic parameters influence the nature of the 3D orbits.
course do not belong to the main families. Furthermore, of particular interest would be to reveal the
It was found that in barred galaxy models the strengtltomplete network of periodic orbits, thus shedding some
of the bara mostly influences box, 1:1, 1:2 and chaotic light on the evolution of periodic orbits as well as their
orbits, turning a large portion of 1:1 and box orbits stability when varying all the available parameters of the
into 1:2 and chaotic orbits as the bar becomes strongegalactic model.
or in other words, as the value afincreases. As ex-
pected, galaxy models with relatively strong bars doAcknowledgementsThe authors would like to express
not favor the formation of nuclear rings. their warmest thanks to the anonymous referee for the care-
Increasing the scale length of the nucleus (in otheful reading of the manuscriptand for all the apt suggestions
words the nucleus becomes less concentrated ar@nd comments which allowed us to significantly improve
dense) mainly turns chaotic orbits into box orbits, both the quality and the clarity of our paper.
while resonant orbits are less affected. Dense nuclei
only favor the formation of nuclear rings, but when the
central nucleus is sparse enough about 40% of the total,hendix A: STICKY ORBITS AND NUMERICAL
types of regular orbits support the barred structure and INTEGRATION TIME
only 20% of them the nuclear rings.
As the bar gains speed, different types of regular orsually, when investigating the regular or chaotic natdre o
bits become chaotic, occupying more than 70% of theorbits in galactic potentials, we try to keep the integnmatio
entire phase plane. We found that slowly rotating bargime as long as 1 Hubble time because this allows us to re-
support the formation of nuclear rings, while fast ro- late the calculations to our Universe. However, in previous
tating bars mainly favor the barred structure. research (Zotos & Carpintero 2013; Zotos & Caranicolas
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