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Abstract We use a simple dynamical model which consists of a harmonic oscillator and a spherical com-
ponent, in order to investigate the regular or chaotic character of orbits in a barred galaxy with a central
spherically symmetric nucleus. Our aim is to explore how thebasic parameters of the galactic system in-
fluence the nature of orbits, by computing in each case the percentage of chaotic orbits, as well as the
percentages of different types of regular orbits. We also give emphasis to the types of regular orbits that
support either the formation of nuclear rings or the barred structure of the galaxy. We provide evidence that
the traditionalx1 orbital family does not always dominate in barred galaxy models since we found several
other types of resonant orbits which can also support the barred structure. We also found that sparse enough
nuclei, fast rotating bars and high energy models can support the galactic bars. On the other hand, weak
bars, dense central nuclei, slowly rotating bars and low energy models favor the formation of nuclear rings.
We also compare our results with previous related work.
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1 INTRODUCTION

It is well known to astronomers that axial symmetry in
galaxies is only a first approximation. In essence, galax-
ies exhibit deviation from axial symmetry, which can be
very small or more extended. In the latter category, we may
include the case of barred galaxies. Observations indicate
that a large percentage of disk galaxies, about 65%, show
bar-like formations (e.g., Eskridge et al. 2000; Sheth et al.
2003). Observations also show that barred galaxies may
display different characteristics. There are galaxies with
a prominent barred structure and also galaxies with faint
weak bars. Moreover, there are also barred galaxies with
massive and less massive bulges. In some cases, the forma-
tion of the central bulges is the result caused by dynamical
instabilities in the disk (Kormendy & Kennicutt 2004).

In fact, bars are non-axisymmetric structures that can
redistribute the angular momentum of a galaxy, thus favor-
ing the transport of gas through them to the inner regions
where it may trigger star formation and play an important
role in the evolution of these stellar systems (e.g., Muñoz-
Tuñón et al. 2004; Sheth et al. 2005). In this way, consid-
erable changes occur in the morphology and structure of
barred galaxies. Such a change is exhibited by a significant
increase in the mass of the bulge in galaxies with bars (e.g.,
Friedli & Martinet 1993; Marinova & Jogee 2007).

An important and striking phenomenon in barred
galaxies is associated with nuclear rings, which are ac-
tive sites of new star formation (e.g., Knapen et al. 1995;
Mazzuca et al. 2008; Sandstrom et al. 2010; Hsieh et al.
2011). Some scientists have the impression that the forma-

tion of nuclear rings is due to the effect of the non axially
symmetric potential of the bar in an area with plenty of in-
terstellar gas. A key role in this mechanism is played by the
torque of the bar, which causes the gas to form the nuclear
rings (Kim et al. 2012b). Observations show that the rate
of star formation in the nuclear rings is not only different
in several types of barred galaxies but also varies signif-
icantly with time (e.g., Buta et al. 2000; Benedict et al.
2002; Comerón et al. 2010).

The formation and evolution of dust lanes and nuclear
rings have been extensively studied using numerical simu-
lations (e.g., Piner et al. 1995; Englmaier & Gerhard 1997;
Maciejewski et al. 2002; Regan & Teuben 2003; Thakur
et al. 2009). The formation of nuclear rings from the reso-
nant interaction of gas with the potential of the bar appears
not to be consistent with recent studies indicating that these
formations are probably due to a different mechanism (e.g.,
Kim et al. 2012a). According to this mechanism, there is
a centrifugal barrier which cannot be overcome by the in-
flowing gas. This barrier is responsible for the formation
of the nuclear rings. Finally, recent research reveals that
the more massive the bar is, the smaller the formed nuclear
rings are. Here we should mention that the observational
data justify the above results (Comerón et al. 2010).

Over recent decades, a huge amount of research work
has been devoted to understanding the orbital structure
in barred galaxy models (e.g., Athanassoula et al. 1983;
Pfenniger 1984; Combes et al. 1990; Athanassoula 1992;
Pfenniger 1996; Kaufmann & Contopoulos 1996; Olle &
Pfenniger 1998; Pichardo et al. 2004). The reader can find
more information about the dynamics of barred galaxies
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in the reviews by Athanassoula (1984); Contopoulos &
Grosbol (1989); Sellwood & Wilkinson (1993). We would
like to point out that all the above-mentioned references
on the dynamics of barred galaxies are exemplary rather
than exhaustive. However, we should like to discuss briefly
some of the recent papers on this subject. Skokos et al.
(2002a) conducted an extensive investigation regarding the
stability and morphology of both two-dimensional (2D)
and three-dimensional (3D) periodic orbits in a fiducial
model representative of a barred galaxy. The work was
continued in the same vein in Skokos et al. (2002b), where
the influence of the system’s parameters on the 3D peri-
odic orbits was revealed. Moreover, Kaufmann & Patsis
(2005) presented evidence that in 2D models with suffi-
ciently large bar axial ratios, stable orbits having propeller
shapes play a dominant role in the bar structure. Manos &
Athanassoula (2011) estimated the fraction of chaotic and
regular orbits in both 2D and 3D potentials by computing
several sets of initial conditions and studying how these
fractions evolve when the energy and also basic parameters
of the model, such as the mass, size and pattern speed of the
bar, vary. Computing the statistical distributions of sumsof
position coordinates, Bountis et al. (2012) quantified weak
and strong chaotic orbits in 2D and 3D barred galaxy mod-
els. A time-dependent barred galaxy model was utilized
in Manos et al. (2013) in order to explore the interplay
between chaotic and regular behavior of star orbits when
the parameters of the model evolve. Finally, in Caranicolas
& Papadopoulos (2007); Caranicolas & Zotos (2010), we
conducted an investigation only regarding the issue of reg-
ular vs chaotic orbits in simple barred spiral potentials.
In the present paper on the other hand, we shall try to
contribute to this active field by classifying ordered orbits
into different regular families and monitor how their rates
evolve when basic quantities of the system vary.

Lees & Schwarzschild (1992), in a thorough pioneer-
ing study, analyzed the orbital content in the coordinate
planes of triaxial potentials and also in the meridional
plane of axially symmetric model potentials, focusing on
regular families. Few years later, Carpintero & Aguilar
(1998) developed a method based on the analysis of the
Fourier spectrum of the orbits which can not only distin-
guish between regular and chaotic orbits, but also between
loop, box and other resonant orbits either in 2D or 3D po-
tentials. This spectral method was improved and applied
in Muzzio et al. (2005) in order to identify the different
kinds of regular orbits in a self-consistent triaxial model.
The same code was improved even further in Zotos &
Carpintero (2013), when the influence of the central nu-
cleus and of the isolated integrals of motion (angular mo-
mentum and energy) on the percentages of orbits in the
meridional plane of an axisymmetric galactic model com-
posed of a disk and a spherical nucleus were investigated.
In two recent papers, Caranicolas & Zotos (2013) and
Zotos & Caranicolas (2013), analytical dynamical models
describing the motion of stars in both disk and elliptical
galaxies containing dark matter were used in order to in-

vestigate how the presence and the amount of dark matter
influences the regular or chaotic nature of orbits as well as
the behavior of the different families of resonant orbits.

Taking into account all the above, there is no doubt
that knowing the overall orbital structure in the central re-
gions of barred galaxies is an issue of paramount impor-
tance. For this reason, we decided to use a simple model
that describes local motion near the central area of a barred
galaxy. Our aim is to investigate the regular or chaotic char-
acter of motion and to study how the different families of
orbits are affected by varying the physical quantities en-
tering the model. Here we must point out that the present
article belongs to a series of papers (Zotos & Carpintero
2013; Caranicolas & Zotos 2013; Zotos & Caranicolas
2013; Zotos & Caranicolas 2014) that have as their main
objective the orbit classification (not only regular versus
chaotic but also separating regular orbits into different reg-
ular families) in different galactic gravitational potentials.
Thus, we decided to follow a similar structure and apply
the same numerical approach to all of them.

The structure of the present paper is as follows: In
Section 2 we present a detailed description of the prop-
erties of our gravitational galactic model. All the differ-
ent computational methods used in order to determine the
character of orbits are described in Section 3. In the fol-
lowing, Section 4, we explore how the basic parameters
involved in the dynamical system influence the percent-
ages of all types of orbits and which of them support ei-
ther a bar or ring structure. Our article ends with Section 5,
where the conclusions and the discussions of this research
are presented.

2 PROPERTIES OF THE GALACTIC MODEL

The total gravitational potentialΦ(x, y) consists of two
components: the bar potentialΦb and the central, spherical
componentΦn. For the description of properties of the bar
we use the following simple harmonic oscillator potential

Φb(x, y) =
ω2

2

(

x2 + αy2
)

, (1)

whereα is a parameter corresponding to the strength of
the bar, while the parameterω is used for consistency of
the galactic units.

The spherically symmetric nucleus is modeled by a
Plummer potential (e.g., Binney & Tremaine 2008)

Φn(x, y) =
−GMn

√

x2 + y2 + c2
n

. (2)

Here G is the gravitational constant, whileMn and cn

are the mass and the scale length of the nucleus, respec-
tively. This potential has been used successfully in the past
in order to model and therefore interpret the effects of
the central mass component in a galaxy (see, e.g. Hasan
& Norman 1990; Hasan et al. 1993; Zotos 2012a; Zotos
& Carpintero 2013). At this point, we must make clear
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that Equation (2) is neither intended to represent the po-
tential of a black hole nor that of any other compact ob-
ject, but just the potential of a dense and massive nucleus.
Therefore, any relativistic effects are out of the scope of
this work.

The 2DΦ(x, y) was chosen because we believe that
it is an approximation for describing local motion near the
central parts of a barred galaxy. Our choice was motivated
by two reasons: (i) the small number of input parameters of
Equation (1) is an advantage concerning the performance
and speed of the numerical calculations in comparison with
other much more complicated potentials describing bars
(i.e. the Ferrers bar, Ferrers 1877) and (ii) it corresponds
to a constant density profile which, however, can be as-
sumed when studying local motion very close to the galac-
tic center, like in our case. Furthermore, the same poten-
tial has been used successfully in many previous works
for modeling the properties of local motion in the central
parts of a galaxy (e.g., Caranicolas 1998; Caranicolas &
Karanis 1998; Caranicolas & Papadopoulos 2005; Zotos
2011, 2012b). Note that the density corresponding to the
total potentialΦ(x, y), on the other hand, is not constant
but it declines with increasing distance from the origin due
to the contribution of the spherical nucleus.

The bar rotates counterclockwise at a constant angular
velocityΩb. Therefore the effective potential is

Φeff(x, y) = Φ(x, y) − 1

2
Ω2

b

(

x2 + y2
)

. (3)

In our study, we use the well-known system of galactic
units, where the unit of length is 1 kpc, the unit of mass is
2.325 × 107M⊙ and the unit of time is0.9778 × 108 yr.
The velocity unit is 10 km s−1, the unit of angular momen-
tum (per unit mass) is 10 km kpc−1 s−1, while G is equal
to unity. The energy unit (per unit mass) is 100 km2s−2.
In these units, the values of the involved parameters are:
ω = 10, α = 4, Mn = 50 (corresponding to 1.2× 109

M⊙), cn = 0.25 andΩb = 1. This set of the values of the
parameters defines the Standard Model (SM).

The equations of motion are described by

r̈ = −∇Φeff − 2 (Ωb × ṙ) , (4)

where the term−2 (Ωb × ṙ) represents the Coriolis force.
Decomposing Equation (4) into itsx andy parts, we obtain

ẍ = −∂Φeff

∂x
+ 2Ωbẏ, ÿ = −∂Φeff

∂y
− 2Ωbẋ, (5)

where the dot indicates derivative with respect to time.
In the same vein, the equations describing the evo-

lution of a deviation vectorw = (δx, δy, δẋ, δẏ) which
joins the corresponding phase space points of two initially
nearby orbits, needed for the calculation of standard chaos
indicators (SALI in our case), are given by the following

variational equations

˙(δx) = δẋ, ˙(δy) = δẏ,

( ˙δẋ) = −∂2Φeff

∂x2
δx − ∂2Φeff

∂x∂y
δy + 2Ωbδẏ,

( ˙δẏ) = −∂2Φeff

∂y∂x
δx − ∂2Φeff

∂y2
δy − 2Ωbδẋ. (6)

Consequently, the corresponding Hamiltonian to the
effective potential given in Equation (3) reads

HJ =
1

2

(

ẋ2 + ẏ2
)

+ Φeff(x, y) = EJ, (7)

whereẋ andẏ are momenta per unit mass, conjugate tox
andy respectively, whileEJ is the numerical value of the
Jacobi integral, which is conserved. Thus, an orbit with a
given value for its Jacobi integral is restricted in its motion
to regions in whichEJ ≤ Φeff , while all other regions are
forbidden with respect to the star.

3 COMPUTATIONAL METHODS

For distinguishing between order and chaos in our models
we use the SALI method (Skokos 2001) (for more details
on how the SALI method works see Zotos & Carpintero
2013). We chose, for each value of the free parameter of
the potential, a dense grid of initial conditions in the(x, ẋ)
phase plane, regularly distributed in the area allowed by
the value of the energyEJ. In all cases,y0 = 0, while ẏ0 is
found from the Jacobi integral (Eq. (7)). The distance be-
tween the points of the gird along thex andẋ directions,
or in other words its density, was calibrated in such a way
so that every grid contains around 15 000 orbits. For each
initial condition, we integrated the equations of motion (5)
as well as the variational equations (6) with a double pre-
cision Bulirsch-Stoer algorithm (e.g., Press et al. 1992).In
all cases, the value of the Jacobi integral (Eq. (7)) was con-
served better than one part in10−11, although for most or-
bits, it was better than one part in10−12.

All initial conditions of orbits are numerically inte-
grated for104 time units which correspond to about1012

yr or in other words to about 100 Hubble times. This vast
time of numerical integration is justified due to the pres-
ence of the so called “sticky orbits”1. Therefore, if the in-
tegration time is too short, any chaos indicator will mis-
classify sticky orbits as regular ones (see Appendix A for
more details and examples). In our work we decided to in-
tegrate all orbits for a time interval of104 time units in
order to correctly classify sticky orbits with sticky periods
of at least 100 Hubble times. At this point, it should be clar-
ified that sticky orbits with sticky periods larger than104

time units will be counted as regular ones, since such ex-
tremely high sticky periods are completely out of the scope
of our research.

The distinction between order and chaos is only a first
step for interpreting the overall orbital structure of the

1 A sticky orbit is a chaotic orbit which behaves as a regular one for a
long time period before revealing its true chaotic nature.
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galactic system. The second and more important step is
the classification of ordered orbits into different regular
families. For this purpose we use the frequency analysis
of Carpintero & Aguilar (1998) for categorizing regular
orbits. About thirty years ago, Binney & Spergel (1982,
1984) proposed a computational method, dubbed “spec-
tral dynamics” for the task of orbit classification, while
later onŠidlichovský & Nesvorný (1996) and Carpintero &
Aguilar (1998) substantially improved this method. Zotos
& Carpintero (2013) further refined the numerical code for
classifying orbits in the meridional(R, z) plane. The very
same algorithm was used in all the papers of this series:
Zotos & Carpintero (2013); Caranicolas & Zotos (2013);
Zotos & Caranicolas (2013); Zotos & Caranicolas (2014),
as well as in Muzzio et al. (2005) and Carpintero & Muzzio
(2012).

4 NUMERICAL RESULTS

In this section, we shall present all the numerical results
of our research. We numerically integrate several sets of
orbits in order to distinguish between regular and chaotic
motion. We use the initial conditions of orbits mentioned
in Section 3 in order to construct the corresponding grids,
always taking values inside the Zero Velocity Curve (ZVC)
defined by

1

2
ẋ2 + Φeff(x, y = 0) = EJ. (8)

In most cases, the value of the Jacobi integral was set
to EJ = 1.5 and kept constant. However in the last subsec-
tion where we investigate the influence of the orbital en-
ergy, the value of the Jacobi integral is variable. We chose
an energy level which givesxmax ≃ 1 kpc, wherexmax

is the maximum possible value of the coordinatex on the
(x, ẋ) phase plane, since our study is focused on local mo-
tion of stars. Once the values of the parameters are cho-
sen, we compute a set of initial conditions as described
in Section 3 and integrate the corresponding orbits calcu-
lating the value of SALI and then classifying the regular
orbits into different families. Each grid contains roughly
a total of 15 000 initial conditions(x0, ẋ0) of orbits with
y0 = 0, while ẏ0 is always obtained from the Jacobi in-
tegral (Eq. (7)). In each case, we only let one parameter
vary, while all the others have values according to the SM
described in Section 2.

The numerical calculations show that in our barred
galaxy model there are seven main types of orbits: (i) box
orbits; (ii) 1:1 resonant orbits; (iii) 1:2 resonant orbits(type
a); (iv) 1:2 resonant orbits (type b); (v) 2:3 resonant orbits;
(vi) 3:4 resonant orbits, and (vii) chaotic orbits. Apart from
the main families of orbits, however, several secondary res-
onances are also present.

In Figure 1(a)–(f) we present an example of each of
the six basic types of regular orbits, while Figure 2(a)–(f)
shows characteristic examples of the secondary resonant
orbits. The box orbit shown in Figure 1(a) was computed

until t = 50 time units, while all the parent2 periodic orbits
were computed until one period was completed. The black
thick curve circumscribing each orbit is the limiting curve
in the(x, y) plane defined asΦeff(x, y) = EJ.

In Table 1 we provide the type, the initial conditions
and the values of the variable parameters for all the de-
picted orbits. In the resonant cases, the initial conditions
and the periodTper correspond to the parent periodic or-
bits. Here we would like to point out that resonant 1:2 type
b orbits and resonant 1:3 orbits are only present in galaxy
models with relatively high orbital energy(EJ > 100).

At this point, we would like to clarify some issues re-
garding the nomenclature of the orbits in our model. In
earlier related articles, orbits in barred galaxies are usually
classified into four main categories: thex1 family which
consists of elongated orbits along the bar, familiesx2 and
x3 the orbits of which are also elongated but perpendicular
to the bar and the retrogradex4 family (e.g., Contopoulos
& Papayannopoulos 1980). In the present case however,
we decided to follow for consistency the same classifica-
tion used in all previous papers of this series, according to
which the orbits are separated into three main categories:
(i) box orbits, (ii) n : m resonant orbits, and (iii) chaotic
orbits. According to our notation, all resonant orbits have
the following recognizablen : m oscillatory pattern: a
resonant orbit completesm oscillations perpendicular to
the major axis of the bar in the time that it takes the orbit
to performn circuits along the major axis. Furthermore,
an n : m resonant orbit would be represented bym dis-
tinct islands of invariant curves in the(x, ẋ) phase plane
andn distinct islands of invariant curves in the(y, ẏ) sur-
face of section. In our research, we searched for resonant
orbits n : m up to n, m ≤ 9; therefore, for all higher
resonant orbits the numerical code assigns “box” classi-
fication (this is a usual technique in orbit classification),
which is correct forn 6= m (high resonant box orbits, e.g.,
Caranicolas & Barbanis 1982). As was pointed out in the
review of Sellwood & Wilkinson (1993) (p. 31), there are
several different notations regarding the naming of the or-
bital families in barred galaxies. Traditionally, orbits are
namedm : l, wherem denotes the number of radial os-
cillations an orbit performs before it closes, whilel corre-
sponds to the number of turns of the orbit around the center
of the potential. Throughout the paper, we shall use the first
notation which, from our point of view, is more descriptive
and better fits our computational procedures.

It is of particular interest to determine which types of
regular orbits support the barred structure in our galactic
model. Looking carefully at the main types of orbits shown
in Figure 1(a)–(f) it can be seen that the box and the 1:2
(types a and b) resonant orbits are the ones we are look-
ing for. We also observe in Figure 2(a)–(f) that, apart from
the 7:9 resonant family, all the other secondary resonances

2 For every orbital family there is a parent (or mother) periodic or-
bit, that is, an orbit that describes a closed figure. Perturbing the initial
conditions which define the exact position of a periodic orbit we gener-
ate quasi-periodic orbits that belong to the same orbital family and librate
around their closed parent periodic orbit.
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Fig. 1 Collection of the six basic types of orbits in our barred galaxy model: (a) box orbit; (b) 1:1 resonant orbit; (c) 1:2 resonant type
a; (d) 1:2 resonant type b (figure-eight); (e) 2:3 resonant type; (f) 3:4 resonant orbit.

Fig. 2 Characteristic examples of six secondary resonant orbits in our barred galaxy model: (a) 1:3 resonant orbit; (b) 3:5 resonant
orbit; (c) 4:7 resonant type; (d) 5:7 resonant type; (e) 5:9 resonant orbit; (f) 7:9 resonant orbit.

may support, more or less, the barred structure. In order to
quantify our search for orbits supporting the bar, we must
define a mathematical criterion thus distinguishing which
types of orbits have the ability to support the bar. This is-
sue can be solved if we exploit the geometry of the orbits.

In particular, we compute the maximum values of thex
andy coordinates of the regular orbits,xmax andymax re-
spectively, along the numerical integration. Then, the ra-
tio g = xmax/ymax defines whether an orbit supports the
barred structure or not. The threshold value regarding the
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Table 1 Type, model and initial conditions of the orbits shown in Figs. 1(a)–(f) and 2(a)–(f). In all cases,y0 = 0
andẏ0 is found from the Jacobi integral, whileTper is the period of the resonant parent periodic orbits.

Figure Type α cn Ωb EJ x0 ẋ0 Tper

1a box 4 0.50 1.0 1.5 –0.91000000 0.00000000 –
1b 1:1 2 0.25 1.0 1.5 0.41867323 0.00000000 0.33573521
1c 1:2 (type a) 4 0.25 1.0 1.5 0.60531937 9.66513936 0.44222096
1d 1:2 (type b) 4 0.25 1.0 593 2.84610131 0.00000000 0.61819761
1e 2:3 4 0.25 0.0 1.5 0.00000000 13.08286668 0.73057544
1f 3:4 4 0.25 0.0 1.5 0.09738430 7.70724765 0.96330681
2a 1:3 9 0.25 1.0 593 2.64862858 0.00000000 0.61518671
2b 3:5 4 0.25 0.5 1.5 0.88078044 0.00000000 1.21951427
2c 4:7 4 0.25 0.5 1.5 0.00000000 18.96771378 1.69575428
2d 5:7 2 0.25 1.0 1.5 0.92613552 0.00000000 2.19852734
2e 5:9 4 0.25 0.5 1.5 –0.97466418 0.00000000 2.16072089
2f 7:9 2 0.25 1.0 1.5 0.81782083 0.00000000 2.86034493

Fig. 3 (a-upper left): The(x, EJ) and (b-upper right): the(x, ẋ, EJ) characteristic curves of the orbital families for SM; (c-lower left):
The (y, EJ) characteristic diagram for all the orbital families; (d-lower right): A (g,EJ) diagram showing which types of resonant
families support the galactic bar. The color code is the samein all panels.

ratio strongly depends on the strength of the bar. Our nu-
merical calculations suggest that a safe threshold for the
ratio is the value

√
α. Therefore, all types of regular orbits

with valuesg ≥ √
α can support the barred structure.

One of the most interesting structures that are often
observed in barred galaxies are rings. There are three main
types: (i) nuclear rings situated near the central nucleus,(ii)
inner rings surrounding the bar and (iii) outer rings with a
relatively extended diameter. In this work, we investigate
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the orbital properties near the central region of the barred
galaxy and therefore, we only focus our study on nuclear
rings. Bars have a natural tendency to concentrate gas near
the nucleus but also can setup resonances which usually
act as focal points for the gas flow. The reader can find
more details about rings in barred galaxies in the review
of Knapen (2004). We argue that 1:1 resonant orbits with
approximately0.5 < g < 1.5 (both prograde and retro-
grade) are the best candidates for supporting the nuclear
ring structure in barred galaxies. Thus, we shall pay spe-
cial attention to how the basic parameters of the system
affect the amount of 1:1 resonant orbits.

In Figure 3(a), we present a very informative di-
agram, the so-called “characteristic” orbital diagram
(Contopoulos & Mertzanides 1977; Contopoulos &
Barbanis 1985; Contopoulos & Magnenat 1985) for SM
(except the 1:3 resonance for whichα = 9). It shows the
evolution of thex coordinate of the initial conditions of the
parent periodic orbits of each orbital family as a function of
their orbital energyEJ (Jacobi constant). Here we should
emphasize that for orbits starting perpendicular to thex-
axis, we only need the initial condition ofx0 in order to lo-
cate them on the characteristic diagram. On the other hand,
for orbits not starting perpendicular to thex-axis (i.e., the
1:2 type a, 2:3, 3:4 and 4:7 families) initial conditions like
position-velocity pairs(x, ẋ) are required and, therefore,
the characteristic diagram is now 3D, providing full in-
formation regarding the interrelations of the initial con-
ditions in a tree of families of periodic orbits (Fig. 3(b)).
Furthermore, the diagram shown in Figure 3(c) is another
type of “characteristic” diagram (Sellwood & Wilkinson
1993; Binney & Tremaine 2008; Zotos 2013), where the
value of the Jacobi integralEJ is plotted against the coor-
dinate where the minor axis of the bar crosses they-axis.
As can be seen in Figures 1 and 2, all the higher resonant
orbits encountered in our potential (i.e., the 2:3, 3:4, 3:5,
4:7 and 5:9 resonant orbits) have complicated shapes thus
crossing they-axis multiple times and at several positions.
When constructing the diagram shown in Figure 3(c), we
considered where all these higher resonant orbits crossed
with higher absolute values ofy0.

In the same vein, we decided to create a new type of
diagram which is called the “support diagram” and it is
presented in Figure 3(d). In this diagram, we see the evo-
lution of theg parameter of the parent periodic orbits for
each family as a function of the energyEJ for SM. The aim
of this plot is to help us decide which types of resonant or-
bits support the bar and which do not. The diagram works
as follows: the higher a curve is (in other words, greater
values ofg) corresponding to a particular resonant family,
the more supportive the barred structure is for this orbital
family. We observe that both types of the 1:2 family as well
as the 1:3 family highly support the bar, while on the other
hand the 1:1 family has no contribution whatsoever to the
bar (this family favors nuclear ring formation). Here we
should note that the 1:2 type b family bifurcates from the
main 1:2 type a family and it is only present at relatively

Fig. 4 A highly unstablex1 periodic orbit in SM. The initial con-
ditions and more details are given in the text.

high energy levels(561 < EJ < 642). Moreover, we may
say that in general terms higher resonant orbits such as the
3:5, 4:7 and 5:9 families can also support the bar, but the
2:3 and 3:4 resonant families can only support it at low
energies.

It is widely accepted that galactic bars are in fact cre-
ated by regular orbits which circulate around the so-called
“x1” periodic orbits (e.g., Skokos et al. 2002a,b) Thex1

orbits are elongated along the bar’s major axis and usually
have the shape of simple ellipses. However, with increas-
ing energy, they can form a cusp and even two loops at the
extremities.

In Figure 4, we present a highly unstable (Stability
Index (S.I.)= −17.24) x1 periodic orbit in SM with initial
conditions:x0 = 0.86508078, y0 = 0, ẋ0 = 6.31880018,
while the value ofẏ0 was obtained from the Jacobi inte-
gral. Our numerical calculations indicate that, over the en-
tire range ofEJ, our galactic model does not support thex1

orbital family. This is true because the position of the par-
ent periodic orbit in the(x, ẋ) phase plane is deeply buried
in the chaotic region (see Fig. 5(c)) without any indica-
tion of an existing stability island around the periodic point
which could supportx1 quasi-periodic orbits. Moreover,
our computations reveal that in our barred galaxy model
thex1 periodic orbits are so unstable (|S.I.| > 10) that it is
impossible to create the corresponding characteristic curve
(see Fig. 3).

In the literature, there are some isolated examples of
barred galaxy models, such as the “Cazes” bar (Barnes &
Tohline 2001), the “model B” of Skokos et al. (2002b)
and the “propeller” orbits in Kaufmann & Patsis (2005),
all of which have thex1 orbital family that is no longer
the dominant one and other types of regular orbits play
the leading role in supporting the barred structure. Thus,
our simple galactic model can be considered as a mem-
ber of this closed group. In our paper, we demonstrate that
the role ofx1 orbits can be successfully supplemented by
other types of regular families of orbits which can also sup-
port the bar. From a mathematical point of view, whether
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an orbital family is present or not strongly depends on the
choice of the potential describing the properties of the bar.
The vast majority of papers devoted to the subject of barred
galaxies utilize a Ferrers potential (Ferrers 1877) in order
to model the bar. As it happens, the traditionalx1 orbital
family dominates in galaxy models where a Ferrers poten-
tial is used. However, this does not necessarily mean that
x1 orbits should always dominate the structure of the phase
plane of all 2D bar potentials used to model realistic galac-
tic bars. In fact, in the present paper, we present evidence
that numerous resonant orbits can also support the barred
structure of a galaxy equally well.

4.1 Influence of the Strength of the Bar

To explore the influence of the strength of the barα on the
orbital structure of the barred galaxy, we let it vary while
fixing the numerical values of all the other parameters in
our model according to SM and integrate orbits for the set
α = {1, 2, 3, ..., 10}. Once the values of the parameters
were chosen, we computed a set of initial conditions as de-
scribed in Section 3 and integrated the corresponding or-
bits, computing the SALI of the orbits and then classifying
the regular orbits into different families. Here we should
point out that when1.1 < α < 2 our model describes the
properties of a weak rotating bar, but whenα ≥ 2, we have
the presence of a strong bar.

In Figure 5(a)–(f) we present six grids of initial condi-
tions(x0, ẋ0) of orbits that we have classified for different
values of the strength of the barα. The numerical calcula-
tions reveal that whenα varies there are eight main types
of regular orbits. All the different regular families can be
identified by the corresponding sets of islands which are
formed in the phase plane. In particular, we see the eight
main families already mentioned: (i) box orbits occupy-
ing the outer parts of the phase plane; (ii) 1:1 resonant or-
bits surrounding the two central main periodic point; (iii)
1:2 resonant orbits (type a) producing two stability islands;
(iv) 1:3 resonant orbits generating three tiny islands at the
outer parts of the grid; (v) 2:3 resonant orbits displaying a
set of three islands; (vi) 3:4 resonant orbits forming a set of
four islands; (vii) 3:5 resonant orbits producing a chain of
five islands at the outer parts of the phase plane and (viii)
5:7 resonant orbits corresponding to a set of seven islands
inside the box region. The term “other” refers to all differ-
ent types of resonant orbits withn, m < 9 not included
in the former categories. It is seen that apart from the sev-
eral regions of regular motion, we observe the presence of
a unified chaotic sea which surrounds all the islands of sta-
bility. The outermost black thick curve is the ZVC defined
by Equation (8).

Whenα = 1 the bar does not exist, the total potential
is integrable and as expected there is no evidence whatso-
ever of chaotic motion in the phase plane of Figure 5(a).
Almost the entire grid is covered by initial conditions cor-
responding to 1:1 resonant orbits, while we observe a thin
layer of higher resonant 12:12 orbits (which is a bifurcation

of the main 1:1 resonant family) at the prograde(x > 0)
side of the phase plane. The structure of the phase plane,
however, changes drastically whenα = 2. We observe in
Figure 5(b) that the area occupied by 1:1 orbits has been
reduced and there are two distinct regions of stability; one
at the right part of the grid corresponding to prograde 1:1
orbits and one at the left side corresponding to retrograde
1:1 orbits. We see, on the other hand, that box orbits swarm
the outer parts of the grid, while several resonant families
such as the cases of 2:3, 3:4, 4:5, 5:7 and 7:9 emerge in-
side the box area, thus producing sets of multiple stabil-
ity islands. We also have to notice the presence of a small
chaotic layer which defines the separation between 1:1 and
box orbits. Things change even more as the strength of the
bar increases. Figure 5(c) shows the structure of the phase
plane whenα = 4, which corresponds to SM. It is evi-
dent that the chaotic layer has been transformed into a vast
chaotic sea flooding the majority of the phase plane. The
amount of box and higher resonant orbits has been reduced
significantly and those orbits are confined to the outer parts
of the grid. Two additional resonances, that is the 1:2 (type
a) and the 3:5, emerge. Whenα = 4 the potential of the
bar is at integer resonance 1:

√
α=1:2, so we anticipated

the existence of the 1:2 resonance. In Figure 5(d) where
α = 6, we observe that the extent of the chaotic sea has
grown even further, mainly at the expense of box and 1:1
orbits. In fact, there are only a few isolated points in the
grid corresponding to box orbits. On the contrary, the 1:2
stability islands have more than doubled their size.

Figure 5(e) and (f), whereα = 8 andα = 10 respec-
tively, indicates that a further increase in the strength ofthe
bar has only a minor influence on the orbital structure of
the phase plane. This is true because the amount of chaotic
and 1:2 (type a) orbits seems to saturate. The most visible
differences are the following: (i) the 1:1 prograde stability
island disappears; (ii) box orbits gain ground again and (iii)
some secondary resonances such as the 3:7 and 2:5 appear
inside the box region. It should be noticed that the islands
representing the 1:3 resonance are so small that they appear
as isolated points in the grids of Figure 5(a)–(f).

Figure 6(a) shows the resulting percentages of chaotic
orbits and those of the main families of regular orbits asα
varies. It can be seen that there is a strong correlation be-
tween the percentages of most types of orbits and the value
of the strength of the bar. When the bar is absent(α = 1),
the entire phase plane is covered by 1:1 resonant orbits. As
the strength of the bar is increased, however, the percentage
of 1:1 resonant orbits decreases rapidly at an exponential
rate. At the same time, the percentage of chaotic orbits in-
creases and whenα > 3 chaotic orbits are the most popu-
lated family, always occupying more than 50% of the phase
plane. In particular, the largest amount of chaos, around
75%, is observed whenα = 5. On the other hand, when
α > 5 the percentage of chaos is reduced almost linearly.
The box orbits exhibit the peak of their percentage (around
40%) atα = 2 and then for2 < α ≤ 6 their rate is
reduced, while forα > 6 this tendency is reversed. The
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Fig. 5 Orbital structure of the(x, ẋ) phase plane of the barred galaxy model for different values of the strength of the barα.

Fig. 6 Evolution of the percentages of (a-left): the different types of orbits in our barred galaxy model and (b-right): the types of regular
orbits supporting the formation of nuclear rings or a barredstructure, when varying the strength of the barα.

percentage of the 1:2 resonant orbits starts to grow when
α > 3 and it seems to saturate around 20% whenα > 6.
At higher values of the strength of the bar that are stud-
ied, the percentages of box and 1:2 resonant orbits (type a)
tend to a common value (around 20%), thus sharing two-
fifths of the entire phase plane. It is evident that in barred
galaxies, varying the strength of the bar mainly shuffles the
orbital content of all the other resonant orbits, whose per-
centages present fluctuations at low values (less than 10%).
Thus, taking into account all the above, we could say that
in barred galaxy models the strength of the barα mostly
influences box, 1:1, 1:2 (type a) and chaotic orbits. In fact,
a large portion of 1:1 and box orbits turn into 1:2 (type a)
and chaotic orbits as the bar becomes stronger, or in other
words, as the value ofα increases.

The evolution of the percentages of regular orbits sup-
porting a ring or barred structure as a function of the
strength of the barα is shown in Figure 6(b). As we ex-
plained previously, we assume that only the 1:1 resonant
orbits with 0.5 < g < 1.5 support the formation of nu-
clear rings, while all types of regular orbits withg ≥ √

α
support the barred structure. Here we have to point out that
the percentages do not refer to the total number of tested
orbits (regular plus chaotic) in each grid but rather to the
total regular orbits. It is seen that for small values ofα
(α < 2.5), as is the case of a weak bar, almost all the regu-
lar orbits favor the formation of nuclear rings. This is true
because, as was discussed previously in Figure 5(a)–(b),
the majority of the phase plane is covered by 1:1 regular
orbits. However, as the value ofα increases and the bar
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gains strength, the rate of 1:1 orbits which support rings
decreases rapidly, while at the same time the percentage of
regular orbits supporting a barred structure grows steadily
and forα > 7 it seems to saturate around 85%. Therefore,
we may conclude that rings are highly favored in weak bar
models, but in galaxy models possessing strong bars only
roughly 5% of orbits support nuclear rings.

4.2 Influence of the Scale Length of the Nucleus

Our next step is to reveal how the overall orbital structure
in our barred galaxy model is affected by the scale length
of the nucleuscn. As usual, we let this quantity vary while
fixing the values of all the other parameters according to
SM and integrating orbits in the phase plane for the set
cn = {0.05, 0.10, 0.15, ..., 0.50}. Our numerical calcula-
tions show that most of the main regular families are the
same as in the previous case. The only difference is that
in the group of regular families the 1:3 and 5:7 resonant
families are now substituted by the 4:7 and 5:8 resonant
families.

Figure 7(a)–(f) depicts six grids of initial conditions
(x0, ẋ0) of orbits that we have classified for different val-
ues of the scale length of the nucleuscn. Again, all the
different regular families can be identified by the corre-
sponding sets of islands which are formed in the phase
plane. It is observed in Figure 7(a) that when the central
nucleus is very dense, that is whencn = 0.05, the vast
majority of the phase plane is covered by chaotic orbits,
but only the 1:1 resonant family survives. There is also
weak evidence of the 2:3 resonance, however, the corre-
sponding initial conditions are few and deeply buried in
the vast chaotic sea. As we increase the value ofcn and
consequently the central nucleus becomes less dense, we
see in Figure 7(b) (cn = 0.1) and (c) (cn = 0.2) that ad-
ditional regular families such as box, 1:2 (type a) and 3:5
emerge inside the chaotic sea. Moreover, the extent of the
1:1 and 1:2 stability islands grows as the scale length of
the nucleus increases. The structure of the phase plane be-
comes very interesting in Figure 7(d) wherecn = 0.3. This
is true for many reasons. First of all, the amount of chaos is
decreased and the prograde 1:1 stability island disappears.
At the outer parts of the phase plane, box orbits take con-
trol, but the 1:2 stability islands are significantly reduced.
It can also be seen that the entire phase plane is swarmed
by many types of resonant orbits producing several sets of
stability islands. In particular, the 2:3 and 3:5 are the most
populated resonant families.

In Figure 7(e) and (f) we present the cases where
cn = 0.4 andcn = 0.5 respectively, that is when the central
nucleus is sparse enough. In both cases, the structure of the
grid is similar and we observe that the entire phase plane
is only covered by regular orbits. In fact, a large portion of
the grid corresponds to box orbits, but all the resonant fam-
ilies exist inside the box region. We should notice that the
1:2 resonance is completely absent when the scale length
of the spherical nucleus obtains high values. Furthermore,

the 1:1 stability island is now located almost at the center
of the grid, thus containing a mixture of prograde and ret-
rograde 1:1 orbits. It should also be pointed out that as the
central nucleus becomes more dense (small values ofcn)
there is an increase in the allowed velocityẋ of the stars
near the center of the galaxy.

The resulting percentages of chaotic and regular orbits
for the barred galaxy model as the scale length of the nu-
cleuscn varies are shown in Figure 8(a). It is evident that
box and chaotic orbits are the types of orbits mainly af-
fected by the scale length of the nucleus. In particular, we
see that when the central nucleus is very dense (cn < 0.15)
the motion of stars is highly chaotic since about 90% of the
entire phase plane is covered by chaotic orbits. However,
as the values ofcn increase and the nucleus becomes less
dense (cn > 0.2), the percentage of chaos displays a sharp
decrease and eventually vanishes whencn > 0.35. The
rate of box orbits, on the other hand, only starts to grow
when the nucleus is sparse enough (cn > 0.2) and when
cn > 0.3 box orbits are the dominant type occupying about
two-thirds of the phase plane. It can be seen in Figure 8(a)
that all the other types of resonant orbits are considerably
less affected by the shifting ofcn. The rate of 1:1 resonant
orbits exhibits minor fluctuations for small values of the
scale length, however, whencn > 0.3 it increases, while
at the same time the percentage of the 1:2 (type a) reso-
nant orbits vanishes. The evolution of the percentages of
the 2:3, 3:5 and higher resonant families of orbits exhibit
a similar pattern; they start to grow whencn > 0.15 and
they decrease forcn > 0.35. The percentages of the 4:7
and 5:8 resonant families on the other hand, only have non-
zero values whencn > 0.25 and then it seems they satu-
rate around 2%. Therefore, increasing the scale length of
the nucleus (in other words the nucleus becomes less con-
centrated and dense) in barred galaxy models turns mainly
chaotic orbits into box orbits, while resonant orbits are less
affected.

Figure 8(b) shows the evolution of the percentages of
regular orbits supporting a ring or barred structure3 as a
function of the scale length of the nucleuscn. We ob-
serve that when the central nucleus is dense enough the
vast majority of regular orbits support nuclear rings, how-
ever, as the nucleus becomes less dense the rate of regu-
lar orbits that support the bar grows constantly and when
cn > 0.25 it dominates. At the same time, the percent-
age of ring structure orbits decreases rapidly and saturates
around 20% whencn > 0.3. Thus, one may conclude that
in barred galaxy models with dense nuclei only the for-
mation of nuclear rings is favored, but when the central
nucleus is sparse enough about 40% of the total types of
regular orbits support the barred structure and only 20% of
them support nuclear rings.

3 According to SMα = 4, thus the threshold value for the ratiog is
√

α = 2.
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Fig. 7 Orbital structure of the(x, ẋ) phase plane of the barred galaxy model for different values of the scale lengthcn of the central
spherical nucleus.

Fig. 8 Evolution of the percentages of (a-left): the different types of orbits in our barred galaxy model and (b-right): the types of regular
orbits supporting the formation of nuclear rings or a barredstructure, when varying the scale lengthcn of the central spherical nucleus.

4.3 Influence of the Angular Velocity

The next parameter under investigation is the angular ve-
locity Ωb of the bar. We shall try to understand how the
overall orbital structure in our barred galaxy model is in-
fluenced by this parameter. Again, we let this quantity vary
while fixing the values of all the other parameters of our
galactic model according to SM and integrating orbits in
the phase plane for the setΩb = {0, 0.25, 0.5, ..., 2.5}. The
numerical experiments indicate that in this case, the main
families of regular orbits are similar to those discussed in
subsection 4.2.

In order to explore the structure of the phase plane
whenΩb varies, we integrated orbits in several grids. A
sample of six grids of initial conditions(x0, ẋ0) of orbits
that we have classified for different values of the angular

velocity is given in Figure 9(a)–(f). As usual, all the dif-
ferent types of regular families can be easily identified by
the corresponding sets of islands which are produced in
the phase plane. In Figure 9(a) we present the case where
Ωb = 0 which means that the bar does not rotate. Due
to the absence of rotation, the Coriolis force is zero and
therefore, the phase plane is symmetrical with respect to
thex = 0 axis. We observe a unified chaotic domain at the
central parts of the phase plane, but there are also numer-
ous stability islands corresponding to resonant families.
WhenΩb = 0.5, which is a model of a slowly rotating bar,
it can be seen in Figure 9(b) that the structure of the phase
displays minor differences with respect to Figure 9(a), with
the growth of the region occupied by chaotic orbits and the
depopulation of box, 2:3, 3:4 and higher resonant orbits
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Fig. 9 Orbital structure of the(x, ẋ) phase plane of the barred galaxy model for different values of the angular velocityΩb of the bar.

Fig. 10 Evolution of the percentages of (a-left): the different types of orbits in our barred galaxy model and (b-right): the types of
regular orbits supporting the formation of nuclear rings ora barred structure, when varying the angular velocity of thebarΩb.

being most visible. As the bar gains speed, this tendency
is continued in Figure 9(c) (Ωb = 1) and (d) (Ωb = 1.5)
and as a result the 3:4 and higher resonant orbits are com-
pletely absent. In Figure 9e whereΩb = 2, we see that
the prograde 1:1 stability island disappears, while the 2:3
resonance has been depopulated so much that the corre-
sponding initial conditions appear as isolated points in the
grid. The region of box orbits, on the other hand, seems
to increase. It is evident from Figure 9(f), that in the case
of a fast rotating bar (Ωb = 2.5), the region of box or-
bits increases even further, thus suppressing the 1:2 (type
a) stability islands. One may reasonably conclude that the
faster the rotation of the bar is, the more chaos is observed
in the barred galaxy.

Figure 10(a) shows the evolution of the resulting per-
centages of chaotic and regular orbits for the barred galaxy
model as the angular velocityΩb varies. Once more we

see that the angular velocity mainly affects the fraction
of box and chaotic orbits. When there is no rotation of
the bar (Ωb = 0), box and chaotic orbits seem to share
about 60% of the phase plane. As the value of the angu-
lar velocity increases and the bar gains speed, we observe
that the percentages of both box and chaotic orbits evolve
similarly but with different directions. Being more precise,
the rate of box orbits decreases untilΩb = 1.25, but for
larger values of the angular velocity it exhibits an increase.
The percentage of chaotic orbits, on the other hand, in-
creases rapidly, however, whenΩb > 1.75 it displays a
minor decrease. Nevertheless, the motion of stars is highly
chaotic throughout as the percentage of chaotic orbits re-
mains larger than any other individual regular family. In
fact, in most cases more than half of the phase plane is
occupied by chaotic orbits and the peak (around 75%) is
observed whenΩb = 1.75. One may see in Figure 10(a)
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that all the other types of resonant orbits are considerably
less affected by the shifting ofΩb. The rate of the 1:1 res-
onant orbits decreases, especially forΩb > 1.25 when the
prograde 1:1 stability islands starts to shrink until it disap-
pears completely from the phase plane. In the same vein,
the percentage of the 1:2 resonant (type a) family exhibits
a minor almost linear decrease. The rate of the 2:3 family,
on the contrary, shows a rapid reduction and vanishes when
Ωb > 2. The 3:4 and higher resonant orbits seem to be un-
able to cope with the rotation of the bar and their rates are
zeroed very quickly even at low speed (Ωb > 0.75). Here
we should point out that only the 5:9 resonant family is
favored by the rotation of the bar since it is the only regu-
lar family that constantly augments its rate with increasing
Ωb. Therefore, increasing the angular velocity of the bar
generally turns different types of regular orbits into chaotic
ones.

The evolution of the percentages of regular orbits sup-
porting either a ring or barred structure as a function of
the angular velocity of the barΩb is given in Figure 10(b).
We observe that the majority of regular orbits support the
barred structure throughout, but only about one-fifth of the
total regular orbits support the formation of nuclear rings.
In particular, for relatively small speeds (Ωb < 1.25) the
rate of ring structure orbits increases, reaching about 25%,
while for larger values of the angular velocity it saturates
around 20% of the total regular orbits. At the same time,
the rate of regular orbits supporting a barred structure dis-
plays a small fluctuation around 45% and only in models
with fast rotating bars (Ωb > 1.25) increases rapidly, oc-
cupying more than two-thirds of regular orbits. Therefore,
we may conclude that slowly rotating bars support the for-
mation of nuclear rings, but fast rotating bars mainly favor
the barred structure.

4.4 Influence of the Energy

The last parameter under investigation is the total orbital
energyEJ. In order to explore how the energy level affects
the overall orbital structure of our barred galaxy model,
we use the normal procedure according to which we let
the energy vary while fixing the values of all the other pa-
rameters of our galactic models according to SM. At this
point, we should point out that the particular value of the
energy determines the maximum possible value of thex
coordinate(xmax) on the(x, ẋ) phase plane. To select the
energy levels, we chose those values of the energy which
give xmax = {0.5, 1, 1.5, ..., 4}. Our numerical computa-
tions show that the main families of regular orbits remain
the same as those discussed in the previous two subsec-
tions.

Figure 11(a)–(f) shows six grids of initial conditions
(x0, ẋ0) of orbits that we have classified for different val-
ues of the Jacobi integralEJ. In Figure 11(a),EJ = −77
which corresponds to local motion of stars moving very
close to the central nucleus withxmax = 0.5 kpc. It is
seen that the vast majority of the phase plane is covered

by initial conditions of regular orbits, while a weak chaotic
layer exists at the central parts of the grid separating re-
gions of box and 1:1 resonant orbits. We also observe the
presence of several chains of stability islands inside the
box region. These sets of stability islands are produced by
secondary resonances such as the 4:5, 5:6, 5:7, 6:7 and 7:9
families. The grid shown in Figure 11(b) whereEJ = 1
is very similar to those discussed earlier in Figures 5(c)
and 9(c). Figure 11(c) shows a grid whereEJ = 80 and
xmax = 1.5 kpc. Here the area occupied by chaotic orbits
is reduced, as there is a considerable increase of the 1:2
(type a) stability islands. The increase in the amount of 1:2
(type a) resonant orbits continues in Figure 11(d) where
EJ = 290. In this case, box and 1:2 resonant orbits (type
a) share the majority of the phase plane. A weak chaotic
layer is, however, still present, but the 1:1 resonance is
confined to the center of the grid producing multiple stabil-
ity islands. The 1:2 resonance takes over almost the entire
phase plane in Figure 11(e) whereEJ = 593. In this case
we should note that apart from the 1:2 type resonance, the
1:2 type b (corresponding to figure-eight orbits) emerges at
the outer parts of the phase plane. Things are quite differ-
ent in Figure 11(f) whereEJ = 780 andxmax = 4 kpc. We
see a small decrease in the extent of the 1:2 (type a) islands
due to the increase in the amount of box orbits at the outer
parts of the phase plane, while 1:2 type b orbits disappear.
At the center of the grid we can distinguish a well-formed
1:1 stability island, while in the neighborhood there is a
mixture of delocalized initial conditions corresponding to
chaotic, 1:1 and higher resonant orbits.

Looking at Figure 11(a)–(f) we see that, as the value of
the energy increases, in other words we study the motion
of stars moving at larger distances from the galactic center,
the 1:2 resonant orbits dominate the vast majority of the
phase plane. Here we should notice that according to SM
the value of the strength of the bar isα = 4, so the poten-
tial of the harmonic oscillator used for the description of
the bar is at resonance; the 1:2 resonance to be more pre-
cise. Thus, a natural and fair question arises: what happens
to the phase plane if we change the value of the strength of
the bar? To give an answer to this question, we chose the
valueα = 9 (which also corresponds to integer resonance;
1:3) and reconstructed the grid of initial conditions shown
in Figure 11(e). Our results are given in Figure 12. Now,
the harmonic oscillator is at the 1:3 resonance and it can
be seen that the 1:3 resonance prevails, while the 1:2 res-
onant orbits define two small stability islands confined to
the center of the grid. This is because the model assumes
a constant ratio ofx andy frequencies throughout, which
however generally is not the case. Therefore, we conclude
that for high values of the orbital energy corresponding to
star orbits moving sufficiently far from the central nucleus
(xmax > 1.5 kpc), the influence of the bar prevails over
that of the central nucleus.

In the following Figure 13(a) we present the evolu-
tion of the resulting percentages of chaotic and regular or-
bits for the barred galaxy model as the value of the en-
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Fig. 11 Orbital structure of the(x, ẋ) phase plane of the barred galaxy model for different values of the Jacobi integralEJ.

Fig. 12 Orbital structure of the(x, ẋ) phase plane of the barred galaxy model whenα = 9 andEJ = 593, while the values of all the
other parameters are defined according to SM. We observe thatthe 1:3 resonant orbits occupy the vast majority of the phaseplane.

ergyEJ varies. We observe that when the motion of stars
is at low energies, i.e., orbits which move very close to
the galactic center, they are highly regular, with box and
1:1 resonant orbits being the most populated families. The
largest amount of chaotic orbits (around 65%) is observed
when the value of energy is near zero, but with increas-
ing EJ their rate drops rapidly and at higher energy val-
ues it eventually vanishes. The percentage of box orbits
displays strong fluctuations with sudden drops and peaks.
The rate of the 1:1 resonant orbits on the other hand, for
EJ > 55, evolves almost monotonically, keeping a con-
stant value around 5%. It is also seen that the percentage
of 1:2 (type a) resonant orbits starts to grow sharply as soon
as the energy grows and whenEJ > 100 the 1:2 (type a)
family is the dominant type. In fact, we see that for high
values of the Jacobi integral (EJ = 600) the 1:2 reso-

nant orbits take over more than 80% of the entire phase
plane, although for larger values of energy their rates ex-
hibit a small decrease due to the simultaneous increase of
the box orbits. All the other resonant families seem to be
immune to the increase in energy since their percentages
are almost unperturbed throughout; all these families prac-
tically disappear whenEJ > 400. Taking into consider-
ation all the above-mentioned analysis, we may conclude
that in barred galaxy models the value of energy mostly
affects the chaotic, box, 1:1 and 1:2 (type a) resonant or-
bits. We would like to point out that the 1:2 type b resonant
orbits are only present in barred galaxy models with high
enough energy.

Of particular interest is to interpret the evolution of the
percentages of regular orbits supporting a ring or barred
structure as a function of the Jacobi integralEJ. Our nu-
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Fig. 13 Evolution of the percentages of (a-left): the different types of orbits in our barred galaxy model and (b-right): the types of
regular orbits supporting the formation of nuclear rings ora barred structure, when varying the value of the Jacobi integralEJ.

Fig. 14 Grids of initial conditions(x0, ẋ0) when (a-left): EJ = 1 and (b-right): EJ = 593. Each point is colored according to the value
of the ratiog, thus distinguishing between regular orbits supporting ring formation(0.5 < g < 1.5) and a barred structure(g ≥ 2).

merical results are given in Figure 13(b) where it can be
seen that the barred structure is always more favored. To
be more precise, for low energies (EJ < 20) only about
25% of the total regular orbits support the formation of nu-
clear rings, while for larger values of energy the rate drops
to around 5% and remains there throughout. On the con-
trary, we see that the percentage of regular orbits support-
ing the bar grows rapidly with increasing energy, although
in high energy models (EJ > 410) their percentage seems
to saturate around 90%. Summarizing, low energy models
support the formation of both nuclear rings and bars, while
high energy models are only favored for barred structures.

Figure 14(a)–(b) shows another perspective related to
the grids of Figure 11(b) and (e). Here, each initial condi-
tion is colored according to the value of the ratiog, thus
distinguishing between regular orbits supporting ring for-
mation(0.5 < g < 1.5) and a barred structure(g ≥ 2).
It becomes evident that the 1:1 resonant orbits indeed sup-

port the formation of nuclear rings, while the 1:2 (type a
and b) resonant orbits support the barred structure of the
galaxy.

5 CONCLUSIONS

In this work, we used an analytic galactic gravitational
model which embraces the general features of a barred
galaxy containing a spherical, dense and massive nucleus.
The choice of the model potential for the description of the
bar was made mainly taking into account the fact that near
the center of a galaxy the motion of stars can be approxi-
mated by harmonic oscillations. Our aim was to investigate
how the basic parameters of the Hamiltonian system influ-
ence the level of chaos and also the distribution of regular
families in our barred galaxy model. Our results strongly
suggest that both the level of chaos and the distribution of
regular families are indeed very dependent on the parame-
ters of the galaxy. We believe that the presented outcomes
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can provide interesting information regarding the structure
and properties of barred galaxies.

In our research, we chose to investigate the influence
of four basic quantities that are part of the galactic model,
namely the strength of the bar, the scale length of the nu-
cleus, the angular velocity of the bar and the value of the to-
tal orbital energy (Jacobi constant). We decided not to ex-
plore the influence of the mass of the nucleus for two main
reasons: (i) it has been extensively studied in earlier works
(see, e.g. Hasan & Norman 1990; Hasan et al. 1993; Zotos
2012a; Zotos & Carpintero 2013) and (ii) in this model the
mass of the nucleus significantly affects the size of the grid
(in other words the values ofxmax and ˙xmax), so it was
impossible to set a constant energy level and then vary the
mass of the nucleus. We also tried to find out which regular
orbits support the barred structure of the galaxy and which
support the formation of nuclear rings, using theg value
as the only criterion for this task. The main results of our
research can be summarized as follows:

(1) Perhaps the most important finding of our research
is the fact that the traditionalx1 orbital family does
not always dominate the structures of all 2D barred
galaxy models, thus verifying similar outcomes (see,
e.g. Barnes & Tohline 2001; Skokos et al. 2002b;
Kaufmann & Patsis 2005). Indeed, we have presented
numerical evidence that several resonant orbits which
are not related to thex1 family can support the bar.

(2) In our barred galaxy model, several types of regular or-
bits exist, but there are also extended chaotic domains
separating the areas of regularity. In particular, a large
variety of resonant orbits (i.e. 1:1, 1:2, 1:3, 2:3, 3:4,
3:5, 4:7, 5:7, 5:8, 5:9 and higher resonant orbits) are
present, thus making the orbital structure richer. Here
we must clarify that by the term “higher resonant or-
bits” we refer to resonant orbits with a rational quo-
tient of frequencies made from integers> 5, which of
course do not belong to the main families.

(3) It was found that in barred galaxy models the strength
of the barα mostly influences box, 1:1, 1:2 and chaotic
orbits, turning a large portion of 1:1 and box orbits
into 1:2 and chaotic orbits as the bar becomes stronger,
or in other words, as the value ofα increases. As ex-
pected, galaxy models with relatively strong bars do
not favor the formation of nuclear rings.

(4) Increasing the scale length of the nucleus (in other
words the nucleus becomes less concentrated and
dense) mainly turns chaotic orbits into box orbits,
while resonant orbits are less affected. Dense nuclei
only favor the formation of nuclear rings, but when the
central nucleus is sparse enough about 40% of the total
types of regular orbits support the barred structure and
only 20% of them the nuclear rings.

(5) As the bar gains speed, different types of regular or-
bits become chaotic, occupying more than 70% of the
entire phase plane. We found that slowly rotating bars
support the formation of nuclear rings, while fast ro-
tating bars mainly favor the barred structure.

Fig. A.1 Evolution of the total number of orbits classified as reg-
ular in the SM model, using the SALI chaos indicator, as a func-
tion of the total time of the numerical integration. The threshold
value of SALI was fixed at10−7.

(6) A strong correlation between the value of the energy
and the percentages of chaotic, box, 1:1 and 1:2 reso-
nant orbits was found to exist. Moreover, low energy
models support the formation of both nuclear rings and
bars, while high energy models only favor the barred
structure.

We consider the present results as an initial effort and
also a promising step in the task of understanding the or-
bital structure of barred galaxies. Taking into account that
our outcomes are encouraging, it is in our future plans to
utilize a logarithmic potential for describing the proper-
ties of the bar, thus expanding our investigation in global
motion as well as into three dimensions, exploring how
the basic parameters influence the nature of the 3D orbits.
Furthermore, of particular interest would be to reveal the
complete network of periodic orbits, thus shedding some
light on the evolution of periodic orbits as well as their
stability when varying all the available parameters of the
galactic model.
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Appendix A: STICKY ORBITS AND NUMERICAL
INTEGRATION TIME

Usually, when investigating the regular or chaotic nature of
orbits in galactic potentials, we try to keep the integration
time as long as 1 Hubble time because this allows us to re-
late the calculations to our Universe. However, in previous
research (Zotos & Carpintero 2013; Zotos & Caranicolas
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Table A.1 Total number of orbits identified as chaotic at102

(N) and at104 (N ′) time units of numerical integration for all
studied models.

α cn Ωb EJ N N ′ Error (%)
1 0.25 1 1.5 0 0 0
2 0.25 1 1.5 1575 1651 4.6
3 0.25 1 1.5 6459 6749 4.3
4 0.25 1 1.5 8971 9463 5.2
5 0.25 1 1.5 10498 11253 6.7
6 0.25 1 1.5 10506 11106 5.4
7 0.25 1 1.5 9972 10207 2.3
8 0.25 1 1.5 5363 5592 4.1
9 0.25 1 1.5 8409 8851 5.0
10 0.25 1 1.5 7628 8108 5.9
4 0.05 1 1.5 12905 13802 6.5
4 0.10 1 1.5 12997 13511 3.8
4 0.15 1 1.5 12822 13509 5.1
4 0.20 1 1.5 12027 12607 4.6
4 0.25 1 1.5 8971 9463 5.2
4 0.30 1 1.5 5083 5256 3.3
4 0.35 1 1.5 146 148 1.5
4 0.40 1 1.5 0 0 0
4 0.45 1 1.5 0 0 0
4 0.50 1 1.5 0 0 0
4 0.25 0.00 1.5 4123 4203 1.9
4 0.25 0.25 1.5 5072 5108 0.7
4 0.25 0.50 1.5 6949 7201 3.5
4 0.25 0.75 1.5 8358 8556 2.3
4 0.25 1.00 1.5 8971 9463 5.2
4 0.25 1.25 1.5 9785 10056 2.7
4 0.25 1.50 1.5 10062 10648 5.5
4 0.25 1.75 1.5 10295 10952 6.0
4 0.25 2.00 1.5 10502 10950 4.1
4 0.25 2.25 1.5 10412 10812 3.7
4 0.25 2.50 1.5 10039 10657 5.8
4 0.25 1 –77 918 931 1.4
4 0.25 1 1 8866 9452 6.2
4 0.25 1 80 4152 4351 4.6
4 0.25 1 174 2339 2392 2.2
4 0.25 1 290 1014 1055 3.9
4 0.25 1 430 1495 1512 1.1
4 0.25 1 593 976 972 2.8
4 0.25 1 780 451 455 0.9

2014) we demonstrated that when using short integration
time intervals (equal to about 1 to 10 Hubble times), a non-
negligible number of chaotic orbits were misclassified as
regular by several chaos indicators. This phenomenon is
also true in the present case.

Figure A.1 shows, for the set of orbits in the SM
model, how the number of regular orbits shifted along with
the time span of the orbital integration. As a reference,
Table A.1 shows, for each of the models that was studied in
Section 4, the total number of orbits identified as chaotic at
102 and also at104 time units of numerical integration. It
is evident from Table A.1, that when using integration time
much longer than 1 Hubble time, the number of misclassi-
fied orbits in every model has been considerably reduced
(the maximum relative error that was measured was about
7%). Nevertheless, even this extended numerical integra-
tion does not completely solve the problem; in fact, there
will always be (in a non integrable potential) sticky orbits
which behave as regular ones during arbitrarily large times,
rendering any attempt to develop an algorithm which finds
them all in a short time hopeless.
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