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Abstract We apply our sky map reconstruction method for transit type interferometers to the Tianlai cylin-

der array. The method is based on spherical harmonic decomposition, and can be applied to a cylindrical

array as well as dish arrays and we can compute the instrument response, synthesized beam, transfer func-

tion and noise power spectrum. We consider cylinder arrays with feed spacing larger than half a wavelength

and, as expected, we find that the arrays with regular spacing have grating lobes which produce spurious

images in the reconstructed maps. We show that this problem can be overcome using arrays with a different

feed spacing on each cylinder. We present the reconstructed maps, and study the performance in terms of

noise power spectrum, transfer function and beams for both regular and irregular feed spacing configura-

tions.
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1 INTRODUCTION

Determination of the neutral hydrogen (HI ) distribution

from 21 cm line observation is an important method to

study the statistical properties of large scale structures in

the Universe. The intensity mapping technique is an effi-

cient and economical way to map the Universe using (HI )

21 cm emission, which is suitable for late time cosmologi-

cal studies (z . 3), especially for constraining dark energy

models through baryon acoustic oscillation (BAO) features

(Peterson et al. 2006; Chang et al. 2008; Ansari et al. 2008,

2012; Seo et al. 2010; Gong et al. 2011). Large wide field

and wide band radio telescopes would be needed to rapidly

acquire observations of large volumes of the Universe.

Several dedicated experiments are aimed at such surveys,

including our own experiment Tianlai1 (Chen 2012), as

well as CHIME (Bandura et al. 2014), BINGO (Battye

et al. 2013), HIRAX2 and BAORadio3.

In transit mode intensity mapping surveys, the anten-

nas are fixed on the ground during operation, observing the

sky as the Earth rotates. For cylinder arrays such as Tianlai

and CHIME, the instantaneous field of view is a strip of sky

1 http://tianlai.bao.ac.cn
2 http://www.acru.ukzn.ac.za/cosmosafari/wp-content/uploads/2014

/08/Sievers.pdf
3 http://groups.lal.in2p3.fr/bao21cm

along the meridian, and sky patches with different right as-

censions pass through the field of view. As the telescopes

do not need to track a particular celestial target, the me-

chanical structure of the telescope is very simple.

The Tianlai project is designed to survey large scale

structures by intensity mapping of the redshifted 21 cm

line, and to constrain dark energy models by BAO mea-

surement. As a first step, the current pathfinder experi-

ment will test the basic principles and key technologies

of the 21 cm intensity mapping method. The Tianlai ar-

ray is a wide band interferometer which features both a

cylinder array and a dish array, installed at a radio quiet

site (44◦10′47′′N, 91◦43′36′′E) in Hongliuxia, Balikun

County, Xinjiang Uygur Autonomous Region in Northwest

China (Chen 2015). The construction of the Tianlai cylin-

der and dish pathfinder arrays were completed at the end

of 2015, and the two arrays are now undergoing their com-

missioning process. The map making algorithm and its

application to dish arrays have been presented in Zhang

et al. (2016), hereafter referred to as Paper I. In the present

paper, we will focus on its application to the Tianlai

pathfinder cylinder array.

The Tianlai cylinder pathfinder array has three adja-

cent cylindrical reflectors oriented in the North-South (NS)

direction. Each cylinder is 15 m wide and 40 m long. At

present, the cylinders are equipped with a total of 96 dual
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Fig. 1 Regular configuration of the cylinder array.

Fig. 2 GSM map at 750 MHz, used as the true sky for reconstruc-

tion with the Tianlai cylinder configuration.

polarization receivers which do not cover the full length

of the cylinders. In the future, the pathfinder instrument

may be upgraded by simply adding more feed units and

associated electronics. The longer term plan is to expand

the Tianlai array to full scale once the principle of in-

tensity mapping is proven to work. The full scale Tianlai

cylinder array would have a collecting area of ∼ (104 m)2

and ∼ 103 receiver units. A forecast for its capability in

measuring dark energy and constraining primordial non-

Gaussianity can be found in Xu et al. (2015). In addition to

the redshifted 21 cm intensity mapping observation, such

surveys may also be used for other observations, such as

21 cm absorbers (Yu et al. 2014), fast radio bursts (Masui

et al. 2015; Connor et al. 2016), and electromagnetic coun-

terparts of gravitational wave events (Feng et al. 2014).

The simplest arrangement of the existing 96 feeds is

to have 32 feeds on each cylinder, regularly spaced so that

on each cylinder the feeds form a uniformly spaced linear

array. Two such configurations are considered here:

(1) Regular 1. The feed spacing is taken to be dsep =
0.4 m, which is about one wavelength at the observa-

tion frequency of 750 MHz. In this configuration, the

feeds occupy only 12.4 m of the total 40 m length of

the cylinder, as shown in Figure 1.

(2) Regular 2. The feed spacing is taken to be dsep =
0.8 m, about twice the wavelength at the cylinder.

One may also consider configurations with irregular

positioning of the feeds to reduce grating lobes. In this pa-

per we consider a very simple extension: on each cylinder

the feeds still form a uniform linear array, but the number

of feeds and hence the spacing of the array is different on

each cylinder. We have a total of 96 feeds at the present

time. Marking the cylinders from East to West as Cylinder

1, Cylinder 2 and Cylinder 3 respectively, we consider the

following configurations:

(1) Irregular 1. This is the first irregular cylinder array

with number of feeds on each cylinder being 31, 32

and 33 respectively. The feeds occupy 12.4 m along

the NS direction on each cylinder. The feed spacing

would be dsep = 0.413m for Cylinder 1, dsep = 0.4 m

for Cylinder 2 and dsep = 0.388 m for Cylinder 3.

(2) Irregular 2. This is the second irregular cylinder array

with number of feeds on each cylinder being 31, 32

and 33 respectively, but the feeds occupy 24.8 m along

the NS direction on each cylinder. The feed spacing

would be dsep = 0.827m for Cylinder 1, dsep = 0.8 m

for Cylinder 2 and dsep = 0.775 m for Cylinder 3.

To simulate the map making process, we use an input

map based on the Global Sky Model (GSM) (de Oliveira-

Costa et al. 2008), shown in Figure 2. The map is obviously

dominated by radiation from the Galactic plane, which

is mostly synchrotron emission from Galactic cosmic ray

electrons. For the computations carried out in this work,

we have used HEALPix (Górski et al. 2005) to pixellate

the celestial sphere, with nside = 512. In our spherical har-

monics transformation we take ℓmax = 1500, which is suf-

ficient for the angular resolution of the Tianlai pathfinder

cylinder array.

Section 2 provides a brief review of the spherical har-

monic decomposition map making method. In Section 3

we discuss the grating lobe problems and spurious im-

age regular receivers layout. To resolve these problems,

in Section 4 we study the case of irregular layouts listed

above. We present our conclusion in Section 5.

2 A BRIEF REVIEW OF THE SKY

RECONSTRUCTION METHOD

In this section, we briefly present the map making method

for a transit interferometer array based on spherical har-

monic decomposition. A more detailed presentation and

comparison with classical radio interferometry (tracking

type surveys) can be found in Paper I, as well as in Shaw

et al. (2014). Unlike frequently used tracking observations,

it is more convenient to work in ground coordinates in

which the baselines of the array do not change during

the transit observation. In this formalism, the visibilities

recorded as a function of time correspond to observations
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of different parts of the sky. We separate the inversion

problem into independent sub-systems using m-mode de-

composition in spherical harmonics and we assume that the

individual feed responses and array geometry are known.

The sky emission intensity is I(n̂) = 〈E∗(n̂, t)·E(n̂, t)〉t,
where n̂ = (α, δ) denotes the sky direction, and the re-

ceivers are sensitive to the complex amplitudes of sky

emission E(n̂). A single receiving element can be char-

acterized by its complex angular response D(n̂) and its

position r, so the output of element j is

sj(t) =

∫∫
dn̂Dj(n̂, t)E(n̂, t) eik·rj . (1)

The visibility Vij = 〈s∗i sj〉t is the short term average of

the cross correlation of the outputs of a pair of antennae or

feeds si, sj , located at positions ri, rj with rij ≡ rj − ri.

Since emissions from different directions of the sky are in-

coherent, only the waves from the same direction are corre-

lated, and the integration yields the interferometer equation

Vij =

∫∫
D∗

i (n̂)Dj(n̂) I(n̂) eik·bij dn̂ (2)

=

∫∫
Lij(n̂) I(n̂) dn̂. (3)

In a transit instrument, visibilities are measured as a func-

tion of time or right ascension, with the beam response

Lij(n̂) changing due to Earth’s rotation. In discrete form,

including the contribution of noise and gathering visibility

measurements from all baselines and from all times into a

vector, we can write the full measurement equation in ma-

trix form

[V] = [L][I] + [n], (4)

where we have used square brackets to emphasize these

are vectors and matrices, and the time ordered visibility

data [V] are linearly related to the sky intensity from dif-

ferent directions [I] by the time dependent beam response

represented as matrix [L]. The map making process for the

interferometer array solves this system and reconstructs [I]
from the observed time ordered visibility data.

We expand the sky intensity and beam response into

spherical harmonics,

I(n̂) =

+∞∑

ℓ=0

+ℓ∑

m=−ℓ

Iℓ,m Yℓ,m(n̂), (5)

Lij(n̂) =

+∞∑

ℓ=0

+ℓ∑

m=−ℓ

Lℓ,m Yℓ,m(n̂). (6)

where (θ, φ) are polar coordinates, θ = 90◦−δ and φ = α.

Yℓ,m(n̂) are spherical harmonic functions. Then the vis-

ibilities can also be written as a summation of spherical

harmonic modes,

Vij =
∑

ℓ,m

(−1)mIℓ,m Lℓ,−m .

For the transit interferometer array, the effect of

Earth’s rotation is that the beam Lij(n̂) has a constant drift

along the right ascension direction, with the offset angle

given by αp(t) = α0 + Ωe t, where Ωe is angular rotation

rate of the Earth, so that

Lij(n̂, t) = Lij((θ, ϕ), t) = Lij(θ, ϕ − αp(t)). (7)

The spherical harmonic coefficients of the rotated/shifted

beams can be written as Lℓ,m(tk) = Lℓ,me−imαp(t). The

recorded visibilities as a function of αp are then

Vij(αp) =

+∞∑

m=−∞

+∞∑

ℓ=|m|

(−1)m Iℓ,m Lℓ,−m eimαp . (8)

We recognize this expression as a Fourier series for the

periodic function Vij(αp); the corresponding Fourier co-

efficients Ṽij(m), computed from a set of regularly time

sampled visibility measurements, are

Ṽij(m) = (−1)m

+ℓmax∑

ℓ=|m|

Iℓ,m Lℓ,−m + noise . (9)

Grouping m-mode visibilities from all baselines in a vector

and using matrix notation, we can write the measurement

equation for each m-mode as
[
Ṽij

]

m
= Lij,m × [I(ℓ)]m + [ñij ]m , (10)

or putting all baselines of the array together,

[
Ṽ

]

m
= Lm × [I(ℓ)]m + [ñ]m . (11)

By comparing with Equation (4), the full linear system

is decomposed into a set of mmax = ℓmax independent

smaller systems, one for each m-mode, which have much

smaller dimensions (nbaseline × ℓmax) and are thus much

easier to solve numerically.

We assume that the noise associated with the visi-

bility measurement follows a Gaussian random process,

with variance N = 〈nn†〉. Using the maximum likelihood

method, the solution of the observed sky is given by

[Î]m = L−1
m [Ṽ ]m , (12)

where L−1
m denotes the noise weighted pseudo-inverse ma-

trix of Lm. This can be computed by using the singular

value decomposition (SVD) method, in which any m × n
matrix A can be decomposed as A = UΣQ†, where U

and Q are m × m and n × n unitary matrices respec-

tively, and Σ is an m×n rectangular diagonal matrix; i.e.,

all non-diagonal elements are zero, with non-negative real

numbers on the diagonal. The pseudo-inverse is given by

Ã−1 = QΣ̃−1U† , (13)

where Σ̃−1 is obtained by replacing all diagonal elements

eii above a certain threshold value by their reciprocal

1/eii, while setting the other elements to zero. For de-

tails on computing the pseudo-inverse, see e.g. Barata &

Hussein (2012).



158–4 J. Zhang et al.

By substituting Equation (11) into Equation (12), and

neglecting noise, we have Î = RI, where R denotes the

reconstruction or response matrix, which relates the re-

constructed sky to the original sky. In the spherical har-

monic representation, the m-mode reconstruction matrix

is Rm ≡ L̃−1
m Lm. Ideally, if Rm = I then the reconstruc-

tion for the m-mode is completely accurate. In practice, the

reconstruction is usually not fully accurate.

For each given m, the different ℓ coefficients are cor-

related and the physical measurement data are a mix of dif-

ferent ℓ mode contributions. We can define the compressed

response matrix R by extracting the diagonal terms from

individual Rm matrices

R(ℓ, m) = Rm(ℓ, ℓ) .

Obviously, R(ℓ, m) does not fully describe the reconstruc-

tion in the (ℓ, m) plane and the original Rm matrices are

needed. However, the R(ℓ, m) matrix can give some idea

of how well an (ℓ, m) mode is measured with a given array

configuration, so it can help us to compare the performance

of different configurations.

If we consider the reconstruction of sky spherical har-

monic coefficients from pure noise visibilities (Ṽij =
ñij), the covariance matrix Cov(ℓ1, ℓ2) of the estimator

Î(ℓ, m) for each mode m can be computed from the L−1
m

matrix and the noise covariance matrix Nm = [ñij ]m ·
[ñij ]

†
m

,

Covm(ℓ1, ℓ2) =
〈[

Î(ℓ)
]

m
·
[
Î(ℓ)

]†
m

〉

= L−1
m Nm L−1†

m .

The covariance matrix is not diagonal, especially due to

partial sky coverage in declination. However, if we ignore

this correlation and only use the diagonal terms for each m
mode, we can gather them together to create the σ2

I(ℓ, m)
variance matrix. This matrix informs us on how well each

(ℓ, m) mode is measured.

σ2
I(ℓ, m) = Covm(ℓ, ℓ) . (14)

We consider a survey duration of two full years for the

results presented in this paper. The total integration time

for each visibility time sample would be tint ∼ 2 × 104 s
for nt = 2mmax = 3000. Assuming a system temperature

Tsys = 50 K and ∆ν = 1 MHz, the effective σnoise for

measured visibility time samples can then be written as a

function of integration time per time sample tint,

σnoise =

√
2Tsys√

tint ∆ν
∼ 0.49 mK . (15)

3 THE REGULAR ARRAY CONFIGURATION

The primary beam for each feed on the cylinders is nar-

row in the East-West (EW) direction and wide in the NS

direction, as determined by the curvatures of the cylindri-

cal reflector. We model the primary beam of a single feed

associated with a cylindrical reflector as

D(α, β) ∝ sin(απ(Lx/λ))

απ(Lx/λ)

sin(βπ(Ly/λ))

βπ(Ly/λ)
, (16)

where (α, β) are the two angles with respect to the feed

axis, along the EW and NS planes respectively. λ is the

wavelength, and Lx and Ly are the effective feed sizes

along the EW and NS planes respectively. We take Ly =
0.3 m for the Tianlai cylinder feeds, and Lx = 13.5 m cor-

responds to an illumination efficiency of 0.9 for the feed on

a 15 m wide cylinder. These parameters give a beam width

of ∼ 100◦ in the NS direction and ∼ 2◦ in the EW di-

rection at 750 MHz. The actual values will be obtained by

fitting the real observational data. These are heuristic val-

ues but should be sufficient for our estimations here. The

primary beam is shown in the left panel of Figure 3.

For uniformly spaced linear arrays, grating lobes

appear when the spacing is larger than half a wave-

length (dsep > λ/2). This is because the phase factor

exp(i2πdsep sin θ/λ) is periodic with respect to sin θ, and

when dsep > λ/2 the maximum appears more than once.

We show the synthesized beam for the Regular 1 case and

Regular 2 case in the central and right panels respectively

in Figure 3. These are obtained by constructing the full

synthesis of a point source image located at the latitude of

the array, i.e., 44◦10′. As we can see in the figure, there are

strong grating lobes along the NS direction in the synthe-

sized beams. The position of the nth order grating lobe is

∼ nλ/dsep. At 750 MHz, the positions are ±57.3◦ for the

Regular 1 case (dsep = 0.4 m) and ±28.6◦ for the Regular

2 case (dsep = 0.8 m). In addition, there are also primary

beam side lobes along both the NS and EW directions.

These are less prominent and have smaller periods.

To have a better understanding of the synthsized beams

in spherical harmonic space, let us consider the beams of a

single pair of receivers.

In Figure 4 we show the beam patterns for four cases:

the autocorrelation (top left), and the cross-correlations for

a due EW baseline between two cylinders (top right), for a

due NS baseline (bottom left), and a Southeast-Northwest

(SE-NW) baseline (bottom right). By definition, only the

region −ℓ < m < ℓ has valid values. In the dish case

(see Paper I), the autocorrelation covers a triangular region

with the top at the origin (ℓ, m) = (0, 0), two sides and ex-

tending along m = ±ℓ cos δ where δ is declination of the

observation, and up to ℓmax = 2πD/λ where D is the ef-

fective aperture. The autocorrelation in the cylinder case is

very different, assuming a butterfly shape. This is because

a cylinder’s primary beam is asymmetric in the NS and EW

directions. As described in Equation (16), along the NS di-

rection which corresponds to m ∼ 0, the primary beam has

very low resolution, but along the EW direction the cylin-

der primary beam is about ∼ 2◦ at 750 MHz, which cor-

responds to ℓ ∼ 2πLx/λ ∼ 210. Indeed, the figure shows

that the autocorrelation function extends substantially to

ℓ ∼ 210 along the two wings. Also, since the cylinder has

almost the whole observable sky in its field of view, which

includes the equator, the case m = ±ℓ is saturated.
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Fig. 3 The primary beam (left) and synthesized beams for the Regular 1 (center) and Regular 2 (right) configurations.
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Fig. 4 The beam patterns in terms of spherical harmonics Lℓ,m with size Lx = 13.5 m, Ly = 0.3 m and centered at latitude 44.15◦ .

Top left: autocorrelation of a feed; Top right: cross-correlation for an EW baseline with dsep = 15 m; Bottom left: cross-correlation

beam for an NS baseline with dsep = 12 m; Bottom right: cross-correlation for a SE-NW baseline with (∆x, ∆y) =(15 m, 12 m).

For the cross-correlations, the beam pattern centers

are at (ℓ, m) ∼ (2π|u|, 2πu) as expected, where u ≡
(u, v, w) = (bx, by, bz)/λ. So, the EW baseline is centered

near m ∼ ℓ, while the NS one is centered near m = 0,

with ℓ ∼ 2πb/λ. Note that here we are only plotting the

positive part of the baseline in one direction, so for the EW

baseline the beam is on the m > 0 side. If we would like

to plot the reverse direction, it would appear on the sym-

metric position at m < 0.

Figure 5 shows the response matrix R(ℓ, m) for the

two regular configurations at frequency 750 MHz. In Paper

I, we noted that for each baseline the R matrix has a cer-

tain distribution centered at (ℓ, m) = 2πb/λ, where b is the

baseline length. The m position depends on both the EW

component of the baseline and the declination of the strip

to be observed. For an array with many baselines, the R

matrix is described well by the superposition of these indi-

vidual baselines. For the cylinder array, the field of view is
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Fig. 6 Comparison of the error variance matrix for Regular 1(left) and Regular 2 (right) configurations.

not limited to a narrow strip, but is rather a hemisphere or

even a larger spherical zone. As such, the cylinder baseline

would only be bounded by m = ℓ.

In the cylinder case, the R matrix at m = 0 is signifi-

cant up to ℓ ∼ 190(380) for the Regular 1 (Regular 2) case,

which corresponds to the modes probed by the maximum

baseline along one cylinder. The longest baselines of the

array are however the diagonal ones, i.e. the baselines from

the North/South end of the East cylinder to the South/North

end of the West cylinder, so the R matrix is mostly dis-

tributed on a band along m = ℓ, with some extension to

higher ℓ in the region between m = 0 and m = ℓ, form-

ing a shark fin shape. The region near m ∼ 0 is limited

to relatively small ℓ due to the fact that our NS baselines

are shorter, especially for the Regular 1 case. Future exten-

sions which fill up the remaining part of the cylinder would

help improve the m = 0 region.

In the Regular 2 case, a larger part of the (ℓ, m) space

is covered than in the Regular 1 case, but here the re-

ceivers are spread more widely, reducing the density of

the baseline coverage, so here there is more apparent non-

uniformity, as shown by the vertical stripes at m = 120
and 350. These can be understood as follows: as shown

in Figure 4, each baseline is sensitive to some part of the

(ℓ, m) space. The part of (ℓ, m) space which is not cov-

ered by baselines in the array would not be well recon-

structed. As the cylinder array is aligned along the three

cylinders, we can expect that the m values centered at 0,

235 and 470 will be covered, but regions between these,

centered at m = 120 and 350, will not be well covered

and may have large errors. Furthermore, on careful exam-

ination, some fringes near m = 0 can also be seen, which

may be due to the grating lobes.

Figure 6 shows the corresponding error covariance

matrix in the (ℓ, m) basis at 750 MHz. For the Regular 2

case the errors are particularly large, but even for the

Regular 1 case, the errors are also relatively large at these

m values. The error values at other regions are relatively

small. Additionally, in the Regular 2 case, near m = 0
there is relatively large error and also the error shows some

rapid modulation in ℓ. These fringes are similar to the ones

that appear in the R matrix at the same positions, and are

due to the strong grating lobes.

In Figure 7 we show the reconstructed map at

750 MHz derived from simulated observation using the

regular cylinder array, ignoring instrument noise. The left
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Fig. 7 Reconstructed sky map for the Tianlai cylinder configuration at 750 MHz. Left: Regular 1 configuration; Right: Regular 2

configuration. The input map is the GSM map at 750 MHz.
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Fig. 8 The synthesized beam for the Tianlai cylinder irregular configuration.

panel uses the Regular 1 configuration, and the right panel

uses the Regular 2 configuration.

Comparing with the original map in Figure 2, there

are spurious features appearing in the reconstructed map.

This is very obvious for the Regular 2 case, and is also

present in the Regular 1 case (e.g. the bright spot at

(270◦, 54◦)). These are produced by the grating lobes of

the brighter sources such as the Galactic plane and strong

point sources, and the Regular 2 case is worse than the

Regular 1 case. Because of such spurious features, one can-

not use an array with such configurations to conduct a reli-

able sky survey.

4 THE IRREGULAR ARRAY CONFIGURATION

As we saw in the last section, spurious images appeared in

the reconstructed maps of the regular array due to the pres-

ence of the grating lobes. To avoid this problem, one could

adopt spacings less than half a wavelength, or employ non-

uniform spacing in the linear array. However, at the wave-

length of our observation, it is not practical to have spacing

less than half a wavelength. There are many possible non-

uniform spacing schemes, and here we choose a very sim-

ple one: adopting slightly different spacings on the three

different cylinders. So, we take the same total length on the
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Fig. 9 Comparison of the R matrix for the Irregular 1 (left) and Irregular 2 (right) configurations.
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Fig. 10 Comparison of the error variance matrix for irregular configurations.

three cylinders, but place 31, 32 and 33 feeds on each cylin-

der, so that the unit separations are different in each case.

We choose the same two total lengths as the regular cases

described in the last section. So for the Irregular 1 case, the

basic spacings are dsep = 0.413, 0.4 and 0.388 m for the

three cylinders respectively, with a total length of 12.4 m;

for the Irregular 2 case, the basic spacings are 0.827, 0.8

and 0.775 m respectively, with a total length of 24.8 m.

There are still some degeneracies in the NS baseline.

For example, there are 30, 31 and 32 instances of dsep =
0.413, 0.4 and 0.388 m NS baselines in the Irregular 1 con-

figuration, respectively. Nevertheless, for the whole array

there are NS baselines with different lengths. The slightly

different positioning of the receivers also creates baselines

which deviate from the EW direction to different degrees.

The whole set up allows wider and more uniform coverage

on the (ℓ, m)-plane.

Figure 8 shows the synthesized beam for the two ir-

regular cases. Here we see that the level of grating lobes is

greatly reduced. Although in Figure 3 we can clearly see

the sharp grating lobes at 28◦ for the Regular 2 configura-

tion and at 57◦ for both the Regular 1 and Regular 2 con-

figurations, in Figure 8 at these angles the lobes are barely

visible. Of course, there are still the primary beam side

lobes, but these are generally much smaller. Here we note

that the Irregular 2 lobes are weaker than the Irregular 1

lobes.

In Figure 9, we plot the compressed response ma-

trix R(ℓ, m) for the Irregular 1 (left) and Irregular 2

(right) configurations at 750 MHz. As expected, the gen-

eral shapes of the (ℓ, m) space distribution are similar for

the two cases, but with a wider area covered in the (ℓ, m)
space for the Irregular 2 configuration due to the larger ar-

ray sizes. The broad outline of the shapes in this figure

are also similar to those in Figure 5, but here the distribu-

tion is more smooth and uniform due to the more widely

spread-out (ℓ, m) coverage in the irregular configurations.

The features at m = 120 and 350 in the Irregular 2 con-

figuration are much less prominent than in the Regular 2

case.

Figure 10 shows the corresponding error covariance

matrix in the (ℓ, m) basis. Here the regions with larger er-

ror are spread out more widely, but the error value at the

maximum is greatly reduced when compared with the reg-
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Fig. 11 Reconstructed sky map for the Irregular 1 (left) and Irregular 2 (right) configurations at 750 MHz.
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Fig. 12 Comparison of the transfer function T (ℓ) (left panel) and the noise power spectrum Cnoise(ℓ) (right panel) for the Irregular 1

and Irregular 2 configurations.

ular configurations. The Irregular 1 case has smaller errors

than the Irregular 2 case because the baselines are more

concentrated in the former case which helps reduce the er-

rors.

Figure 11 shows the simulated reconstruction map at

750 MHz with the Irregular 1 (top) and Irregular 2 (bot-

tom) configurations. We can see that in both cases, the re-

construction works relatively well. The spurious features

shown in Figure 7 are absent in these figures, and most

features in the original map are well reproduced. There are

still some regions where the reconstruction shows some ar-

tifacts, such as the stripes at (350◦, 60◦) and (190◦, 12◦) in

the Irregular 1 map, and the stripes South of the equator in

the Irregular 2 map. However, the overall quality for the

two maps is good.

In Figure 12, we plot the power spectrum transfer

function T (ℓ) (left panel) and the noise power spectrum

(right panel) for the Irregular 1 and Irregular 2 configu-

rations. Here we have masked out the border pixels out-

side the band 0◦ < θ < 105◦ which are not well con-

structed, and suppressed (ℓ, m) modes with large errors by

applying a weight proportional to σ−2
I (ℓ, m) to all modes

which have error larger than Kσ2
min, where σmin is the

minimum value of the noise covariance matrix, and for the

threshold value we choose K = 50. The transfer func-

tion decreases toward higher ℓ, but it is generally smooth,

although there are curvatures at certain values of ℓ. The

Irregular 1 configuration has a higher response at lower ℓ,

but decreases more rapidly at higher ℓ which is expected,

because its baselines are concentrated in smaller regions

and are more sensitive to larger angular scales. For the

noise power spectrum, we see that the Irregular 1 configu-

ration achieved lower noise power than the Irregular 2 con-

figuration. In both cases the noise power spectrum shows

several peaks and troughs, which are due to the different

density of baselines on the (ℓ, m) plane. We also draw

the expected large scale structure 21 cm signal power on

the same plot, where we assume cosmology from Planck

Collaboration et al. (2014), and for neutral hydrogen we

adopt ΩHIb = 0.62×10−3 (Switzer et al. 2013). The 21 cm

signal is only a few times the noise. Note that because this

is for detection at a single frequency, we will have more

frequency data, but at the same time there are also compli-

cations in foreground removal and calibration, which are

beyond the scope of the present work. Considering these

factors, we see that detecting the 21 cm signal would be a

great challenge.

5 CONCLUSIONS

The Tianlai experiment aims to make a low angular res-

olution, large sky area transit survey of large scale struc-

tures by observing the redshifted 21 cm line from neutral

hydrogen. By adopting the transit survey strategy, where

the telescope is fixed on the ground and scans the whole
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observable part of the sky by rotation of the Earth, the cost

for building the telescope is reduced, and the instrument is

also more stable. The transit scan is however very different

from a tracking observation, and for the whole sky survey

one must also take into account the sphericity of the sky.

We have developed an efficient, flexible and paral-

lel code to construct a sky map from transit visibilities

based on transformations using spherical harmonics. This

method is applicable to any transit-type interferometer.

This paper is the second in a series of papers presenting our

transit array data processing method. In this paper, we have

applied this software to simulation of the map-making pro-

cess for the Tianlai cylinder array pathfinder. In the simu-

lation, we first compute the visibility time streams for sev-

eral instrument configurations and scanning strategies, and

then reconstruct sky maps from these visibilities. The feed

response and array geometry are assumed to be known and

fully calibrated.

The Tianlai pathfinder has 96 receiver feeds in total,

averaging 32 on each cylinder. The cylinders could host

about twice that amount of receiver feeds, leaving room

for future upgrades after the present hardware design has

been thoroughly tested through experimentation. We con-

sider two types of feed arrangements. In one type, the feeds

are spaced at about one wavelength, which covers less than

half of the cylinder length with the 32 feeds on each. In the

other type, 3/5 of the cylinder length is covered, with a

spacing of twice the wavelength.

On each cylinder the receiver feeds form regularly

spaced linear arrays, which have grating lobes if the unit

spacing is larger than half a wavelength. Coupled with the

large instantaneous field of view for the cylinder, the grat-

ing lobes could be a great obstacle for map-making. To

solve this problem, irregular spacing can be introduced.

A logistically simple solution is to adopt slightly different

unit spacings on the three cylinders, but on each cylinder

the spacing is still uniform. We consider the arrangement

of 31, 32 and 33 feeds on the three cylinders. With such

irregular configurations, the grating lobes are reduced to a

very low level and map reconstruction quality is enhanced.

We analyzed the beams produced by the cylinders,

and found that features in the response matrix and noise

variance matrix can be understood from these. We also

computed the transfer function and reconstructed the map

for both the Regular and Irregular instrument configura-

tions. We also computed the noise angular power spec-

trum, which determines the array sensitivity for cosmolog-

ical 21 cm signal measurement. This may be regarded as a

simplification of the real case, where the system tempera-

ture is dominated by foreground radiation. We found that

for a system temperature of 50 K, the 21 cm angular power

spectrum is a few times the noise power in a single 1 MHz

narrow band. Detecting such a signal would be a difficult

challenge, but the signal may be enhanced by consider-

ing joint measurement of the power spectrum over many

spectral bins. In the present paper we primarily study the

foreground map-making process. Calibration, foreground

removal and 21 cm signal extraction will be investigated in

subsequent works.
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