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Abstract This paper investigates properties of low-thrust hovering, including the fea-
sible region and stability, in terms of the dynamical parameters for elongated asteroids.
An approximate rotating mass dipole model, by which the description of the rotational
gravitational field is reduced to two independent parameters, is employed to construct
normalized dynamical equations. The boundaries of the feasible region are determined
by contours representing the magnitude of the active control. The effects of a rotating
gravitational field and maximal magnitude of the low thrust on the feasible hovering
regions are analyzed with numerical results. The stabilityconditions are derived ac-
cording to the forms of the eigenvalues of the linearized equation near the hovering
position. The stable regions are then determined by a grid search and the effects of the
relevant parameters are analyzed in a parametric way. The results show that a close
hovering can be easier to realize near the middle of the asteroid than near the two ends
in the sense of both required control magnitude and stability.
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1 INTRODUCTION

There is increasing interest in asteroid missions in many space agencies (e.g. NASA, JAXA,
ESA, etc.). The NEAR Shoemaker mission was the first to land ona near-Earth asteroid (NEA)
(Dunham et al. 2002). The Hayabusa mission successfully sampled the surface of an NEA (Itokawa)
(Kawaguchi et al. 2008). The Dawn mission has been launched to explore the most two massive as-
teroids in the main belt, Vesta and Ceres (Russell & Raymond 2012). Recently, several sample return
missions to NEAs have been proposed, including MarcoPolo-R(Barucci et al. 2012), OSIRIS-Rex
(Lauretta & OSIRIS-Rex Team 2012) and Hayabusa2 (Tsuda et al. 2013). A variety of scientific and
technological advancements are expected to be achieved in these missions such as investigating the
formation of the early solar system (Barucci et al. 2012), characterization of potentially hazardous
asteroids (Lauretta & OSIRIS-Rex Team 2012), asteroid cratering operations (Tsuda et al. 2013), etc.
Moreover, CNSA’s Chang’e-2 conducted a successful flyby of Toutatis which is a potentially haz-
ardous asteroid (Hang et al. 2013). The transportation and origin of potentially hazardous asteroids
have been previously investigated in the work of Ji & Liu (2007).

One effective way to explore an asteroid from a nearby perspective in its vicinity is body-fixed
hovering, by which the spacecraft maintains its relative position with respect to the asteroid. Body-
fixed hovering can be used to obtain high-resolution measurements of a target area on the asteroid’s
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surface, and to simplify the descent and ascent maneuvers ina sample return mission (Broschart &
Scheeres 2005). Such maneuvers were necessary in the Hayabusa mission (Scheeres 2004). A series
of studies on hovering control methods has been published, including a tight control method using
altimetry (Sawai et al. 2002), a dead band control (Broschart & Scheeres 2005) and a reinforcement
learning method (Gaudet & Furfaro 2012), etc. These studiesfocus on the design and stability of a
closed loop control system. However, the effects of the dynamical parameters on the hovering region
and stability in the vicinity of an asteroid have not been analyzed. Jiang et al. (2014) analyzed body-
fixed hovering at the natural equilibrium points (EPs) and classified the manifolds near the EPs into
eight types, which depend on the gravity associated with theasteroid. The relationship between the
physical parameters and the number of natural EPs has also been analyzed by numerical methods
(Wang et al. 2014). No active control was assumed in these twostudies so that a spacecraft can
only hover at the natural EPs. The feasible hovering region where the gravitational force and the
centrifugal force can be balanced by the external force can be enlarged with active control. Williams
& Abate (2009) proposed solar sail body-fixed hovering and analyzed the effect of solar latitude and
the sail area on the hovering region. Zeng et al. (2014a) analyzed hovering using non-ideal solar sails
and complemented the work of Williams & Abate (2009). Compared with using a solar sail, a low
thrust spacecraft has two main advantages. Firstly, the magnitude of the control is not limited by the
direction of the control for low thrust, so it is easier to provide the desired control by applying low
thrust. Secondly, the low thrust technique is mature and hasbeen used in deep space missions, e.g.,
the Hayabusa mission (Kuninaka et al. 2007). Hence, it is interesting to study body-fixed hovering
using low thrust.

In this paper, the feasible region and stability for body-fixed hovering in the vicinity of an elon-
gated asteroid (such as (216) Kleopatra, (951) Gaspra, (1620) Geographos, etc.) using low thrust
are studied. The effects of dynamical parameters, including the rotating gravitational field and the
maximal magnitude of the active control provided by the low thrust, are analyzed. The gravity near
an elongated asteroid is quite irregular. The traditional spherical harmonic expansion method is hard
to converge (Scheeres et al. 2000). The polyhedral-shape modeling method proposed by Werner &
Scheeres (1996) is an accurate method to model the gravitational field. However, this method is
a numerical way which is based on different shape-data of asteroids. Hence, it is hard to use the
polyhedral-shape modeling method to analyze the relationship between the hovering characteristics
and dynamical properties. To investigate effects of the dynamical parameters on the characteristics
of body-fixed hovering and obtain qualitative conclusions,an approximate and simplified model is
preferred. Several simplified models have already been proposed for elongated asteroids, such as a
massive straight segment (Riaguas et al. 1999), two perpendicular material segments (Bartczak &
Breiter 2003), and a rotating mass dipole in which two point masses are connected with a mass-
less rod (Prieto-Llanos & Gomez-Tierno 1994). The rotatingmass dipole is employed in this paper
due to the simplicity of its model formulation, where the rotating gravitational field of the asteroid
can be characterized by only two dynamical parameters in itsnormalized form (Prieto-Llanos &
Gomez-Tierno 1994; Zeng et al. 2014b). Recently, this approximate model has been developed to
describe natural elongated asteroids whose model is established by the polyhedral-shape modeling
method (Werner & Scheeres 1996) in the work of Zeng et al. (2014b). Essentially, this model can be
regarded as a generalization of the circular restricted three body problem (CRTBP) (Prieto-Llanos &
Gomez-Tierno 1994). Also, the body-fixed hovering positionin the rotating mass dipole model can
be regarded as a generalization of the artificial equilibrium points (AEPs) in the CRTBP (Morimoto
et al. 2007). Abundant literatures have been published on AEPs and different kinds of active control
have been studied including low thrust (Morimoto et al. 2007), solar sail (Baoyin & McInnes 2006)
hybrid low-thrust propulsion (Baig & McInnes 2008), etc. Incontrast to the CRTBP, the rotational
velocity of the system is not only related the gravitationalforce and force between the two primaries
but also the tensile force or compressive force acting on themassless rod in the rotating mass dipole
model. Hence, the characteristics of body fixed hovering arenot the same as those of the AEPs. The
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effects of these two dynamical parameters and the maximal magnitude of the active control on the
feasible hovering region and stability will be analyzed by numerical methods in this paper. As for a
spacecraft near an asteroid, it is affected by multiple perturbations, among which the solar radiation
pressure may be the most important (Scheeres 2012). In the work of Scheeres (2012), the combined
effects of the asteroid’s gravity, solar gravity and solar radiation pressure on orbits around an as-
teroid are studied. Although there are many perturbations in addition to the asteroid’s nonspherical
perturbation, the work of Llanos et al. (2014) indicates that the magnitudes of the perturbations are
quite small compared with the asteroid’s gravity close to its surface (the ratio can be less than 0.001).
Therefore, small perturbations from sources like the Sun and other planets are ignored in this paper.

The rest of this paper is organized as follows. Section 2 gives the dynamical equations using the
simplified gravitational model and the condition for the ideal body-fixed hovering above an enlon-
gated asteroid. In Section 3, the feasible region in terms ofthe dynamical parameters are analyzed
for both equatorial plane and out of equatorial plane. Also,magnitudes of the required control for
several natural asteroids are evaluated in Section 3. Section 4 analyzes the stability in terms of the
dynamical parameters. Section 5 concludes this paper.

2 DYNAMICAL EQUATIONS AND HOVERING FORMULATION

2.1 Dynamical Equations in a Body-fixed Frame

The problem of body-fixed hovering around an elongated asteroid is considered. The motion of a
spacecraft in the vicinity of a natural asteroid depends on the physical properties of the asteroid,
including its total mass, mass distribution, rotation period, etc. To analyze the characteristics of
hovering around an elongated asteroid, a simple approximate model (i.e. a rotating mass dipole) is
used for the rotating elongated asteroid (Prieto-Llanos & Gomez-Tierno 1994; Zeng et al. 2014b).
Previous work has studied the connection between the rotating mass dipole and natural elongated
bodies, showing that this model can be taken as a good approximation for natural asteroids (Zeng
et al. 2014b). In this model, an asteroid is represented in a simplified way as two primary masses,m1

andm2, separated by a massless rod with a characteristic distanced, rotating around the combined
center of massM . A schematic diagram is shown in Figure 1. The synodic frameo-xyz centered at
the center of mass is used as the body-fixed frame. The axisox is collinear with the massless rod, the
axisoz is aligned with the rotational angular velocity of the asteroid, and the axisoy completes the
right handed coordinate system. The rotational angular velocity ω of the synodic frame is assumed
to be equal to the one of the asteroid. The synodic frameo-xyz is initially assumed to coincide with
the inertial frameo-XY Z.
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Fig. 1 A schematic diagram of the rotating mass dipole and the coordinate system.
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The equation describing uncontrolled motion for a spacecraft relative to a rotating asteroid can
be written as follows (Jiang et al. 2014)

r̈ + 2ω × ṙ + ω × (ω × r) + ω̇ × r +
∂U (r)

∂r
= 0 , (1)

wherer is the position vector in the body-fixed frame from the centerof mass of the asteroid to the
spacecraft andU (r) is the gravitational potential. This dynamical equation is established using an
assumption that the mass of the spacecraft is negligible compared with the mass of the asteroid. To
describe the dynamics of a controlled spacecraft, Equation(1) is modified to be

r̈ + 2ω × ṙ + ω × (ω × r) + ω̇ × r +
∂U (r)

∂r
= ac , (2)

whereac is the acceleration provided by the low thruster. This acceleration is expressed in the
synodic frame. The acceleration in the inertial frame at time t can be easily obtained bȳac (t) =
Rz (−ωt)ac, where the rotation matrix is

Rz (−ωt) =





cos (ωt) − sin (ωt) 0
sin (ωt) cos (ωt) 0
0 0 1



 .

Assuming that the asteroid rotates uniformly (ω̇ = 0), we can define an effective potential as
(Yu & Baoyin 2012; Jiang et al. 2014)

V (r) = −
1

2
(ω × r) (ω × r) + U (r) . (3)

Equation (2) can be rewritten as

r̈ + 2ω × ṙ +
∂V (r)

∂r
= ac . (4)

In the case of the rotating mass dipole, a previous work (Zenget al. 2014b) has given the nor-
malized dynamical equations as follows. The gravitationalpotential can be obtained as

U (r) = −
Gm1

r1
−

Gm2

r2
, (5)

whereG is the gravitational constant, andr1 andr2 are the distances from the spacecraft to the two
primaries, respectively. Using normalized units, including mass unitM (M = m1 + m2), length
unit d and time unitω−1, Equation (4) can be transformed into a normalized form. Denoting the
dimensionless mass of the second primary asµ = m2/M ∈ (0, 0.5] and that of the first primary as
1−µ ∈ [0.5, 1), the position vectors of the two primaries are[−µ, 0, 0]T and[1−µ, 0, 0]T. Then, the
distances from the spacecraft to the two primaries arer1 = [x+µ, y, z]T andr2 = [x−1+µ, y, z]T.

After normalization, the normalized scalar form of Equation (4) can be obtained










ẍ − 2ẏ + ∂V (x,y,z)
∂x

= acx ,

ÿ + 2ẋ + ∂V (x,y,z)
∂y

= acy ,

z̈ + ∂V (x,y,z)
∂z

= acz ,

(6)

where the effective potential is

V = −
x2 + y2

2
− k

(

1 − µ

r1
+

µ

r2

)

. (7)

The dimensionless variablek in Equation (7) is equal toGM / ω2d3. The parameterk depends
on the physical properties of the asteroid and represents the ratio of the gravitational force to the
centrifugal force between the two primaries (Prieto-Llanos & Gomez-Tierno 1994). Whenk is equal
to 1, the dynamical equations are the same as those of the classical CRTBP.
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2.2 Condition for Body-fixed Hovering

The velocity and acceleration should be zero in the synodic frame when a spacecraft is performing
body-fixed hovering above an asteroid, that isr̈ = ṙ = 0. Without active control (acx = acy =
acz = 0), the following condition should be satisfied

∂V (x, y, z)

∂x
=

∂V (x, y, z)

∂y
=

∂V (x, y, z)

∂z
= 0 . (8)

The solutions of Equation (8) are called EPs. Whenk = 1, the solutions of Equation (8) correspond
to the five EPs of the CRTBP. For elongated asteroids, there are usually four EPs (one of the other
solutions is located in the interior of the asteroid) (Wang et al. 2014). Detailed expressions describing
the EPs can be found in the work of Zeng et al. (2014b).

When there is an active control, the body-fixed hovering region can be extended beyond the EPs.
The active control should balance the gravitational force and the centrifugal force. The components
of the active control should satisfy the following condition:















acx = ∂V (x,y,z)
∂x

,

acy = ∂V (x,y,z)
∂y

,

acz = ∂V (x,y,z)
∂z

.

(9)

By substituting Equation (7) into Equation (9), the explicit form of the components required for
active control can be obtained:

acx = −x + k
[

1−µ

r3

1

(x + µ) + µ

r3

2

(x + µ − 1)
]

,

acy = −y + k
[

1−µ

r3

1

y + µ

r3

2

y
]

,

acz = k
[

1−µ

r3

1

z + µ

r3

2

z
]

.

(10)

At a given hovering position, the components needed for active control are constants.
The magnitude of the active control is

ac =
√

a2
cx + a2

cy + a2
cz . (11)

Because the active control is provided by thrusters mountedon the spacecraft, there is an upper
limit on its magnitude

ac ≤ amax . (12)

3 FEASIBLE HOVERING REGION

The feasible hovering region is defined as the region where the gravitational force and the centrifu-
gal force can be balanced by the active control. Hence, the condition described by Equation (12)
should be satisfied, otherwise the active control is not ableto balance the gravitational force and
the centrifugal force. Equation (12) determines the boundary of the feasible hovering region. From
Equation (10), it can be found that the components required for active control only depend on two
physical parameters, which areµ andk of the asteroid. Therefore, there are only three parameters
(µ, k andamax) that completely determine the feasible hovering region. The effects of these three
parameters will be analyzed next.
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Fig. 2 Contour maps of the active control’s magnitude for different µ in the equatorial plane. (a)
µ = 0.5 andk = 1; (b) µ = 0.4 andk = 1; (c) µ = 0.3 andk = 1; (d) µ = 0.2 andk = 1.

3.1 Equatorial Plane

The body-fixed hovering in the equatorial plane (z = 0) will be considered here. From Equation (10),
it can be directly obtained thatacz = 0. The contour map displaying the magnitude of the required
active control can be depicted according to Equation (10) and Equation (11). The contours describe
the boundaries of the feasible hovering regions with different magnitudes for active control.

Firstly, settingµ = 0.5 andk = 1, the corresponding contour map can be obtained as shown
in Figure 2(a). In this figure, the four points namedEi (i = 1, 2, 3, 4) denote the four EPs of
the dynamical system described by Equation (6) without control, meaning that the magnitude of
the active control is zero at these points. The pointsE1 andE2 are called collinear equilibrium
points (CEPs). The pointsE3 andE4 are triangular equilibrium points (TEPs). Actually, thereis still
one more EP which is located inside of the massless rod between the two primaries. However, the
position of this EP is in the interior of the asteroid. Hence it is not feasible for hovering. There are
some contour lines surround this EP as shown in the figure. Thesmall region where these contour
lines locate is considered not feasible as well. These contour lines are all not considered in the
analyses below. The normalized values of contour lines havefive levels which are 0.2, 0.4, 0.6,
0.8 and 1.0. There are four isolated feasible regions for hovering whenamax = 0.2. Each of these
regions contains one EP as shown in the figure. When the maximal magnitude of the active control is
increased, these regions expand and then become connected to each other. Let us define a parameter

dp =

{

|x − xEi| , i = 1, 2
|y − yEi| , i = 3, 4
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Fig. 3 Magnitude of the required active control as a function ofdp. (a) µ = 0.5 andk = 1; (b)
µ = 0.4 andk = 1; (c) µ = 0.3 andk = 1; (d) µ = 0.2 andk = 1.

representing the deviation from an EP towards the asteroid.The relationship ofac anddp is shown
in Figure 3. In Figure 3(a), the curve shows a monotone increase and it tends to infinity in the case
of deviating from a CEP towards one of the primaries. However, the nominal control required for
deviating from a TEP and towards the massless rod is limited and becomes zero again at the massless
rod. The contours in Figure 2(a) agree with Figure 3(a). The curves in Figure 3(a) show that close
hovering is cheaper in terms of fuel consumption in the vicinity of the middle of an asteroid than in
the vicinity of its two ends.

By fixing k = 1 and varyingµ, Figure 2(b)–(d) is drawn. Two phenomena can be found related
to the feasible hovering region that are consequences of theparameterµ decreasing. Firstly, the fea-
sible hovering region close to the first primary stretches while the region close to the second primary
shrinks. Foramax = 0.2, the region containingE1 stretches and then becomes connected to the
regions containingE3 andE4 while the region containingE2 shrinks withµ decreasing. In addition,
the region betweenE2 andE3 or E4 becomes connected foramax = 0.4 whenµ = 0.5. However,
this region shrinks and then breaks whenµ decreases. Once the contour (amax = 0.4) breaks into
two parts, as shown in Figure 2(c)–(d), the two disconnectedregions become infeasible for hover-
ing when the maximum magnitude of the nominal control is 0.4.Secondly, the separated exterior
contours and interior contours (surrounding the interior EP) can be connected withµ decreasing.
This phenomenon appears foramax = 1.0 in the figure. Once the exterior contours and interior con-
tours are connected, the minimum altitude of the feasible region (amax = 1.0) with respect to the
asteroid is zero. Hence, a body-fixed hovering which is very close to the surface of the asteroid is
possible. Moreover, the magnitudes of the active control with respect todp for µ less than 0.5 can be
obtained as shown in Figure 3(b)–(d). The nominal control required for deviating from a TEP does
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Fig. 4 Contour maps of the magnitude of active control for different k in the equatorial plane. (a)
µ = 0.5 andk = 1; (b) µ = 0.5 andk = 2; (c) µ = 0.5 andk = 5; (d) µ = 0.5 andk = 10.

not become zero again at the massless rod. This happens because thex coordinate of the interior
EP on the massless rod is different from those of the TEPs whenµ is not equal to 0.5 as shown in
Figure 2(b)–(d). However, the nominal control for a large deviation is still much less than what is
required when deviating from a CEP, meaning a close hoveringis still cheaper for fuel consumption
in the vicinity of the middle of an asteroid. Besides, it can be found by comparing Figure 3(b)–(d)
that deviating from the first EP (CEP1) is a little easier thandeviating from the second EP (CEP2)
in the sense of the required nominal control.

The effect ofk is analyzed by fixingµ = 0.5 and varyingk. The corresponding contour maps
are shown in Figure 4(a)–(d). As foramax = 0.2, the feasible hovering regions are isolated when
k = 1. With k increasing, these four regions gradually stretch and connect with each other when
k = 10. For amax ≥ 0.4, the inner bounds of the feasible hovering regions gradually tend to be
circular and move away from the asteroid withk increasing. Hence, a close hovering requires larger
controlled acceleration for a largerk. This phenomenon can be explained simply as follows. From
the definition of the dimensionless parameterk, this type of behavior can be regarded as changes in
the ratio between the two-body gravitational force and the centrifugal force at the distanced. With
k increasing, the distance from the EPs to the center of mass ofthe asteroid should be larger so that
the centrifugal force can balance the gravitational force.Because the feasible hovering regions are
surrounding the equilibrium points, these regions also move away from the asteroid. In addition, the
irregularity of the gravitational field would be lower with alarger distance to the asteroid. Therefore,
the inner bounds of the feasible hovering regions would tendto be circular.
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Fig. 5 Contour maps of the magnitude of active control for different µ in the planeE1E2 and the
planeE3E4. (a)µ = 0.5 andk = 1 in the planeE1E2; (b) µ = 0.2 andk = 1 in the planeE1E2;
(c) µ = 0.5 andk = 1 in the planeE3E4; (d) µ = 0.2 andk = 1 in the planeE3E4.

3.2 Out of the Equatorial Plane

Two special planes which are perpendicular to the equatorial plane are considered here. We denote
these planes containingE1, E2 andE3, E4 as planeE1E2 and planeE3E4, respectively. In view of
the symmetry of these planes, only semi-planes will be analyzed. The contour maps for differentµ
in these two planes are illustrated in Figure 5. The values ofcontour lines still have five levels which
are 0.2, 0.4, 0.6, 0.8 and 1.0. The magnitude of the required active control also increases along
the directions of the arrows. The contour lines in the vicinity of the fictitious interior equilibrium
point should also be ignored. The feasible hovering regionscan be classified into two types: the first
surrounds an equilibrium point and the second is over the north pole of the asteroid. These two types
of regions are isolated when the maximal magnitude of the active control is small (e.g.amax = 0.2).
With the maximal magnitude of active control increasing, these regions stretch toward each other and
then become connected. The effect ofµ decreasing on feasible hovering regions is found as follows.
In the planeE1E2, the feasible regions nearE1 become larger than the feasible regions nearE2

while the distance from the inner bounds to the first primary becomes further than the distance from
the inner bounds to the second primary whenµ is less than 0.5. In the planeE3E4, the feasible
regions nearE1 andE4 remain the same due to symmetry whenµ is less than 0.5. However, the
feasible regions at both sides shrink. The reason for this isas follows. The rotation axis moves out
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of the planeE3E4 whenµ is not equal to 0.5, leading the centrifugal force to increase. Hence, the
required magnitude of the active control increases at the same position withµ decreasing.

3.3 Actual Magnitude of the Active Control for Elongated Asteroids

The magnitudes of the active control corresponding to the contour lines in Figures 2, 4 and 5 are nor-
malized values. With specifiedω andd, the actual magnitudes of the active control can be obtained
by multiplyingωd2. A method for connecting the approximate model with naturalelongated bodies
has been proposed by Zeng et al. (2014b). We list the resulting parameters of the approximate model
for sample natural elongated bodies in Table 1.

Table 1 Parameters of the Approximate Model for Sample Natural Elongated Bodies
(Zeng et al. 2014b, Appendix)

Elongated bodies µ k T (h) M (kg) d (km)

(216) Kleopatra 0.486298 0.883478 5.385 2.588233E+18 122.9967
(951) Gaspra 0.2496003 5.3814122 7.042 2.31959126E+15 7.7649056
(1620) Geographos 0.440043 1.158476 5.223 2.1644546E+13 2.234946
(1996) HW1 0.41255886 3.8663816 8.757 1.5625969E+13 1.8934394
(2063) Bacchus 0.4445476 13.049195 14.9 2.7244747E+11 0.46650643
(25143) Itokawa 0.43473655 15.655407 12.132 4.7313275E+10 0.2135805
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Fig. 6 Actual magnitude with respect to normalized magnitude of the active control for different
asteroids.

Using these parameters, the actual magnitudes of the activecontrol for different asteroids are
obtained as shown in Figure 6. The dot dashed line in this figure represents the maximal acceleration
which can be provided by two 0.08 N low thrusters acting on a 1000 kg spacecraft. Assuming the
spacecraft is equipped with these low thrusters, then the actual magnitude of the active control should
be less than the maximal acceleration provided by these low thrusters. For asteroids with small sizes
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((1996) HW1, (2063) Bacchus and (25143) Itokawa), the magnitude of the normalized active control
that can be provided by the low thrusters can be much larger than 1.0, as shown in Figure 6. Hence,
it is possible to execute body-fixed hovering around these asteroids by applying low thrust.

4 ANALYSIS OF HOVERING STABILITY

Because there are perturbations in the vicinity of asteroids, the stability of body-fixed hovering is
addressed here. The effect ofµ andk on hovering stability will be analyzed.

4.1 Linearization near the Hovering Position

Denote the hovering position asr0 = [x0, y0, z0]
T and consider a small perturbationδr = [ξ, η, ζ]T.

The equations describing the dynamics near the hovering position can then be derived from
Equation (6):

ξ̈ − 2η̇ + ∂V (r0+δr)
∂x

= acx (r0 + δr) ,

η̈ + 2ξ̇ + ∂V (r0+δr)
∂y

= acy (r0 + δr) ,

ζ̈ + ∂V (r0+δr)
∂z

= acz (r0 + δr) .

(13)

The gradient of the effective potential and the control acceleration can be expressed as Taylor
expansions:

∂V (r0 + δr)

∂r
=

∂V (r0)

∂r
+

∂2V (r0)

∂r2
δr + O

(

δr2
)

, (14)

ac (r0 + δr) = ac (r0) +
∂ac (r0)

∂r
δr + O

(

δr2
)

. (15)

Because the active control is constant at a given hovering position, it can be obtained that

∂ac (r0)

∂r
= 0 . (16)

Denote the Hessian matrix as

∂2V (r)

∂r2
=







Vxx Vxy Vxz

Vyx Vyy Vyz

Vzx Vzy Vzz






. (17)

The elements in this matrix are

Vxx = −1 + k
[

1−µ

r3

1

− 3 (1−µ)(x+µ)2

r5

1

+ µ

r3

2

− 3µ(x−1+µ)2

r5

2

]

,

Vyy = −1 + k
[

1−µ

r3

1

− 3 (1−µ)y2

r5

1

+ µ

r3

2

− 3µy2

r5

2

]

,

Vzz = k
[

1−µ

r3

1

− 3 (1−µ)z2

r5

1

+ µ

r3

2

− 3µz2

r5

2

]

,

Vxy = Vyx = −3ky
[

(1−µ)(x+µ)
r5

1

+ µ(x−1+µ)
r5

2

]

,

Vxz = Vzx = −3kz
[

(1−µ)(x+µ)
r5

1

+ µ(x−1+µ)
r5

2

]

,

Vyz = Vzy = −3kyz
[

1−µ

r5

1

+ µ

r5

2

]

.

(18)

By substituting Equation (14) into Equation (13) and using the relationship that

∂V (r0)

∂r
= ac (r0) , (19)
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the scalar linearized equations near the hovering positioncan be derived:

ξ̈ − 2η̇ + Vxx (r0) ξ + Vxy (r0) η + Vxz (r0) ζ = 0 ,

η̈ + 2ξ̇ + Vxy (r0) ξ + Vyy (r0) η + Vyz (r0) ζ = 0 ,

ζ̈ + Vxz (r0) ξ + Vyz (r0) η + Vzz (r0) ζ = 0 .

(20)

4.2 Stability Conditions

The characteristic equation of Equation (20) is
∣

∣

∣

∣

∣

∣

λ2 + Vxx (r0) −2λ + Vxy (r0) Vxz (r0)
2λ + Vxy (r0) λ2 + Vyy (r0) Vyz (r0)
Vxz (r0) Vyz (r0) λ2 + Vzz (r0)

∣

∣

∣

∣

∣

∣

= 0 , (21)

whereλ denotes the eigenvalues of Equation (20). Equation (21) canbe expanded to be

λ6 + (Vxx + Vyy + Vzz + 4)
r=r0

λ4

+
(

VxxVyy + VyyVzz + VzzVxx − V 2
xy − V 2

yz − V 2
xz + 4Vzz

)

r=r0

λ2

+
(

VxxVyyVzz + 2VxyVyzVxz − VxxV 2
yz − VyyV 2

xz − VzzV
2
xy

)

r=r0

= 0 .
(22)

The eigenvalues of Equation (22) determine the stability ofthe linearized system described by
Equation (20). Because the form of the characteristic equation is the same as that in the work of
Jiang et al. (2014), the possible forms of the eigenvalues should be the same. The possible forms of
the eigenvalues at non-degenerate equilibriums are±α (α ∈ R, α > 0), ±iβ (β ∈ R, β > 0), and
±σ ± iτ (σ, τ ∈ R; σ, τ > 0) (Jiang et al. 2014). An additional form of the eigenvalues can be zero.
If a system is stable, all of the real parts of the eigenvaluesshould be no larger than zero. The
derivation of the stability conditions is similar to the work of Morimoto et al. (2007) in which the
stability conditions for the AEPs in the CRTBP are as follows. Denotings = λ2, Equation (22) can
be written as

s3 + Ps2 + Qs + R = 0 , (23)

where
P = (Vxx + Vyy + Vzz + 4)

r=r0

≡ 2 ,

Q =
(

VxxVyy + VyyVzz + VzzVxx − V 2
xy − V 2

yz − V 2
xz + 4Vzz

)

r=r0

,

R =
(

VxxVyyVzz + 2VxyVyzVxz − VxxV 2
yz − VyyV 2

xz − VzzV
2
xy

)

r=r0

.

(24)

BecauseP is never equal to zero, the solutions of the cubic equation cannot all be zeros. Hence,
the eigenvalues are either all imaginary numbers or imaginary numbers and zeros. Then, the corre-
sponding motion around the hovering point will be oscillating. If all of the eigenvalues are imaginary
numbers or zeros, then the solutions of the cubic equation above should be negative numbers or ze-
ros. The resulting stability conditions are

∆ ≤ 0, Q ≥ 0, R ≥ 0 , (25)

where∆ is the discriminant of the cubic equation and is defined as

∆ =
( q

2

)2

+
(p

3

)3

, (26)

where
p = Q − P 2

3 ,

q = 2P 3

27 − PQ
3 + R .
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The first condition in Equation (25) is necessary and sufficient for all solutions of the cubic equa-
tion to be real numbers. Combined with the last two conditions in Equation (25), these conditions
are necessary and sufficient for all solutions to be not positive according to Descartes’ rule of signs.
Hence, the regions where stable hovering can occur are determined by Equation (25). It should be
noted that linear stability is a necessary condition for nonlinear stability and linear instability is a
sufficient condition for nonlinear instability. Hence, thestable regions found by Equation (25) can
only be guaranteed to be linearly stable instead of nonlinearly stable.

4.3 Analysis of Stable Regions

Stable regions in the three special planes, including the equatorial plane, the planeE1E2 and the
planeE3E4, are analyzed here. A two dimensional grid search method is used to determine the
stable regions. The normalized searching steps in the two dimensions are both 0.01. The stable
regions for differentµ andk in these planes are depicted in Figures 7–9.

In the equatorial plane, there are two separated narrow stable regions surrounding the pointE1

and the pointE2 whenµ = 0.5 andk = 1. The stable region close to pointE1 becomes larger than
the stable region close to pointE2 asµ becomes less than 0.5 (e.g.µ = 0.2). These two separated
regions can become connected ask increases, as shown in Figure 7(c) and (d). From Figure 7(c) and
(d), it can be seen that the CEPs are inside the stable region while the TEPs are outside this region. A
closer and stable hovering point separate from the TEPs is feasible using low thrust for the asteroid
with a largek in the equatorial plane. Moreover, the stable regions tend to be circular ask increases,
as shown in the figure.

In the planeE1E2, there are two types of stable regions. The first kind of stable region contains
four separated regions far from the CEPs and the second kind contains two regions beyond the two
CEPs as shown in the figure. Comparing the first two situationsin Figure 8, it can be found that the
second kind of stable region becomes a little closer to pointE1 than pointE2 with µ decreasing.
Moreover, both types of stable regions move away from the asteroid for largerk, as can be seen by
comparing Figure 8(a), (c) and (d). Moreover, the two small stable regions close to the equilibrium
points become larger whenk increases.

In the planeE3E4, there are four stable regions whenµ = 0.5 andk = 1. There is one end
in each region whose distance to the asteroid is closer than the two TEPs. These end regions will
move away from the asteroid and become wide withµ decreasing, as shown in Figure 9(b). Keeping
µ = 0.5 and increasingk up to ten, the two stable regions on both sides (left and right) shrink and
break into two parts, as shown in Figure 9(d), (e) and (f). Themain part of each original stable region
stretches to become connected with each other. The connected regions are still closer to the asteroid
than the two TEPs. Moreover, four small and isolated stable regions (the small parts of each original
stable region) are close to the asteroid and suitable for hovering. The size of these four regions
decreases withk increasing, as shown in Figure 9(d), (e) and (f).

From Figure 7 to Figure 9, the stable regions move away from the asteroid withk increasing.
Moreover, it can be found that the stable regions in the vicinity of ends of the asteroid are beyond
the CEPs while the stable regions in the vicinity of the middle of the asteroid can be closer to the
asteroid than the TEPs. Hence, a close hovering is easier in the vicinity of the middle side of asteroid
in the sense of the stability.

5 CONCLUSIONS

A normalized rotating mass dipole model has been used to analyze the feasible region and stability
for body-fixed hovering around elongated asteroids in whichthe rotating gravitational field is de-
scribed by two independent parameters,µ andk. The perturbations from the Sun and other planets
are ignored in this study. The boundaries of the feasible hovering regions with respect to different
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Fig. 7 Stable regions in the equatorial plane for differentµ andk. (a) µ = 0.5 andk = 1; (b)
µ = 0.2 andk = 1; (c) µ = 0.5 andk = 5; (d) µ = 0.5 andk = 10.
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Fig. 8 Stable regions in the planeE1E2 for differentµ andk. (a)µ = 0.5 andk = 1; (b) µ = 0.2

andk = 1; (c) µ = 0.5 andk = 5; (d) µ = 0.5 andk = 10.
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Fig. 9 Stable regions in the planeE3E4 for differentµ andk. (a)µ = 0.5 andk = 1; (b) µ = 0.2

andk = 1; (c) µ = 0.5 andk = 3; (d) µ = 0.5 andk = 4; (e)µ = 0.5 andk = 5; (f) µ = 0.5 and
k = 10.

maximal magnitudes that are necessary for active control are determined by the contour maps. The
effects of the parametersµ andk on the feasible hovering region have been analyzed individually
by comparing the contour maps. The feasible region near the equilibrium pointE1 becomes larger
than the one near the equilibrium pointE2 whenµ decreases below 0.5. The contour lines can also
become connected to the massless rod whenµ decreases, making close hovering near the middle of
the asteroid easier in the sense of the magnitude required for active control. The contour lines move
away from the asteroid surface by increasingk, resulting in hovering close to the asteroid being
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more difficult. For small size asteroids (such as (1996) HW1,(2063) Bacchus and (25143) Itokawa),
body-fixed hovering is possible using low thrust. The stability conditions for body-fixed hovering
have been derived and the corresponding stable regions are determined by a two dimensional grid
search. The effect ofk is more significant thanµ on stable regions. The number of stable regions
both in the equatorial plane and the planeE3E4 changes withk increasing, and the stable regions
also move away from the asteroid. Moreover, it is found that close hovering is easier in the vicinity
of the middle side of the asteroid than the two ends in the sense of the stability.
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