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Abstract This paper investigates properties of low-thrust hovetimgjuding the fea-
sible region and stability, in terms of the dynamical partrsfor elongated asteroids.
An approximate rotating mass dipole model, by which the dpson of the rotational
gravitational field is reduced to two independent paramseteiemployed to construct
normalized dynamical equations. The boundaries of thélflea®gion are determined
by contours representing the magnitude of the active cbfithe effects of a rotating
gravitational field and maximal magnitude of the low thrusttbe feasible hovering
regions are analyzed with numerical results. The stalgliyditions are derived ac-
cording to the forms of the eigenvalues of the linearizedatign near the hovering
position. The stable regions are then determined by a gaitheand the effects of the
relevant parameters are analyzed in a parametric way. Buitseshow that a close
hovering can be easier to realize near the middle of theadtéran near the two ends
in the sense of both required control magnitude and stabilit
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1 INTRODUCTION

There is increasing interest in asteroid missions in margcespagencies (e.g. NASA, JAXA,
ESA, etc.). The NEAR Shoemaker mission was the first to lané mear-Earth asteroid (NEA)
(Dunham et al. 2002). The Hayabusa mission successfullpleaithe surface of an NEA (ltokawa)
(Kawaguchi et al. 2008). The Dawn mission has been launahextlore the most two massive as-
teroids in the main belt, Vesta and Ceres (Russell & Raym@i@p Recently, several sample return
missions to NEAs have been proposed, including MarcoPao[BdRucci et al. 2012), OSIRIS-Rex
(Lauretta & OSIRIS-Rex Team 2012) and Hayabusa2 (Tsuda 20&B). A variety of scientific and
technological advancements are expected to be achievhdse missions such as investigating the
formation of the early solar system (Barucci et al. 2012grabterization of potentially hazardous
asteroids (Lauretta & OSIRIS-Rex Team 2012), asteroigarag operations (Tsuda et al. 2013), etc.
Moreover, CNSAs Chang’e-2 conducted a successful flybyaftatis which is a potentially haz-
ardous asteroid (Hang et al. 2013). The transportation agth®f potentially hazardous asteroids
have been previously investigated in the work of Ji & Liu (2RO

One effective way to explore an asteroid from a nearby petsesin its vicinity is body-fixed
hovering, by which the spacecraft maintains its relativsitoan with respect to the asteroid. Body-
fixed hovering can be used to obtain high-resolution measenés of a target area on the asteroid’s
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surface, and to simplify the descent and ascent maneuvarsample return mission (Broschart &
Scheeres 2005). Such maneuvers were necessary in the [dayalssion (Scheeres 2004). A series
of studies on hovering control methods has been publishetliding a tight control method using
altimetry (Sawai et al. 2002), a dead band control (Brosch&@cheeres 2005) and a reinforcement
learning method (Gaudet & Furfaro 2012), etc. These studimss on the design and stability of a
closed loop control system. However, the effects of the dyinal parameters on the hovering region
and stability in the vicinity of an asteroid have not beenlyred. Jiang et al. (2014) analyzed body-
fixed hovering at the natural equilibrium points (EPs) arassified the manifolds near the EPs into
eight types, which depend on the gravity associated witlagieroid. The relationship between the
physical parameters and the number of natural EPs has atsoamalyzed by numerical methods
(Wang et al. 2014). No active control was assumed in thesestudies so that a spacecraft can
only hover at the natural EPs. The feasible hovering regibare/ the gravitational force and the
centrifugal force can be balanced by the external force eantarged with active control. Williams
& Abate (2009) proposed solar sail body-fixed hovering aralyaed the effect of solar latitude and
the sail area on the hovering region. Zeng et al. (2014ayaedlhovering using non-ideal solar sails
and complemented the work of Williams & Abate (2009). Coneglavith using a solar sail, a low
thrust spacecraft has two main advantages. Firstly, theninatg of the control is not limited by the
direction of the control for low thrust, so it is easier to yide the desired control by applying low
thrust. Secondly, the low thrust technique is mature andbkas used in deep space missions, e.g.,
the Hayabusa mission (Kuninaka et al. 2007). Hence, it erésting to study body-fixed hovering
using low thrust.

In this paper, the feasible region and stability for bodyediovering in the vicinity of an elon-
gated asteroid (such as (216) Kleopatra, (951) GaspraQjlB2ographos, etc.) using low thrust
are studied. The effects of dynamical parameters, inctuthie rotating gravitational field and the
maximal magnitude of the active control provided by the lbvust, are analyzed. The gravity near
an elongated asteroid is quite irregular. The traditiophksical harmonic expansion method is hard
to converge (Scheeres et al. 2000). The polyhedral-shageling method proposed by Werner &
Scheeres (1996) is an accurate method to model the grawightiield. However, this method is
a numerical way which is based on different shape-data efaists. Hence, it is hard to use the
polyhedral-shape modeling method to analyze the relatiprisetween the hovering characteristics
and dynamical properties. To investigate effects of theadyinal parameters on the characteristics
of body-fixed hovering and obtain qualitative conclusicars.approximate and simplified model is
preferred. Several simplified models have already beengsexpfor elongated asteroids, such as a
massive straight segment (Riaguas et al. 1999), two peipdad material segments (Bartczak &
Breiter 2003), and a rotating mass dipole in which two poiisees are connected with a mass-
less rod (Prieto-Llanos & Gomez-Tierno 1994). The rotatimags dipole is employed in this paper
due to the simplicity of its model formulation, where theatiig gravitational field of the asteroid
can be characterized by only two dynamical parameters indgtealized form (Prieto-Llanos &
Gomez-Tierno 1994; Zeng et al. 2014b). Recently, this agprate model has been developed to
describe natural elongated asteroids whose model is istadlby the polyhedral-shape modeling
method (Werner & Scheeres 1996) in the work of Zeng et al.4BDIEssentially, this model can be
regarded as a generalization of the circular restrictegbtbody problem (CRTBP) (Prieto-Llanos &
Gomez-Tierno 1994). Also, the body-fixed hovering posifiothe rotating mass dipole model can
be regarded as a generalization of the artificial equiliorpoints (AEPS) in the CRTBP (Morimoto
et al. 2007). Abundant literatures have been published dasfdnd different kinds of active control
have been studied including low thrust (Morimoto et al. 208@lar sail (Baoyin & Mcinnes 2006)
hybrid low-thrust propulsion (Baig & Mclnnes 2008), etc.dantrast to the CRTBP, the rotational
velocity of the system is not only related the gravitatidioate and force between the two primaries
but also the tensile force or compressive force acting omtassless rod in the rotating mass dipole
model. Hence, the characteristics of body fixed hoveringnatéhe same as those of the AEPs. The
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effects of these two dynamical parameters and the maximghinale of the active control on the
feasible hovering region and stability will be analyzed bynerical methods in this paper. As for a
spacecraft near an asteroid, it is affected by multipleypbetions, among which the solar radiation
pressure may be the most important (Scheeres 2012). In theok8cheeres (2012), the combined
effects of the asteroid’s gravity, solar gravity and sokdiation pressure on orbits around an as-
teroid are studied. Although there are many perturbatioraldition to the asteroid’s nonspherical
perturbation, the work of Llanos et al. (2014) indicateg tha magnitudes of the perturbations are
quite small compared with the asteroid’s gravity closesaitrface (the ratio can be less than 0.001).
Therefore, small perturbations from sources like the Suhadher planets are ignored in this paper.

The rest of this paper is organized as follows. Section 2ggive dynamical equations using the
simplified gravitational model and the condition for theatibody-fixed hovering above an enlon-
gated asteroid. In Section 3, the feasible region in terntee@flynamical parameters are analyzed
for both equatorial plane and out of equatorial plane. Atsagnitudes of the required control for
several natural asteroids are evaluated in Section 3.dpedtanalyzes the stability in terms of the
dynamical parameters. Section 5 concludes this paper.

2 DYNAMICAL EQUATIONS AND HOVERING FORMULATION
2.1 Dynamical Equations in a Body-fixed Frame

The problem of body-fixed hovering around an elongated aistés considered. The motion of a
spacecraft in the vicinity of a natural asteroid dependshenpthysical properties of the asteroid,
including its total mass, mass distribution, rotation périetc. To analyze the characteristics of
hovering around an elongated asteroid, a simple approgimatiel (i.e. a rotating mass dipole) is
used for the rotating elongated asteroid (Prieto-Llanos&d@z-Tierno 1994; Zeng et al. 2014b).
Previous work has studied the connection between the mgtatass dipole and natural elongated
bodies, showing that this model can be taken as a good appatinin for natural asteroids (Zeng
et al. 2014b). In this model, an asteroid is representedimpligied way as two primary masses,
andms, separated by a massless rod with a characteristic distamotating around the combined
center of masd/. A schematic diagram is shown in Figure 1. The synodic framegz centered at
the center of mass is used as the body-fixed frame. Theaxsscollinear with the massless rod, the
axisoz is aligned with the rotational angular velocity of the astdr and the axisy completes the
right handed coordinate system. The rotational angularcitylw of the synodic frame is assumed
to be equal to the one of the asteroid. The synodic framegz is initially assumed to coincide with
the inertial frame-XY Z.

Spacecraft

Fig. 1 A schematic diagram of the rotating mass dipole and the doatel system.
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The equation describing uncontrolled motion for a spadepekative to a rotating asteroid can
be written as follows (Jiang et al. 2014)

FH22wXT+wX (WXr)+wxr+

=0, 1)

wherer is the position vector in the body-fixed frame from the ceofanass of the asteroid to the
spacecraft and@ (r) is the gravitational potential. This dynamical equatismstablished using an
assumption that the mass of the spacecraft is negligibleoaoad with the mass of the asteroid. To
describe the dynamics of a controlled spacecraft, Equétipis modified to be

F+2wx7‘+wx(wxr)+cbxr+a%(r):ac, 2

T

wherea, is the acceleration provided by the low thruster. This aregion is expressed in the
synodic frame. The acceleration in the inertial frame aetincan be easily obtained by. (t) =
R, (—wt) a., where the rotation matrix is

cos (wt) —sin (wt) 0
R, (—wt) = | sin(wt) cos(wt) 0
0 0 1

Assuming that the asteroid rotates uniformly € 0), we can define an effective potential as
(Yu & Baoyin 2012; Jiang et al. 2014)

V(r)= 3 (@ x ) (@ X )+ U (r). 3)
Equation (2) can be rewritten as
#rowxir g 4)
or

In the case of the rotating mass dipole, a previous work (Ztred. 2014b) has given the nor-

malized dynamical equations as follows. The gravitatiguuaéntial can be obtained as
U= -Sm_ Gz ©)
™ 2

whered is the gravitational constant, amgd andr, are the distances from the spacecraft to the two
primaries, respectively. Using normalized units, inchglmass unitV/ (M = mj + ms2), length
unit  and time unitw—"!, Equation (4) can be transformed into a normalized form.ddieg the
dimensionless mass of the second primary as m2/M € (0,0.5] and that of the first primary as
1—pu € [0.5,1), the position vectors of the two primaries &reu, 0,0]™ and[1 -y, 0, 0]T. Then, the
distances from the spacecraft to the two primaries-are [z+u,y, z|T andry = [z —1+pu,y, 2]T.

After normalization, the normalized scalar form of Equat{d) can be obtained

i =2+ HE2E —
i+ 20+ 20 — g, (6)
4 G g,
where the effective potential is
V:—x2+y2_k(1_ﬂ+ﬁ>. e
2 1 T

The dimensionless variablein Equation (7) is equal t&M / w?d?. The parametekt depends
on the physical properties of the asteroid and represeatsatio of the gravitational force to the
centrifugal force between the two primaries (Prieto-Le&dGomez-Tierno 1994). Whehis equal
to 1, the dynamical equations are the same as those of ttetcalbERTBP.
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2.2 Condition for Body-fixed Hovering

The velocity and acceleration should be zero in the synadimé when a spacecraft is performing
body-fixed hovering above an asteroid, thaf'is= # = 0. Without active controld., = ac, =
a., = 0), the following condition should be satisfied

OV (x,y,2) _ OV (vy2) 0V(xy2) _ (8)
Ox N Oy N 0z -

The solutions of Equation (8) are called EPs. Whea 1, the solutions of Equation (8) correspond
to the five EPs of the CRTBP. For elongated asteroids, theresrally four EPs (one of the other
solutions is located in the interior of the asteroid) (Wabal€2014). Detailed expressions describing
the EPs can be found in the work of Zeng et al. (2014b).

When there is an active control, the body-fixed hoveringmegan be extended beyond the EPs.
The active control should balance the gravitational foroe the centrifugal force. The components
of the active control should satisfy the following conditio

oV (x,y,z

Qe = (31 ) )
oV (x,y,z

Qcy = (ay ) ) (9)
oV (x,y,z

Qer = 7(& )

By substituting Equation (7) into Equation (9), the expliorm of the components required for
active control can be obtained:

e ==z + k|5 @+ p) + & (@ p—1)]
ey = —y+k [f—;“w%y} (10)
aczzk[k—g“z+%z} )

Ty T2

At a given hovering position, the components needed fovactntrol are constants.
The magnitude of the active control is

ac = /a2, + a2, + a2, . (11)

Because the active control is provided by thrusters moumnettie spacecraft, there is an upper
limit on its magnitude

e < Qmax - (12)

3 FEASIBLE HOVERING REGION

The feasible hovering region is defined as the region whergthvitational force and the centrifu-
gal force can be balanced by the active control. Hence, thditon described by Equation (12)
should be satisfied, otherwise the active control is not &blealance the gravitational force and
the centrifugal force. Equation (12) determines the boundathe feasible hovering region. From
Equation (10), it can be found that the components requiveddtive control only depend on two
physical parameters, which areandk of the asteroid. Therefore, there are only three parameters
(14, k andamax) that completely determine the feasible hovering regiore &ffiects of these three
parameters will be analyzed next.
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Fig.2 Contour maps of the active control’s magnitude for différgrin the equatorial plane. (a)
pw=0.5andk =1;(b)u =0.4andk = 1; (c) p = 0.3 andk = 1; (d) » = 0.2 andk = 1.

3.1 Equatorial Plane

The body-fixed hovering in the equatorial plame{ 0) will be considered here. From Equation (10),
it can be directly obtained that., = 0. The contour map displaying the magnitude of the required
active control can be depicted according to Equation (16)Eguation (11). The contours describe
the boundaries of the feasible hovering regions with déffiéimagnitudes for active control.

Firstly, settinge = 0.5 andk = 1, the corresponding contour map can be obtained as shown
in Figure 2(a). In this figure, the four points namég (: = 1, 2, 3, 4) denote the four EPs of
the dynamical system described by Equation (6) withoutrodntneaning that the magnitude of
the active control is zero at these points. The poifitsand F, are called collinear equilibrium
points (CEPs). The points; andE, are triangular equilibrium points (TEPS). Actually, thésstill
one more EP which is located inside of the massless rod battheetwo primaries. However, the
position of this EP is in the interior of the asteroid. Hencis not feasible for hovering. There are
some contour lines surround this EP as shown in the figure sirtadl region where these contour
lines locate is considered not feasible as well. These conioes are all not considered in the
analyses below. The normalized values of contour lines fiseelevels which are 0.2, 0.4, 0.6,
0.8 and 1.0. There are four isolated feasible regions foehing whena,,.. = 0.2. Each of these
regions contains one EP as shown in the figure. When the maiagmnitude of the active control is
increased, these regions expand and then become conneetechtother. Let us define a parameter

dp = |x_'rE'Z|a 7’:172
P=Vly—ymil, i=34
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Fig. 3 Magnitude of the required active control as a functiordpf (a) » = 0.5 andk = 1; (b)
pw=04andk =1;(c)p =0.3andk = 1; (d) o = 0.2 andk = 1.

representing the deviation from an EP towards the astefbie.relationship ofi. anddp is shown

in Figure 3. In Figure 3(a), the curve shows a monotone irser@ad it tends to infinity in the case
of deviating from a CEP towards one of the primaries. Howeter nominal control required for
deviating from a TEP and towards the massless rod is limitedb@comes zero again at the massless
rod. The contours in Figure 2(a) agree with Figure 3(a). Trees in Figure 3(a) show that close
hovering is cheaper in terms of fuel consumption in the vigiaf the middle of an asteroid than in
the vicinity of its two ends.

By fixing & = 1 and varyingu, Figure 2(b)—(d) is drawn. Two phenomena can be found rtlate
to the feasible hovering region that are consequences @iateanetey: decreasing. Firstly, the fea-
sible hovering region close to the first primary stretchesenthe region close to the second primary
shrinks. Forau,x = 0.2, the region containingv; stretches and then becomes connected to the
regions containind’s and /4 while the region containind’, shrinks withy, decreasing. In addition,
the region betweelv; and £'5 or E, becomes connected faf,.. = 0.4 whenyu = 0.5. However,
this region shrinks and then breaks whedecreases. Once the contouy,(,. = 0.4) breaks into
two parts, as shown in Figure 2(c)—(d), the two disconnegitbns become infeasible for hover-
ing when the maximum magnitude of the nominal control is @dcondly, the separated exterior
contours and interior contours (surrounding the interiB)) Ean be connected with decreasing.
This phenomenon appears far.. = 1.0 in the figure. Once the exterior contours and interior con-
tours are connected, the minimum altitude of the feasil@re(a.,.x = 1.0) with respect to the
asteroid is zero. Hence, a body-fixed hovering which is véogecto the surface of the asteroid is
possible. Moreover, the magnitudes of the active contrtil véspect talp for 1. less than 0.5 can be
obtained as shown in Figure 3(b)—(d). The nominal contrguired for deviating from a TEP does
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© (d)

Fig.4 Contour maps of the magnitude of active control for différenn the equatorial plane. (a)
w=0.5andk = 1; (b) u = 0.5 andk = 2; (c) p = 0.5 andk = 5; (d) » = 0.5 andk = 10.

not become zero again at the massless rod. This happenssbabau coordinate of the interior
EP on the massless rod is different from those of the TEPs whsmot equal to 0.5 as shown in
Figure 2(b)—(d). However, the nominal control for a largeidgon is still much less than what is
required when deviating from a CEP, meaning a close hovésistijl cheaper for fuel consumption
in the vicinity of the middle of an asteroid. Besides, it canfbund by comparing Figure 3(b)—(d)
that deviating from the first EP (CEP1) is a little easier tdawiating from the second EP (CEP2)
in the sense of the required nominal control.

The effect ofk is analyzed by fixing: = 0.5 and varyingk. The corresponding contour maps
are shown in Figure 4(a)—(d). As far,.x = 0.2, the feasible hovering regions are isolated when
k = 1. With k increasing, these four regions gradually stretch and adnmigh each other when
k = 10. Foramax > 0.4, the inner bounds of the feasible hovering regions gragueaiid to be
circular and move away from the asteroid witincreasing. Hence, a close hovering requires larger
controlled acceleration for a largér This phenomenon can be explained simply as follows. From
the definition of the dimensionless paramétgthis type of behavior can be regarded as changes in
the ratio between the two-body gravitational force and #trifugal force at the distaneg With
k increasing, the distance from the EPs to the center of mase @fsteroid should be larger so that
the centrifugal force can balance the gravitational foBerause the feasible hovering regions are
surrounding the equilibrium points, these regions alsoeraway from the asteroid. In addition, the
irregularity of the gravitational field would be lower witHarger distance to the asteroid. Therefore,
the inner bounds of the feasible hovering regions would terizk circular.
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Fig.5 Contour maps of the magnitude of active control for différgnn the planeF; F»> and the
planeEsEs. () = 0.5 andk = 1 in the planeE; E»; (b) © = 0.2 andk = 1 in the planeF; Es;
(¢) p = 0.5 andk = 1in the planeEs E4; (d) © = 0.2 andk = 1 in the planeEs E,.

3.2 Out of the Equatorial Plane

Two special planes which are perpendicular to the equafdeae are considered here. We denote
these planes containing;, F» andEs3, E, as planek; E5 and planefs By, respectively. In view of
the symmetry of these planes, only semi-planes will be aealyThe contour maps for different

in these two planes are illustrated in Figure 5. The valuesofour lines still have five levels which
are 0.2, 0.4, 0.6, 0.8 and 1.0. The magnitude of the requicédeacontrol also increases along
the directions of the arrows. The contour lines in the vigimif the fictitious interior equilibrium
point should also be ignored. The feasible hovering regiamsbe classified into two types: the first
surrounds an equilibrium point and the second is over thtarpaie of the asteroid. These two types
of regions are isolated when the maximal magnitude of theeacontrol is small (e.gzy,2x = 0.2).
With the maximal magnitude of active control increasingsiaregions stretch toward each other and
then become connected. The effecuiafecreasing on feasible hovering regions is found as follows
In the planeF; E», the feasible regions nedf; become larger than the feasible regions neéar
while the distance from the inner bounds to the first primagdmes further than the distance from
the inner bounds to the second primary whers less than 0.5. In the plangs; £, the feasible
regions neary; and £, remain the same due to symmetry wheis less than 0.5. However, the
feasible regions at both sides shrink. The reason for thas i®llows. The rotation axis moves out
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of the planeFs £, wheny is not equal to 0.5, leading the centrifugal force to inceed&tence, the
required magnitude of the active control increases at thegaosition withy, decreasing.

3.3 Actual Magnitude of the Active Control for Elongated Asteroids

The magnitudes of the active control corresponding to tmaro lines in Figures 2, 4 and 5 are nor-
malized values. With specified andd, the actual magnitudes of the active control can be obtained
by multiplyingwd?. A method for connecting the approximate model with natelahgated bodies
has been proposed by Zeng et al. (2014b). We list the regudirameters of the approximate model
for sample natural elongated bodies in Table 1.

Table 1 Parameters of the Approximate Model for Sample Natural gdoad Bodies
(Zeng et al. 2014b, Appendix)

Elongated bodies I k T (h) M (kg) d (km)
(216) Kleopatra 0.486298 0.883478 5.385 2.588233E+18 99B7.
(951) Gaspra 0.2496003 5.3814122 7.042 2.31959126E+15 6490B6
(1620) Geographos 0.440043 1.158476 5.223 2.1644546E+13.234246
(1996) HW1 0.41255886 3.8663816 8.757 1.5625969E+13 1398
(2063) Bacchus 0.4445476  13.049195 14.9 2.7244747E+11 6680643

(25143) Itokawa 0.43473655 15.655407 12.132  4.7313276E+10.2135805

x 10
5
45| (216) Kleopatra ]
’ X (951) Gaspra x
4 F A (1620) Geographos 1
~ o (1996) HW1 *
;3-5 " % (2063) Bacchus N ]
< | O (25143) Itokawa |
g’ x
2
Zosl A
iy * A
=
SR N | K= mmmmmm g
< x A
1 x A 1
A
o)
0.5 x A s o o ° .
A fe) O
04 @ g o 5B B 2] 5 ksl 2] ki i
0 0.2 0.4 0.6 0.8 1

Normalized Magnitude

Fig.6 Actual magnitude with respect to normalized magnitude efdhbtive control for different
asteroids.

Using these parameters, the actual magnitudes of the aiiveol for different asteroids are
obtained as shown in Figure 6. The dot dashed line in thisdiggpresents the maximal acceleration
which can be provided by two 0.08 N low thrusters acting on @01Ky spacecraft. Assuming the
spacecraftis equipped with these low thrusters, then tluabmagnitude of the active control should
be less than the maximal acceleration provided by theseHnwsters. For asteroids with small sizes
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((1996) HW1, (2063) Bacchus and (25143) Itokawa), the ntageiof the normalized active control
that can be provided by the low thrusters can be much larger1t0, as shown in Figure 6. Hence,
it is possible to execute body-fixed hovering around thetaisls by applying low thrust.

4 ANALYSIS OF HOVERING STABILITY

Because there are perturbations in the vicinity of asterdtie stability of body-fixed hovering is
addressed here. The effect;ofndk on hovering stability will be analyzed.

4.1 Linearization near the Hovering Position

Denote the hovering position &g = [z, o, 20] " and consider a small perturbatién = [¢, 7, ¢]T.
The equations describing the dynamics near the hoveringiggosan then be derived from
Equation (6):

-2+ 7BV('P0+67‘) = Qe (Po + 07)

n+2§+w=acy (ro +or) , (13)

C+w=acz(m+57‘)-

The gradient of the effective potential and the control &redion can be expressed as Taylor
expansions:
AV (ro+or) OV (ro) 0%V (ro)
or - or or?
6ac (ro)

or+0 (or?), (14)

ac (ro +0r) = a. (ro) + 6r + 0 (677) . (15)
Because the active control is constant at a glven hoverisgipo, it can be obtained that

da.(ro)

e 0. (16)
Denote the Hessian matrix as
Vm;ﬂ wa sz
0V (r
Tg) = | Vyz Vyy Viz | - (17)
Vie Voy Vez

The elements in this matrix are
Vg = =1+ k [t — 3Umtloti | gy _ gulompi |

Vig=—1+k |5 - 308 4 4 _3ul]
Ve =k [ —aloge o gei ]

(18)
Viy = Vo = —3ky [“ a)zts) | ule T:m} 7
Vio = Vip = —3kz [<1—~3§w+u> 4l éw} 7
Vyz = Vay = —3kyz {1;—?” + T%] .
By substituting Equation (14) into Equation (13) and using telationship that
oV (ro) _ ae (7o) | 19

or
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the scalar linearized equations near the hovering posiaorbe derived:

5_277+wa (TO)§+VM; (7“0)77+sz (TO)CZOa
i 4 26 + Viy (10) € + Vyy (10) 0+ Viyz (19) ¢ = 0, (20)
C+sz (TO)§+V;/Z (7“0)77+sz (TO)CZO

4.2 Stability Conditions
The characteristic equation of Equation (20) is

AQ + sz (7’0) -2\ + sz (7’0) sz (’I’Q)
2\ + me (7’0) A2+ Vyy (7"0) Vyz (’I’Q) =0, (21)
sz (TO) V;yz (TO) AQ + ‘/zz (TO)

where) denotes the eigenvalues of Equation (20). Equation (21peaxpanded to be

N+ (Vo + Vi + Ve + 4)r:r0 A4
+ (Vzm‘/yy + ‘/yy‘/zz + ‘/szzz - szy - ‘/yzz - szz + 4‘/22)7-:7-0 )\2 (22)

+ (me‘/tgy‘/zz + 2me‘/tgzvmz - me‘/;fz - Vtyyvﬁz - ‘/;zvmzy) =0.

=70

The eigenvalues of Equation (22) determine the stabilittheflinearized system described by
Equation (20). Because the form of the characteristic égiuas the same as that in the work of
Jiang et al. (2014), the possible forms of the eigenvaluesldrbe the same. The possible forms of
the eigenvalues at non-degenerate equilibriumstaréa € R, o > 0), i (5 € R, 5 > 0), and
+o tir (0,7 € R;o,7 > 0) (Jiang et al. 2014). An additional form of the eigenvaluesloa zero.

If a system is stable, all of the real parts of the eigenvakiesuld be no larger than zero. The
derivation of the stability conditions is similar to the Wwasf Morimoto et al. (2007) in which the
stability conditions for the AEPs in the CRTBP are as follo@enotings = A2, Equation (22) can
be written as
2+ Ps*+Qs+R=0, (23)
where
P = (sz+‘/yy+‘/zz +4)7-:7-0 523

Q = (szVyy + Vyy‘/zz + Vi Viw — ny - ‘/yQZ - szz + 4‘/zz)7,:7.0
R= (VaaViyyVee + 2Vay Vi Voo = Vaa Vil = Vi Vit — V2o V2))

) (24)

=70

BecauseP is never equal to zero, the solutions of the cubic equationagall be zeros. Hence,
the eigenvalues are either all imaginary numbers or imaginambers and zeros. Then, the corre-
sponding motion around the hovering point will be oscitigtilf all of the eigenvalues are imaginary
numbers or zeros, then the solutioof the cubic equation above should be negative numbers or ze-
ros. The resulting stability conditions are

A<0,Q>0,R>0, (25)
whereA is the discriminant of the cubic equation and is defined as
_ (9 L (PY’
a=(3) () 9)
where )
p= Q - % ’
=45 — 5+ R
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The first condition in Equation (25) is necessary and sufiitdier all solutions of the cubic equa-
tion to be real numbers. Combined with the last two condgionEquation (25), these conditions
are necessary and sufficient for all solutions to be not pesiiccording to Descartes’ rule of signs.
Hence, the regions where stable hovering can occur arendieted by Equation (25). It should be
noted that linear stability is a necessary condition forlimear stability and linear instability is a
sufficient condition for nonlinear instability. Hence, te@ble regions found by Equation (25) can
only be guaranteed to be linearly stable instead of nonlipstable.

4.3 Analysis of Stable Regions

Stable regions in the three special planes, including thextegial plane, the plan&; F> and the
plane E5 E4, are analyzed here. A two dimensional grid search methodes to determine the
stable regions. The normalized searching steps in the twemions are both 0.01. The stable
regions for differenj, andk in these planes are depicted in Figures 7-9.

In the equatorial plane, there are two separated narrowestagpions surrounding the poidat
and the pointZs whenu = 0.5 andk = 1. The stable region close to poiAt becomes larger than
the stable region close to poiak asu becomes less than 0.5 (eig= 0.2). These two separated
regions can become connectedcascreases, as shown in Figure 7(c) and (d). From Figure A@) a
(d), it can be seen that the CEPs are inside the stable rediibmtive TEPs are outside this region. A
closer and stable hovering point separate from the TEPsifle using low thrust for the asteroid
with a largek in the equatorial plane. Moreover, the stable regions teietcircular ag increases,
as shown in the figure.

In the planel; Es, there are two types of stable regions. The first kind of stadagion contains
four separated regions far from the CEPs and the second &kimdias two regions beyond the two
CEPs as shown in the figure. Comparing the first two situaiiof$gure 8, it can be found that the
second kind of stable region becomes a little closer to pbinthan pointE, with i decreasing.
Moreover, both types of stable regions move away from thereist for largerk, as can be seen by
comparing Figure 8(a), (c) and (d). Moreover, the two sntable regions close to the equilibrium
points become larger whenincreases.

In the planeFE; Ey, there are four stable regions when= 0.5 andk = 1. There is one end
in each region whose distance to the asteroid is closer tl@ahmo TEPs. These end regions will
move away from the asteroid and become wide withecreasing, as shown in Figure 9(b). Keeping
# = 0.5 and increasing up to ten, the two stable regions on both sides (left and )igtrink and
break into two parts, as shown in Figure 9(d), (e) and (f). iaén part of each original stable region
stretches to become connected with each other. The conegiiens are still closer to the asteroid
than the two TEPs. Moreover, four small and isolated stag@ns (the small parts of each original
stable region) are close to the asteroid and suitable foetoy. The size of these four regions
decreases with increasing, as shown in Figure 9(d), (e) and (f).

From Figure 7 to Figure 9, the stable regions move away fraragteroid witht increasing.
Moreover, it can be found that the stable regions in the iticiof ends of the asteroid are beyond
the CEPs while the stable regions in the vicinity of the médaf the asteroid can be closer to the
asteroid than the TEPs. Hence, a close hovering is easige iridinity of the middle side of asteroid
in the sense of the stability.

5 CONCLUSIONS

A normalized rotating mass dipole model has been used tgyzn#ie feasible region and stability
for body-fixed hovering around elongated asteroids in whiliehrotating gravitational field is de-
scribed by two independent parametergndk. The perturbations from the Sun and other planets
are ignored in this study. The boundaries of the feasibletiog regions with respect to different
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maximal magnitudes that are necessary for active contealiatermined by the contour maps. The
effects of the parametegsandk on the feasible hovering region have been analyzed indaliglu

by comparing the contour maps. The feasible region nearghgilerium point £, becomes larger
than the one near the equilibrium poifi wheny decreases below 0.5. The contour lines can also
become connected to the massless rod whdacreases, making close hovering near the middle of
the asteroid easier in the sense of the magnitude requiretfive control. The contour lines move
away from the asteroid surface by increaskgesulting in hovering close to the asteroid being
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more difficult. For small size asteroids (such as (1996) H{2Q63) Bacchus and (25143) Itokawa),
body-fixed hovering is possible using low thrust. The stgbdonditions for body-fixed hovering
have been derived and the corresponding stable regionstgerdned by a two dimensional grid
search. The effect of is more significant thap on stable regions. The number of stable regions
both in the equatorial plane and the plaiigF, changes withk increasing, and the stable regions
also move away from the asteroid. Moreover, it is found thades hovering is easier in the vicinity
of the middle side of the asteroid than the two ends in theesefithe stability.

Acknowledgements This work is supported by the National Natural Science Fatind of China
(No. 11372150) and the National Basic Research Programiog@873 Program, 2012CB720000).

References

Baig, S., & Mclnnes, C. 2008, Journal of Guidance Control &wics, 31, 1644

Baoyin, H., & Mclnnes, C. R. 2006, Celestial Mechanics anah&nical Astronomy, 94, 155

Bartczak, P., & Breiter, S. 2003, Celestial Mechanics anddbyical Astronomy, 86, 131

Barucci, M. A., Cheng, A. F., Michel, P., et al. 2012, Expezgimal Astronomy, 33, 645

Broschart, S. B., & Scheeres, D. J. 2005, Journal of Guid@urdrol Dynamics, 28, 343

Dunham, D. W., Farquhar, R. W., McAdams, J. V., et al. 200&ruUs, 159, 433

Gaudet, B., & Furfaro, R. 2012, in AIAA/AAS Astrodynamics &jalist Conference, AIAA 2012-5072

Huang, J., Ji, J., Ye, P. et al., 2013, Scientific RepohitB;//www.nature.com/srep/2013/131212/srep03411/full/
srep03411.html ?WT.ec_id= SREP-704-20140102

Ji, J.-H., & Liu, L. 2007, ChJAA (Chin. J. Astron. Astrophysz, 148

Jiang, Y., Baoyin, H., Li, J., & Li, H. 2014, Ap&SS, 349, 83

Kawaguchi, J., Fujiwara, A., & Uesugi, T. 2008, Acta Astratiea, 62, 639

Kuninaka, H., Nishiyama, K., Funaki, |., et al. 2007, JolofdPropulsion and Power, 23, 544

Lauretta, D. S., & OSIRIS-Rex Team 2012, in Lunar and Plage®aience Conference, 43, 2491

Llanos, P. J., Jordan, J. D., Hintz, G. R., & Sanjurjo-RiMb,2014, in AIAA/AAS Space Flight Mechanics
Meeting, 360, 1

Morimoto, M. Y., Yamakawa, H., & Uesugi, K. 2007, Journal afii@ance Control Dynamics, 30, 1563

Prieto-Llanos, T., & Gomez-Tierno, M. A. 1994, Journal ofiGance Control Dynamics, 17, 787

Riaguas, A., Elipe, A., & Lara, M. 1999, Celestial Mecharaesl Dynamical Astronomy, 73, 169

Russell, C. T., & Raymond, C. A. 2012, in The Dawn Mission tabti Planets 4 Vesta and 1 Ceres (Springer), 3

Sawai, S., Scheeres, D. J., & Broschart, S. B. 2002, Joufi@alimlance Control Dynamics, 25, 786

Scheeres, D. 2004, in Planetary Defense Conference: Bngtdtarth from Asteroids, Orange County, CA,
AlAA, 1445

Scheeres, D. J. 2012, Journal of Guidance, Control, andbDigsa35, 987

Scheeres, D. J., Williams, B. G., & Miller, J. K. 2000, Jodro&Guidance Control Dynamics, 23, 466

Tsuda, Y., Yoshikawa, M., Abe, M., Minamino, H., & Nakazav$a,2013, Acta Astronautica, 91, 356

Wang, X., Jiang, Y., & Gong, S. 2014, Ap&SS, 353, 105

Werner, R. A., & Scheeres, D. J. 1996, Celestial MechanidsCymamical Astronomy, 65, 313

Williams, T., & Abate, M. 2009, Journal of Spacecraft and kais, 46, 967

Yu, Y., & Baoyin, H. 2012, AJ, 143, 62

Zeng, X.-Y., Jiang, F.-H., & Li, J.-F. 20144, arXiv:1407639

Zeng, X., Jiang, F., Li, J., & Baoyin, H. 2014b, Ap&SS(10.7(§10509-014-2187-1)



