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Abstract In this work, we select spectra of stars with high signaftase ratio from
LAMOST data and map their MK classes to the spectral featuree equivalent
widths of prominent spectral lines, which play a similarerals multi-color photom-
etry, form a clean stellar locus well ordered by MK classdse &dvantage of the
stellar locus in line indices is that it gives a natural andtowious classification of
stars consistent with either broadly used MK classes odastestrophysical parame-
ters. We also employ an SVM-based classification algorithassign MK classes to
LAMOST stellar spectra. We find that the completenessessoéldmssifications are up
to 90% for A and G type stars, but they are down to about 50% ®r@@d K type
stars. About 40% of the OB and K type stars are mis-classiiel @and G type stars,
respectively. This is likely due to the difference in the &pal features between late
B type and early A type stars or between late G and early K types Heing very
weak. The relatively poor performance of the automatic M&sslfication with SVM
suggests that the direct use of line indices to classifyss¢dikely a more preferable
choice.

Key words: techniques: spectroscopic — stars: general — stars: fuadttparam-
eters — stars: statistics — Galaxy: stellar contents

1 INTRODUCTION

The classification of normal stars plays important roles ordy in the understanding of stellar
physics, but also in the study of the overall structure araution of the Milky Way. MK clas-
sification (Morgan & Keenan 1973) is one of the most broadldusystems based on the spectral
features of a small number of standard stars. Compared tegaing the stars directly using effec-
tive temperature, surface gravity and chemical abundavikeglassification is simple and effective.
A usual procedure to process a spectrum in a spectroscapiyss to first assign spectra to the MK
classes and then estimate the stellar astrophysical psgemusing the MK classes as the starting
points (e.g. Luo et al. 2015). Spectral classifications #se @ery helpful in selecting targets for
follow-up studies. For instance, in order to select the Wlagzontal branch stars from the whole
dataset, one might first select all A type stars to reduceitieecs the sample; in order to study the
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circumstellar environment of young massive stars, one s\aefirst select the OB type stars from
the full sample; or in order to search for AGB stars, one hdgdbidentify the M giant stars from
the database.

Alternatively, stars can be classified based on their caldices. Nowadays, billions of stars
have accurate multi-band photometry covering the regiomfultraviolet to infrared bands, e.g.
GALEX (Bianchi et al. 2011), SDSS (Ahn et al. 2014), PanSTARRonNry et al. 2012), 2MASS
(Skrutskie et al. 2006), WISE (Wright et al. 2010), etc., @fhprovide abundant information on stel-
lar astrophysical parameters. For instance, Covey et @D 7Ridentified different types of stars in
SDSS+2MASS multi-color parameter space and showed a abedinoous stellar locus, on which
any reasonable stellar classification system can be setalpding the well known MK class system.
The biggest advantage of the continuous stellar locus ior @@rameter space is that it naturally re-
flects how the spectral energy distribution varies withatelstrophysical parameters, such as the ef-
fective temperature, surface gravity and metallicity. fEfiere, this type of analysis is very important
in research on both stellar evolution and the overall festof the Milky Way. In fact, in the context
of a survey with millions to billions of stars, the color-leasstellar locus may be more effective and
straightforward in stellar classifications (see their aggtions in Yanny et al. 2000; Majewski et al.
2003; Yanny et al. 2009 etc.). However, when one examinedebkp-sky objects, especially along
the Galactic mid-plane, most of the photometric color iediof stars are reddened by absorption and
scattering of the interstellar medium. Although some réwahle works have been done (Schlegel
et al. 1998; Schlafly et al. 2014; Chen et al. 2014), knowleafgbe three-dimensional reddening
distribution of the Milky Way is still very limited, leadintp certain systematics that vary with lines
of sight and distances in multi-color index-based stellassifications. Moreover, in most cases, the
color index is an integration of the spectrum over a wide eamigwavelength, with details that are
shown in spectral lines being smoothed out. Therefore, ireg, color index-based classifications
of stars cannot completely take the place of spectral-belssdifications.

Up to now, most MK type classification of stars are done mdnumsl comparing the spectra
with a small set of standard stars (e.g. the samples in Qgrbihl. 1994), which is not efficient
when the sample is huge and not always reliable. Althougirtsfhave been made to automate the
process of MK classification by developing automatic sofer@.g., Gray & Corbally 2014), it is
still a non-trivial task since the real stellar spectra aseanly sensitive to the effective temperature
and luminosity, but also dependent on the elemental abwedaMoreover, in a large spectroscopic
survey, the spectra may have a wide range of signal-to-maigg making the spectral features not
always as clear as the small set of well observed high-qustiitndard spectra. For such a large
spectroscopic survey, the mis-classification that arises the template-matching technique based
on some standard stars may be significant for data with lomaéitp-noise ratio, and it may subse-
quently affect the effort of searching for peculiar and r@logects.

Other efforts at star classification based on automaticriifigns have been done in the past
twenty years by various works. These algorithms includehoasd based on metric-distance (e.g.
LaSala 1994), artificial neural networks (e.g. Bailer-Bailones 1997), fuzzy logic (e.g. Carricajo
et al. 2004), etc. It can be noted that Bailer-Jones et aD&P@nd Saglia et al. (2012) described
applications of a support vector machine (SVM) in star-ggl@SO classifications. In general, this
new technique can also be used for the classification of. stars

Recently, the LAMOST survey (Cui et al. 2012; Zhao et al. 2@&ng et al. 2012; Liu et al.
2015) has collected more than 4 million stellar spectrasrsécond internal data release (DR2).
Unlike SDSS, the LAMOST survey does not include a photoroetuirvey with its spectroscopic
one, and targets are selected from several external phtoioroatalogs (Carlin et al. 2012; Yuan
et al. 2015). This makes it difficult to establish star clfisation based on the photometric color
indices since the multiple input catalogs are not well caliéd. With only the stellar spectra, it is
not trivial to automatically classify stars into differaviK types. The LAMOST pipeline (Luo et al.
2012; Luo et al. 2015) runs a cross-correlation based algor{correlation function initial; CFI)
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to assign the MK types to each stellar spectrum. Howevert@gseme technical issues (e.g., noise
in the spectra, distortion of the continua due to interatedixtinction, limitations of the synthetic
library used in CFl, etc.), this classification system, whias already appeared in the LAMOST
catalog, is not very reliable, especially for O, B, A and Méygiars. Therefore, a robust and reliable
automatic classification method suitable for all specttasses that can be applied to LAMOST
spectra is anxiously required.

In this work, we map the MK classes to the parameter spaceetkliy indices of prominent
lines in stellar spectra. The line indices naturally formedlar locus from the hottest to the coolest
stars because there is a smooth transition in these splgsbwith the effective temperature and
surface gravity of the stars. In principle, unlike the brigatsed discrete MK classes, the line indices
can automatically provide a continuous set of classesp@adth the elemental abundance may affect
it. Meanwhile, the MK classes or other classification systean be easily mapped to the parameter
space defined by line index to find their counterparts. We afsploy the SVM method to assign
stars to MK classes and compare the results it produces inghindex-based classification. We
suggest that line index-based classification is one of th& nebust ways to classify stars in the era
of large data.

The paper is organized as follows. In Section 2, we give & brieoduction to the LAMOST
survey and the selection of data to which classificationyaigis applied. We also give a detailed
definition of the indices for more than 20 spectral lines ia tbst of that section. In Section 3, we
show the features of the stellar locus in the parameter gjefeeed by line indices and how the locus
is associated with MK classes. In Section 4, we employ an S¥bdssify the stars into MK types.
We then compare the stellar locus-based classificationthlSVM-based MK classification. We
raise discussions in Section 5 and draw a short conclusiSedtion 6.

2 DATA
2.1 LAMOST and SIMBAD Data

The LAMOST telescope, also called the Guo Shou Jing Telesds 4-m reflecting Schmidt tele-
scope with 4000 fibers configured on a 5-degree field of view é€al. 2012; Zhao et al. 2012).
The LAMOST Milky Way survey will finally target more than 5 ridn stellar spectra with a reso-
lution of R ~ 1800 in observations that will be taken over 5 yr (Deng et al. 2Q1i@:et al. 2014c).
Early results indicate that it can obtain more spectra thieyirally planned after the LAMOST team
released the DR2 catalog, which contains about 4 millioltestspectra, by the end of 2014.

We select about 1.52 million stellar spectra with signafwtise ratio larger than 20 (which
means the averaged signal-to-noise ratio in bottythad: bands is larger than 20) to investigate
how the spectral features vary with stellar classes. Inraaélentify their MK classes, we cross
match them with the SIMBAD catalog (Wenger et al. 200)d obtain 3134 spectra of normal stars
with MK classification flags in the SIMBAD catalog.

Table 1 shows the distribution of the MK classes for the samripdemonstrates that the sample
is nonuniformly distributed in MK classes. The stars betwkste B and early A, and the G and K
type stars are prominent in the sample. In addition, thezev@ny more main-sequence stars than
giant stars, and supergiant stars are very rare.

2.2 Line Indices

In order to associate the stellar classes with spectralffestwe measure the line indices of spectral
lines instead of using the full spectra. In general, lingdad do not require flux calibration, which
is very hard to calibrate in the LAMOST pipeline due to havemgomplicated instrument, e.g.,

1 hitp://simbad.u-strasbg.fr/Smbad
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Table 1 The Number of MK Classes for the LAMOST-SIMBAD Sample

Type Total \ v/ i |Type Total \ v/ i

05 1 1 0 0| F7 15 12 2 1
o7 2 2 0 0| F8 55 38 15 2
08 1 1 0 0| F9 22 11 11 0
09 4 3 1 0| GO 435 398 36 1
BO 14 9 5 0| G1 21 19 2 0
Bl 15 8 7 0| G2 57 33 24 0
B2 19 11 8 0| G3 16 9 7 0
B3 9 7 0 2 | G4 21 17 2 2
B4 9 7 2 0 | G5 280 218 62 0
B5 34 18 15 1| G6 23 11 12 0
B6 3 2 0 1| G7 17 7 10 0
B7 23 13 10 0| G8 224 114 109 1
B8 75 65 10 0] G9 27 8 19 0
B9 175 157 18 0| KO 183 89 74 3
AO 420 386 30 4 | K1 56 13 31 0
Al 67 63 4 0 | K2 83 38 33 0
A2 186 175 10 1| K3 25 15 7 0
A3 61 60 1 0 | K4 25 17 8 0
A4 11 10 0 1| K5 21 14 5 1
A5 43 39 2 2 | K6 9 9 0 0
A6 3 2 1 0 | K7 11 11 0 0
A7 27 21 6 0 | K8 5 5 0 0
A8 12 10 0 2 | K9 2 2 0 0
A9 1 0 1 0 | MO 21 12 9 0
FO 53 34 16 3| Ml 6 3 3 0
F1 4 1 3 0 | M2 13 9 4 0
F2 36 27 8 1| M3 12 7 5 0
F3 14 10 4 0| M4 10 9 1 0
F4 7 5 1 1| M5 4 2 2 0
F5 67 54 12 1| M7 2 0 1 1
F6 36 21 14 1| M8 1 1 0 0

4000 fibers with different lengths, 16 spectrographs wittphsly different performances, etc. The
instruments are also very robust against random noiseo@dthit is very difficult to cleanly subtract
the sky background from the spectra, the blue part of thetspisdess influenced. Fortunately, most
of the well known line indices, e.g. the Lick indices (Wonghet al. 1994; Worthey & Ottaviani
1997), are in blue.

The principle behind the selection of spectral lines is folo- First, the lines should be strong
enough that they can be effectively detected in low resmtusipectra. Second, the lines should be
sensitive to the effective temperature, surface gravitymetallicity so that they can be utilized in
the classification.

Table 2 lists all 27 spectral lines used in this work. Mostrafrh are adopted from Lick indices
(Worthey et al. 1994; Worthey & Ottaviani 1997; Cohen et 8B8). To better separate OB type stars,
we add three helium lines. In addition, since the Call K lireyralso be often used for classification,
it is also included based on the definition by Beers et al. 9199

We define the line index in terms of equivalent width (EW) wiik following equation (Worthey

etal. 1994)
EW = /{1—]{1’%}&\, (1)

where feont (A) and fiine(A) are the fluxes of the continuum and the spectral line, resdgtboth
of which are functions of wavelength The continuumf..,,; is estimated via linear interpolation
of the fluxes located in the pseudocontinuum region on batbssof the bandpass for each index
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Table 2 Line Index Definitions

Name Index Bandpass\j Pseudocontinual()

Call K& 3927.7-3939.7 3903-3923 4000-4020

Héob 4083.50-4122.25 4041.60-4079.75 4128.50-4161.00

CNe° 4143.375-4178.375 4081.375-4118.875 4245.375-4285.375
Ca4227 4223.500-4236.000 4212.250-4221.000 4242.250-4252.250
G4300 4282.625-4317.625 4267.625-4283.875 4320.125-4336.375
H“/b 4319.75-4363.50 4283.50-4319.75 4367.25-4419.75
Fe4383 4370.375-4421.625 4360.375-4371.625 4444.125-4456.625
He4388 4381-4399 4365-4380 4398—-4408

Ca4455 4453.375-4475.875 4447.125-4455.875 4478.375-4493.375
Hed471 4462-4475 4450-4463 4485-4495

Fe453% 4515.500-4560.500 4505.500-4515.500 4561.750-4580.500
He4542 4536-4548 4526-4536 4548—-4558

Fe4668 4635.250-4721.500 4612.750-4631.500 4744.000-4757.750
Hﬁb 4847.875-4876.625 4827.875-4847.875 4876.625-4891.625
Fe5015 4977.750-5054.000 4946.500-4977.750 5054.000-5065.250
Mg; © 5069.125-5134.125 4895.125-4957.625 5301.125-5366.125
Mgz © 5154.125-5196.625 4895.125-4957.625 5301.125-5366.125
Mg;© 5160.125-5192.625 5142.625-5161.375 5191.375-5206.375
Fe5270 5245.650-5285.650 5233.150-5248.150 5285.650-5318.150
Fe5335 5312.125-5352.125 5304.625-5315.875 5353.375-5363.375
Fe5406 5387.500-5415.000 5376.250-5387.500 5415.000-5425.000
Fe5709 5698.375-5722.125 5674.625-5698.375 5724.625-5738.375
Fe5782 5778.375-5798.375 5767.125-5777.125 5799.625-5813.375
NaD* 5878.625-5911.125 5862.375-5877.375 5923.875-5949.875
TiO4© 5938.375-5995.875 5818.375-5850.875 6040.375-6105.375
TiO2° 6191.375-6273.875 6068.375-6143.375 6374.375-6416.875
Had 6548.00-6578.00 6420.00-6455.00 6600.00-6640.00

1141

Notes:® Beers et al. (1999) Worthey & Ottaviani (1997)¢ Worthey et al. (1994)? Cohen et al. (1998).

(see Table 2). The line index under this definition is\init is noted that the measurement of equiv-
alent widths of the lines is based on the rest-frame speaotmhich the radial velocities have been
corrected. The value of the radial velocity is adopted fromtAMOST catalog. For spectra with
signal-to-noise ratio larger than 20, the median uncestahthe equivalent widths of the lines is
smaller than 0.A.

Figure 1 shows the median equivalent width of different saédines for each class of star. It
is evident that the spectral lines are not equally senditivke stellar classes. All Balmer lines, i.e.,
Ha, HB, Hy and HY, separate the classes well. The magnesium lines are alsitieeto the classes,
particularly for late type stars. Although the change initba lines is not as significant as that in the
Mg lines, they also show a clear trend in different classaglly, the TiO lines are very sensitive
to the M type stars. It seems that many of the spectral linesamrelated. Hence, we do not need
to use all of them for the classification. We seleet & the representative Balmer line, since it has
the largest amplitude of variation among the Balmer lindermwe average over the NgVig, and
Mg, which represent the composite line index of Mg. We also ayeiaver all nine iron lines to
form the composite line index of Fe. Finally, we select €hdand (CH) and TiO2 to represent the
molecular bands. In total, we give five (composite) line @edi for all selected stars.

Although the Call K line is frequently used in classificaticeind parameterizations, we decide
not to use it because it does not provide extra informatiautbpectral types and is located near
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Fig. 1 The figure shows the line indices for different MK classesHegrid in thex-axis corresponds
to a spectral line and thg-axis indicates the median equivalent width for each liree €olors and
symbols represent the ®lack hexagrams), B (blue pentagrams), A (large cyan circles), F (green
triangles), G (small orange circles), K (red crosses), and M (magenta rectangles) types.

the blue end, in which the wavelength calibration and efficjeof the instrument are not as good as
other lines, making the line index of Call K be not very stable

3 LINE INDEX-BASED CLASSIFICATION

Figure 2 shows the stellar loci in the parameter space defigdive line indices, H, Mg, Fe,G
band and TiO2 for all 1.5 million selected stars (their dlgttions are represented as blue contours).
The unit of thez- and y-axes isA. The hollow circles with neighboring dark gray labels mark
the median positions of the main-sequence MK classes frenSthIBAD catalog. For instance, a
hollow circle with a label “G2V” is the median value of starglwtypes GOV, G1V, G2V and G3V.
Also, a symbol with “G5V” is the median value of all stars wiifpes G3V, G4V, G5V and G6V.
The neighboring circles overlap each other by one decints/pe in order to make the stellar locus
smoother. Similarly, the red asterisks with the neighlptabels indicate the locus of MK classes
for giant stars. The detailed positions of these circlete(eks) for main-sequence (giant) stars are
listed in Table 3 (Table 4). Figure 3 magnifies the smalleioreg)for better illustration of early type
stars.

First, the stars from O to M type can be well separated andreddae the Hy vs. G4300 plane,
shown in the top-right panel of Figure 2. In theyNs. Fe plane (top-left panel), the stars from O
to G type are well separated, but the M and K type stars overldpe top of the stellar loci and
are hard to disentangle. A similar trend is shown in theud. Mg plane in the middle-left panel of
Figure 2. However, the late type main-sequence stars ailg destinguished in the Mg vs. Fe, Fe
vs. G4300, and Fe vs. TiO2 planes shown in the middle-rigiitpm-left, and bottom-right panels,
respectively. The early type stars in these planes are glang hard to separate from each other.
Combined with the five line indices, we are able to separatg@ds of main-sequence stars from O
to M type.

Second, the separation of the luminosity type works wellkaand M giant stars. Especially
in the Mg vs. Fe (middle-right panel of Fig. 2) and Fe vs. Ti®dtom-right panel) planes, the
cool star ends of the stellar loci for main-sequence andtgi@ns go to different directions. In the
Mg vs. Fe plane, the locus of the main-sequence stars goes twavard smaller Fe and larger Mg
indices at the coolest end, while the locus of the giant faes up toward larger Fe but smaller
Mg indices. A similar trend can also be seen in the Fe vs. TilaBg However, it is very hard to
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Table 3 The Median Locus for Equivalent Width of the Spectral Lines€ain-sequence Stars

Type EWG 4300 EWii~ EWyig EWre EWri02 Number
A A A (A) (A) of stars
06-9 -0.240.23 2.55:0.23 0.46:0.12 0.28:0.43 —0.0a:-0.28 6
B0O-3 -1.04:0.45 4.20£1.72 0.22:0.12 0.16:0.35 0.03:0.49 35
B3-6 -1.60-0.59 6.76:1.62 0.12:0.11 0.35:0.28 —0.04:-0.33 34

B6-9 -2.5@1.04 11.432.68 -0.0%0.28 0.49%:1.96 —0.015.37 237
A0-3  -2.52£1.32 12.4%2.65 0.08:0.58 0.49:0.90 —0.03:0.43 684
A3-6 -1.29:1.01  11.0&2.09 0.510.33 0.62£0.29 —0.110.40 111
A6-9  -0.270.80 8.88:1.86 0.74£0.30 0.72:0.30 -0.2783.98 33

FO-3 0.8%1.04 5.64:2.28 1.010.38 0.89:0.31 -0.2%7.70 72
F3-6 2.181.20 2.96:2.75 1.19:0.36 1.26:0.56 -0.147.61 90
F6-9 3.421.11 0.8A2.16 1.49:0.39 1.62:0.50 —0.15-3.48 82
G0-3 5.38:1.08 -3.15:2.29 1.98:0.61 2.59-1.93 —0.03:0.48 459
G3-6 5.86:-0.98 —4.3%2.45 2.44£0.67 3.32£2.42 0.05:0.49 255
G6-9 6.240.72 —6.45-1.97 2.880.76 4.411.45 0.19:0.46 140
KO0-3 6.28+1.35 —7.723.53 3.23:0.91 5.23:2.42 0.45:£2.52 155
K3-6 5.92+0.84 -10.452.78 4.250.55 11.632.49 1.96:11.10 55
K6-9 5.12£0.94 -10.044.24 4.14:0.71 12.681.33 5.08:15.70 27

MO0-3  3.52:£1.31 -9.213.28 3.26:0.81  11.780.91 21.3&15.85 31
M3-6  2.72£1.02 -11.5#531 3.040.45 11.1#2.66 33.69%20.42 18

Table 4 The Median Locus for Equivalent Width of the Spectral LinesS$tars with
Luminosity Types IV or llI

Type EWc 4300 EWH’y EWMg EWge EWri02 Number
A) A A A A of stars
BO-3 -0.5%0.34  2.781.78  0.34:0.21 0.09-0.33  0.0%13.83 20
B3-6 -1.550.59 6.761.33  0.1720.21 0.16:0.32  0.01-0.34 17
B6-9 —1.851.04 8.36t2.35 0.04:0.35 0.50:0.34 —0.0213.38 38
AO-3 -1.610.95 11.03-1.97 0.24:0.40 0.410.36  0.03:0.32 45
A3-6 -0.8%:1.12 10.4%#1.75 0.55:0.28 0.5@:0.20 —0.33:0.08 4
A6-9 -0.83:1.16 10.022.17 0.63:0.32 0.63:0.23 -0.22-0.18 8

FO-3 1.09:1.10 5.56£2.58 1.14£0.21 1.04:0.36 -0.24-14.86 31
F3-6 2.46:-0.91 2.411.80 1.34£0.31 1.3@t0.45 -0.1111.07 31
F6-9 3.62£1.03 0.612.01 1.61#0.33 1.56:0.50 -0.1&2.06 42

GO0-3 5.05:1.28 —-2.5@:2.91 2.040.81 2.5@:1.49 0.03t9.27 69
G3-6 6.271.17 -5.71#2.78 2.76:0.78 3.491.42 0.2#0.61 83
G6-9 6.93:0.91 —7.722.15 3.4@255 4.16:3.74 0.8@:10.62 150
KO0-3 6.90+0.88 -8.993.16  3.99%0.77 5.7&2.14 1.32:4.82 189
K3-6 6.6740.93 -10.0%3.38 4.470.80 8.38:2.20 3.18:3.80 24
MO0-3  5.79t1.42 -9.16:3.06 5.3#40.87 9.75:1.87 27.0413.31 21
M3-6  3.59:0.99 —4.85-9.35 6.54:0.67 6.84:1.67 42.62:6.16 8

disentangle the early type giant stars, e.g. B, A and F typatgitars. These types of giant stars
are located at almost exactly the same position as the sgraartgin-sequence stars. According to
Gray & Corbally (2009), some weaker lines, such as Oll (at}4@D76, 4348 and 44]36, SIIV at
41164, etc., may be helpful for discriminating the luminosity &gof B type stars. However, they
are very weak in the low-resolution LAMOST spectra and magigaificantly affected by noise.

It is worth pointing out that variation in the Fe index fordaype stars is mostly but not exactly
related to the Fe lines, but is significantly affected by prent molecular bands, e.g. TiO, happens
to overlap at the same wavelength. Also, the response of thénillex to cool stars is actually
dominated by the MgH band.
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Fig.2 The contours show the distribution of LAMOST stars in thegoaeter space defined by
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are for Hy vs. Fe, Hy vs. G band, Hy vs. Mg, Mg vs. Fe, Fe vg7 band, and Fe vs. TiO2 planes
respectively. The black lines with circles indicate thdlatéoci of the main-sequence stars with their
MK designations from the SIMBAD database, while the red dddimes with asterisks indicate the
stellar loci of the giant stars (type IV/IIl) with their MK dggnations from the SIMBAD database.

It can also be noted that the dispersions shown in Figure @airenly contributed by uncertain-
ties in the line indices, which are only about A.TThese dispersions may be intrinsic and related to
the broad diversity in metallicity. In this paper, we maifidgus on the effective temperature, which
corresponds to the spectral types, and the surface grahigh is related to the luminosity. The
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effect of metallicity in spectral classification may be moomplicated, because it also reflects the

evolution of different stellar populations. We would likeleave this topic for future works.

The classification of stars based on their stellar loci casidoe by looking up the line indices in
Tables 3 and 4. For any statistical study of the Milky Way, oae conveniently select stars located
in a segment of the stellar loci in Figures 2 and 3 accordintip¢olisted MK classes. Compared
with the classical MK classes, the stellar loci in line irelicacting just like the color indices in a
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Fig. 4 The distribution of the SIMBAD MK classes of the test datautésg from an SVM applied

to the parameter space defined by line indices. The toptlgstright, middle-left, middle-right,
bottom-left and bottom-right panels show the distribusiomHy vs. Fe, Hy vs. G band, Hy vs. Mg,

Mg vs. Fe, Fe vsG band, and Fe vs. TiO2 planes respectively. The marginatlitdbutions of one
single line index for different spectral types are showrhatright and top edges of each panel. The
colors and symbols denote the OfBue pentagrams), A (large cyan circles), F (green triangles), G
(small orange circles), K (red hexagrams), and M (nagenta rectangles) types.
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multi-band photometric system, provide natural and camttirs sequences of stars, which are easier
to analyze using quantitative statistics. More discusstan be found in Section 5.

4 SVM-BASED CLASSIFICATION

Alternatively, we can also translate the line index-bagetlas loci into the MK class system for
individual stars. To do this, we employ an SVM algorithm técamatically assign a stellar spectrum
to the proper MK class.

SVM is a supervised machine learning algorithm for classiifom and regression (Cortes &
Vapnik 1995). In general, a supervised algorithm uses alsaaiple with multi-dimensional input
variables and known labels of classes as the training datEse SVM classification is built in two
steps. First, with the training dataset, the optimized ho@ar boundaries among different classes for
the input parameters are determined and defined by a subthet wéining dataset, which is called
the support vectors, located around the boundaries. Sefmradgiven input datum, the trained SVM
model gives a prediction of the class depending on wherenging idatum is located with respect to
the support vectors. A typical sample of SVM classificatian be found in Liu et al. (2014a) and a
sample of SVM regression can be found in Liu et al. (2012) aincet al. (2014b).

Chang & Lin (2011) provide a package in multiple programmizgguages, LIBSVM, that
implements the SVM algorithm. Here, we use LIBSVM to clagsife stars into MK types based
on their line indices. We arbitrarily separate the 3134sstaith both high signal-to-noise ratio
LAMOST spectra and SIMBAD MK types into two equal-size greu@ne group is selected as
the training dataset to train the SVM, and the other is usati@sest dataset to assess the perfor-
mance. We use all 27 line indices listed in Table 2 as the impator. We only adopt six classes,
which are OB, A, F, G, K and M, and ignore the decimal subtypesthe luminosity types in the
SVM classification. O and B types are merged into one clagedimere are only very few O type
stars in the sample.

Figure 4 shows the stellar loci composed of thd 500 test dataset with color coded SIMBAD
class labels from the parameter space defined by line inHigeBe, Mg,G band and TiO2. Because
we use the SIMBAD MK classes as the training dataset, it iegthat we assume the SIMBAD MK
classes to be the “standard” classes with which to compatdtse Figure 5 shows a similar set of
stellar loci with exactly the same test dataset as in Figuteuftwith colors representing the MK
classes derived from SVM.

Comparing Figure 4 and Figure 5 can give a qualitative ingioesof the performance of the
SVM classification. It is obviously seen that some OB typess(alue pentagrams), located in the
bottom-right corner in the Hlvs. Fe and H vs. G4300 planes and which are shown in the two top
panels in Figure 4, are mistakenly classified as A type stai@n(circles) by the SVM method, as
shown in the corresponding panels in Figure 5. Moreovemnpalgh the SVM classification works
quite well for stars from M to F type, it can still be relatiydlard when applying artificial boundaries
to F, G, and K type stars in Figure 5.

A quantitative assessment of the performance of the SVMitieation is based on the so called
confusion matrix shown in Table 5, in which the columns stamdhe “true” class labels and rows
stand for the SVM derived class labels. The intersections tjie percentage of stars which belong
to the class in a column but are assigned to the class in a ralaeb$VM. The diagonal items show
the completeness of the classification, i.e., the percertbstars in class X being correctly assigned
to the same class. The last column in Table 5 gives the congdion, which is the percentage of
stars in the derived class X being contaminated by othesetas

Table 5 shows that A and G type stars have the highest compktdarger than 90%. This
means that more than 90% of A or G type stars are correcthgifiles by the SVM algorithm.
The completenesses of F and M type stars are about 72% andrégpectively, which are still

2 hitp://mww.csie.ntu.edu.tw/~cjlin/libsvmy
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Fig.5 The distribution of the MK classes of the test data resulfiogn an SVM applied to the
parameter space defined by line indices. The top-left, igig;rmiddle-left, middle-right, bottom-
left, and bottom-right panels show the distributions in ¥. Fe, Hy vs. G band, Hy vs. Mg, Mg

vs. Fe, Fe vsG band, and Fe vs. TiO2 planes, respectively. The margirchtiistributions of one
single line index for different spectral types are showrhatright and top edges of each panel. The
colors and symbols denote the OfBue pentagrams), A (large cyan circles), F (green triangles), G
(small orange circles), K (red hexagrams), and M (nagenta rectangles) types.
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Fig. 7 The stellar loci for giant (luminosity type IV/IIl) stars lcallated from the median location
of each subtype resulting from the parameter space defindidevindices. The top-left, top-right,
middle-left, middle-right, bottom-left, and bottom-righanels show the loci in tivs. Fe, Hy vs.

G band, Hy vs. Mg, Mg vs. Fe, Fe vsG band, and Fe vs. TiO2 planes respectively. The black
dashed lines with asterisks indicate the stellar loci ohgsars from LAMOST spectra, while the
red dashed lines with the effective temperatures labeled she loci of giants from the MILES
library.

acceptable. However, the completeness for OB and K stardysabout 52%, implying that almost
half of these two types of stars are mis-classified in the S\@dsifier. Indeed, about 44% of “true”
OB type stars are mis-classified as A type. A similar percétitwe” K type stars are mis-classified
as G type. This is probably because the spectral featuratedBl(early K) type stars are very similar
as those of early A (late G) type stars and thus they are véfigudi for an SVM to disentangle. It
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Table 5 The Confusion Matrix in terms of Percentage of the SVM-babt(l
Classification

SIMBAD
OB A F G K M Contamination
OB 52.60% 6.97% 1.94% 0.00% 0.00% 0.00% 24.06%
44.79% 90.38% 8.39% 0.53% 1.43% 0.00% 21.83%

1.56% 1.68% 72.26% 3.57% 0.95% 0.00% 22.22%
0.52% 0.48% 17.42% 90.91% 43.81% 2.86% 19.43%
0.52% 0.48% 0.00% 4.99% 52.86% 28.57% 26.97%
0.00% 0.00% 0.00% 0.00% 0.95% 68.57% 7.69%

SVM

S XOT>

may also be that the adopted “true” classes from the SIMBAfkse are compiled from various
literatures and classified by eye, and hence are not welireédid with each other. Therefore, the
large dispersions in the manually assigned MK classes niagtdhe performance of classification
using an SVM.

5 DISCUSSION
5.1 The Discrepancy between MILES and LAMOST Spectra

In order to provide an external comparison of the stellausoarising from the parameter space de-
fined by the line indices, we calculate the same line indicesfsample prepared with the MILES
library (Sanchez-Blazquez et al. 2006), which contai®s Bright stellar spectra with wide exten-
sions in stellar parameters. We plot the stellar loci of MB_#ata with red lines in Figures 6 and 7
for main-sequence and giant stars, respectively. To beetoent, we also label the averaged effec-
tive temperatures along the stellar loci as a referencey $hew that the stellar loci derived from
LAMOST and MILES do not completely overlap each other, eglgdor late type dwarf stars and
all giant stars. However, according to Tables 3 and 4, th#rehces are mostly within the uncer-
tainty of 1- or 2¢, and the overall shifts in the loci of the MILES library in migsnels of Figures 6
and 7 are likely systematic. Looking back to the bottom-jggmel of Figure 2, it can be seen that
the SIMBAD stellar loci for M dwarf stars show a similar sysigtic bias compared to the full sam-
ple of LAMOST data (the contours). Therefore, it is likelyaththe M dwarf stars in the SIMBAD
database are a biased sample and cannot provide an acemagsentation for the majority of the
LAMOST M dwarf samples. This also indicates that the stdtbar based on line indices derived
from one survey should not be directly extended to anothereguCalibrations in the line indices
and in the sample selection function are necessary befptgiag the extension.

5.2 How to Make the Decision, the MK Class or the Line Index-baed Stellar Locus?

In the previous sections we show two kinds of classificatidiee line index-based stellar locus
orders the different types of stars as a simple sequencgy albich the effective temperature mono-
tonically changes from coolest to hottest. No hard boundi@yto be set in the stellar locus to
artificially separate the stars into discrete classes. Heesuwho want to select specific stars for
their statistical studies on the Milky Way can simply cut theta from any segment of the stellar
locus.

On the other hand, the SVM based classification assignsetisbtK type labels to stars based
on prior knowledge—the SIMBAD MK class labels. The compilK classes in the SIMBAD
database are from many related literatures, and most of #rendone by comparing the spectra
with a small sample of standard stars by eye. This may raggefigiant inconsistency between the
literatures. Calibrations among different literaturesmaeo be very difficult, since the MK classes
are not continuous but rather discrete.



1152 C. Liuetal.

A realistic issue in large spectroscopic surveys, such@sAMOST survey, is that millions of
stars are observed and itis impossible to inspect eachrapeby eye. As shown in the exercise with
SVM classification in Section 4, state-of-the-art mach@shing techniques may not be very helpful
because they need to be trained by prior knowledge whichigl@uaccurate and self-consistent.

Based on this analysis, we therefore suggest that LAMOSHsuiely on the stellar locus that is
based on line indices, rather than directly using the ddrM& classes from the catalog, to select
the proper types of stars to satisfy their specific requirgmeéf these users want to compare their
sample with literatures, which may use MK classes, they ceamfitatively calculate the percentage
of completeness and contaminations via a comparison oftéflarsloci defined by SIMBAD and
the SVM MK classes.

6 CONCLUSIONS

In this paper, we revisit the fundamental issue of stellassification using 3000 high signal-to-
noise ratio LAMOST spectra with known MK classes obtainaahfrcross-identification with the
SIMBAD database. Although the MK classes have been widedyl fiesr more than 70 yr and have
become a standard, it seems not easy to adapt the large aofaata from current spectroscopic
surveys. The MK classes are constructed based on a very samflle of standard stars, which
are mostly very bright and located in a local volume near tine. 8Blew spectroscopic surveys, e.g.
SDSS and LAMOST, can detect deep sky targets as far away dgt@hd hence contain millions
of stars from very different populations compared with thiasneighborhood. The current standard
star library then becomes incomplete compared with a sutivatyis a few orders of magnitude
larger. Another issue is that almost all stars with known M#&sses are classified by eye. This is
unfortunately impossible in the era of large data. A thiglissis that the MK classes are discrete,
which makes them difficult to calibrate.

We map the MK classes to the parameter space defined by limegand find that the resulting
stellar loci can describe the MK classes well. Moreoverséheci naturally follow the change in
effective temperature. For late type stars, the differemtihosity types can also be disentangled by
using the stellar loci.

We then investigate the performance of an automatic MK ifleagon based on the SVM tech-
nique. We find that although A, F, G, and M type stars can berately classified, almost half of
the B or K type stars are mis-classified.

We therefore suggest that the classification of stars shmeildased on continuous stellar loci
representing line indices. The advantages of the steltaal@ that (1) they are continuous and one
can cut a group of data at any point on the loci; (2) the stédlar are consistent with effective
temperatures; and (3) after selecting a group of stars fh@stellar loci, one can easily estimate the
completeness and contamination of the sample in terms of Msses.
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