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Abstract In this work, we select spectra of stars with high signal-to-noise ratio from
LAMOST data and map their MK classes to the spectral features. The equivalent
widths of prominent spectral lines, which play a similar role as multi-color photom-
etry, form a clean stellar locus well ordered by MK classes. The advantage of the
stellar locus in line indices is that it gives a natural and continuous classification of
stars consistent with either broadly used MK classes or stellar astrophysical parame-
ters. We also employ an SVM-based classification algorithm to assign MK classes to
LAMOST stellar spectra. We find that the completenesses of the classifications are up
to 90% for A and G type stars, but they are down to about 50% for OB and K type
stars. About 40% of the OB and K type stars are mis-classified as A and G type stars,
respectively. This is likely due to the difference in the spectral features between late
B type and early A type stars or between late G and early K type stars being very
weak. The relatively poor performance of the automatic MK classification with SVM
suggests that the direct use of line indices to classify stars is likely a more preferable
choice.

Key words: techniques: spectroscopic — stars: general — stars: fundamental param-
eters — stars: statistics — Galaxy: stellar contents

1 INTRODUCTION

The classification of normal stars plays important roles notonly in the understanding of stellar
physics, but also in the study of the overall structure and evolution of the Milky Way. MK clas-
sification (Morgan & Keenan 1973) is one of the most broadly used systems based on the spectral
features of a small number of standard stars. Compared to segregating the stars directly using effec-
tive temperature, surface gravity and chemical abundance,MK classification is simple and effective.
A usual procedure to process a spectrum in a spectroscopic survey is to first assign spectra to the MK
classes and then estimate the stellar astrophysical parameters using the MK classes as the starting
points (e.g. Luo et al. 2015). Spectral classifications are also very helpful in selecting targets for
follow-up studies. For instance, in order to select the bluehorizontal branch stars from the whole
dataset, one might first select all A type stars to reduce the size of the sample; in order to study the
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circumstellar environment of young massive stars, one needs to first select the OB type stars from
the full sample; or in order to search for AGB stars, one has tofirst identify the M giant stars from
the database.

Alternatively, stars can be classified based on their color indices. Nowadays, billions of stars
have accurate multi-band photometry covering the region from ultraviolet to infrared bands, e.g.
GALEX (Bianchi et al. 2011), SDSS (Ahn et al. 2014), PanSTARRS (Tonry et al. 2012), 2MASS
(Skrutskie et al. 2006), WISE (Wright et al. 2010), etc., which provide abundant information on stel-
lar astrophysical parameters. For instance, Covey et al. (2007) identified different types of stars in
SDSS+2MASS multi-color parameter space and showed a clear continuous stellar locus, on which
any reasonable stellar classification system can be set up, including the well known MK class system.
The biggest advantage of the continuous stellar locus in color parameter space is that it naturally re-
flects how the spectral energy distribution varies with stellar astrophysical parameters, such as the ef-
fective temperature, surface gravity and metallicity. Therefore, this type of analysis is very important
in research on both stellar evolution and the overall features of the Milky Way. In fact, in the context
of a survey with millions to billions of stars, the color-based stellar locus may be more effective and
straightforward in stellar classifications (see their applications in Yanny et al. 2000; Majewski et al.
2003; Yanny et al. 2009 etc.). However, when one examines thedeep-sky objects, especially along
the Galactic mid-plane, most of the photometric color indices of stars are reddened by absorption and
scattering of the interstellar medium. Although some remarkable works have been done (Schlegel
et al. 1998; Schlafly et al. 2014; Chen et al. 2014), knowledgeof the three-dimensional reddening
distribution of the Milky Way is still very limited, leadingto certain systematics that vary with lines
of sight and distances in multi-color index-based stellar classifications. Moreover, in most cases, the
color index is an integration of the spectrum over a wide range of wavelength, with details that are
shown in spectral lines being smoothed out. Therefore, in general, color index-based classifications
of stars cannot completely take the place of spectral-basedclassifications.

Up to now, most MK type classification of stars are done manually by comparing the spectra
with a small set of standard stars (e.g. the samples in Corbally et al. 1994), which is not efficient
when the sample is huge and not always reliable. Although efforts have been made to automate the
process of MK classification by developing automatic software (e.g., Gray & Corbally 2014), it is
still a non-trivial task since the real stellar spectra are not only sensitive to the effective temperature
and luminosity, but also dependent on the elemental abundances. Moreover, in a large spectroscopic
survey, the spectra may have a wide range of signal-to-noiseratio, making the spectral features not
always as clear as the small set of well observed high-quality standard spectra. For such a large
spectroscopic survey, the mis-classification that arises from the template-matching technique based
on some standard stars may be significant for data with low signal-to-noise ratio, and it may subse-
quently affect the effort of searching for peculiar and rareobjects.

Other efforts at star classification based on automatic algorithms have been done in the past
twenty years by various works. These algorithms include methods based on metric-distance (e.g.
LaSala 1994), artificial neural networks (e.g. Bailer-Bailer-Jones 1997), fuzzy logic (e.g. Carricajo
et al. 2004), etc. It can be noted that Bailer-Jones et al. (2008) and Saglia et al. (2012) described
applications of a support vector machine (SVM) in star-galaxy-QSO classifications. In general, this
new technique can also be used for the classification of stars.

Recently, the LAMOST survey (Cui et al. 2012; Zhao et al. 2012; Deng et al. 2012; Liu et al.
2015) has collected more than 4 million stellar spectra in its second internal data release (DR2).
Unlike SDSS, the LAMOST survey does not include a photometric survey with its spectroscopic
one, and targets are selected from several external photometric catalogs (Carlin et al. 2012; Yuan
et al. 2015). This makes it difficult to establish star classification based on the photometric color
indices since the multiple input catalogs are not well calibrated. With only the stellar spectra, it is
not trivial to automatically classify stars into differentMK types. The LAMOST pipeline (Luo et al.
2012; Luo et al. 2015) runs a cross-correlation based algorithm (correlation function initial; CFI)
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to assign the MK types to each stellar spectrum. However, dueto some technical issues (e.g., noise
in the spectra, distortion of the continua due to interstellar extinction, limitations of the synthetic
library used in CFI, etc.), this classification system, which has already appeared in the LAMOST
catalog, is not very reliable, especially for O, B, A and M type stars. Therefore, a robust and reliable
automatic classification method suitable for all spectral classes that can be applied to LAMOST
spectra is anxiously required.

In this work, we map the MK classes to the parameter space defined by indices of prominent
lines in stellar spectra. The line indices naturally form a stellar locus from the hottest to the coolest
stars because there is a smooth transition in these spectrallines with the effective temperature and
surface gravity of the stars. In principle, unlike the broadly used discrete MK classes, the line indices
can automatically provide a continuous set of classes, although the elemental abundance may affect
it. Meanwhile, the MK classes or other classification systems can be easily mapped to the parameter
space defined by line index to find their counterparts. We alsoemploy the SVM method to assign
stars to MK classes and compare the results it produces with line index-based classification. We
suggest that line index-based classification is one of the most robust ways to classify stars in the era
of large data.

The paper is organized as follows. In Section 2, we give a brief introduction to the LAMOST
survey and the selection of data to which classification analysis is applied. We also give a detailed
definition of the indices for more than 20 spectral lines in the rest of that section. In Section 3, we
show the features of the stellar locus in the parameter spacedefined by line indices and how the locus
is associated with MK classes. In Section 4, we employ an SVM to classify the stars into MK types.
We then compare the stellar locus-based classification withthe SVM-based MK classification. We
raise discussions in Section 5 and draw a short conclusion inSection 6.

2 DATA

2.1 LAMOST and SIMBAD Data

The LAMOST telescope, also called the Guo Shou Jing Telescope, is a 4-m reflecting Schmidt tele-
scope with 4000 fibers configured on a 5-degree field of view (Cui et al. 2012; Zhao et al. 2012).
The LAMOST Milky Way survey will finally target more than 5 million stellar spectra with a reso-
lution of R ∼ 1800 in observations that will be taken over 5 yr (Deng et al. 2012;Liu et al. 2014c).
Early results indicate that it can obtain more spectra than originally planned after the LAMOST team
released the DR2 catalog, which contains about 4 million stellar spectra, by the end of 2014.

We select about 1.52 million stellar spectra with signal-to-noise ratio larger than 20 (which
means the averaged signal-to-noise ratio in both theg andi bands is larger than 20) to investigate
how the spectral features vary with stellar classes. In order to identify their MK classes, we cross
match them with the SIMBAD catalog (Wenger et al. 2000)1 and obtain 3134 spectra of normal stars
with MK classification flags in the SIMBAD catalog.

Table 1 shows the distribution of the MK classes for the sample. It demonstrates that the sample
is nonuniformly distributed in MK classes. The stars between late B and early A, and the G and K
type stars are prominent in the sample. In addition, there are many more main-sequence stars than
giant stars, and supergiant stars are very rare.

2.2 Line Indices

In order to associate the stellar classes with spectral features, we measure the line indices of spectral
lines instead of using the full spectra. In general, line indices do not require flux calibration, which
is very hard to calibrate in the LAMOST pipeline due to havinga complicated instrument, e.g.,

1 http://simbad.u-strasbg.fr/Simbad
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Table 1 The Number of MK Classes for the LAMOST-SIMBAD Sample

Type Total V IV/III II/I Type Total V IV/III II/I

O5 1 1 0 0 F7 15 12 2 1
O7 2 2 0 0 F8 55 38 15 2
O8 1 1 0 0 F9 22 11 11 0
O9 4 3 1 0 G0 435 398 36 1
B0 14 9 5 0 G1 21 19 2 0
B1 15 8 7 0 G2 57 33 24 0
B2 19 11 8 0 G3 16 9 7 0
B3 9 7 0 2 G4 21 17 2 2
B4 9 7 2 0 G5 280 218 62 0
B5 34 18 15 1 G6 23 11 12 0
B6 3 2 0 1 G7 17 7 10 0
B7 23 13 10 0 G8 224 114 109 1
B8 75 65 10 0 G9 27 8 19 0
B9 175 157 18 0 K0 183 89 74 3
A0 420 386 30 4 K1 56 13 31 0
A1 67 63 4 0 K2 83 38 33 0
A2 186 175 10 1 K3 25 15 7 0
A3 61 60 1 0 K4 25 17 8 0
A4 11 10 0 1 K5 21 14 5 1
A5 43 39 2 2 K6 9 9 0 0
A6 3 2 1 0 K7 11 11 0 0
A7 27 21 6 0 K8 5 5 0 0
A8 12 10 0 2 K9 2 2 0 0
A9 1 0 1 0 M0 21 12 9 0
F0 53 34 16 3 M1 6 3 3 0
F1 4 1 3 0 M2 13 9 4 0
F2 36 27 8 1 M3 12 7 5 0
F3 14 10 4 0 M4 10 9 1 0
F4 7 5 1 1 M5 4 2 2 0
F5 67 54 12 1 M7 2 0 1 1
F6 36 21 14 1 M8 1 1 0 0

4000 fibers with different lengths, 16 spectrographs with slightly different performances, etc. The
instruments are also very robust against random noise. Although it is very difficult to cleanly subtract
the sky background from the spectra, the blue part of the spectra is less influenced. Fortunately, most
of the well known line indices, e.g. the Lick indices (Worthey et al. 1994; Worthey & Ottaviani
1997), are in blue.

The principle behind the selection of spectral lines is two-fold. First, the lines should be strong
enough that they can be effectively detected in low resolution spectra. Second, the lines should be
sensitive to the effective temperature, surface gravity and metallicity so that they can be utilized in
the classification.

Table 2 lists all 27 spectral lines used in this work. Most of them are adopted from Lick indices
(Worthey et al. 1994; Worthey & Ottaviani 1997; Cohen et al. 1998). To better separate OB type stars,
we add three helium lines. In addition, since the CaII K line may also be often used for classification,
it is also included based on the definition by Beers et al. (1999).

We define the line index in terms of equivalent width (EW) withthe following equation (Worthey
et al. 1994)

EW =

∫
[

1 −

fline(λ)

fcont(λ)

]

dλ , (1)

wherefcont(λ) andfline(λ) are the fluxes of the continuum and the spectral line, respectively, both
of which are functions of wavelengthλ. The continuumfcont is estimated via linear interpolation
of the fluxes located in the pseudocontinuum region on both sides of the bandpass for each index
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Table 2 Line Index Definitions

Name Index Bandpass (Å) Pseudocontinua (Å)

CaII Ka 3927.7–3939.7 3903–3923 4000–4020
Hδb 4083.50–4122.25 4041.60–4079.75 4128.50–4161.00
CNc 4143.375–4178.375 4081.375–4118.875 4245.375–4285.375
Ca4227c 4223.500–4236.000 4212.250–4221.000 4242.250–4252.250
G4300c 4282.625–4317.625 4267.625–4283.875 4320.125–4336.375
Hγb 4319.75–4363.50 4283.50–4319.75 4367.25–4419.75
Fe4383c 4370.375–4421.625 4360.375–4371.625 4444.125–4456.625
He4388 4381–4399 4365–4380 4398–4408
Ca4455c 4453.375–4475.875 4447.125–4455.875 4478.375–4493.375
He4471 4462–4475 4450–4463 4485-4495
Fe4531c 4515.500–4560.500 4505.500–4515.500 4561.750–4580.500
He4542 4536–4548 4526–4536 4548–4558
Fe4668c 4635.250–4721.500 4612.750–4631.500 4744.000–4757.750
Hβb 4847.875–4876.625 4827.875–4847.875 4876.625–4891.625
Fe5015c 4977.750–5054.000 4946.500–4977.750 5054.000–5065.250
Mg1

c 5069.125–5134.125 4895.125–4957.625 5301.125–5366.125
Mg2

c 5154.125–5196.625 4895.125–4957.625 5301.125–5366.125
Mgb

c 5160.125–5192.625 5142.625–5161.375 5191.375–5206.375
Fe5270c 5245.650–5285.650 5233.150–5248.150 5285.650–5318.150
Fe5335c 5312.125–5352.125 5304.625–5315.875 5353.375–5363.375
Fe5406c 5387.500–5415.000 5376.250–5387.500 5415.000–5425.000
Fe5709c 5698.375–5722.125 5674.625–5698.375 5724.625–5738.375
Fe5782c 5778.375–5798.375 5767.125–5777.125 5799.625–5813.375
NaDc 5878.625–5911.125 5862.375–5877.375 5923.875-5949.875
TiO1

c 5938.375–5995.875 5818.375–5850.875 6040.375–6105.375
TiO2c 6191.375–6273.875 6068.375–6143.375 6374.375–6416.875
Hαd 6548.00–6578.00 6420.00–6455.00 6600.00–6640.00

Notes:a Beers et al. (1999);b Worthey & Ottaviani (1997);c Worthey et al. (1994);d Cohen et al. (1998).

(see Table 2). The line index under this definition is inÅ. It is noted that the measurement of equiv-
alent widths of the lines is based on the rest-frame spectra,in which the radial velocities have been
corrected. The value of the radial velocity is adopted from the LAMOST catalog. For spectra with
signal-to-noise ratio larger than 20, the median uncertainty of the equivalent widths of the lines is
smaller than 0.1̊A.

Figure 1 shows the median equivalent width of different spectral lines for each class of star. It
is evident that the spectral lines are not equally sensitiveto the stellar classes. All Balmer lines, i.e.,
Hα, Hβ, Hγ and Hδ, separate the classes well. The magnesium lines are also sensitive to the classes,
particularly for late type stars. Although the change in theiron lines is not as significant as that in the
Mg lines, they also show a clear trend in different classes. Finally, the TiO lines are very sensitive
to the M type stars. It seems that many of the spectral lines are correlated. Hence, we do not need
to use all of them for the classification. We select Hγ as the representative Balmer line, since it has
the largest amplitude of variation among the Balmer lines. Then we average over the Mg1, Mg2 and
Mgb which represent the composite line index of Mg. We also average over all nine iron lines to
form the composite line index of Fe. Finally, we select theG band (CH) and TiO2 to represent the
molecular bands. In total, we give five (composite) line indices for all selected stars.

Although the CaII K line is frequently used in classifications and parameterizations, we decide
not to use it because it does not provide extra information about spectral types and is located near
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Fig. 1 The figure shows the line indices for different MK classes. Each grid in thex-axis corresponds
to a spectral line and they-axis indicates the median equivalent width for each line. The colors and
symbols represent the O (black hexagrams), B (blue pentagrams), A (large cyan circles), F (green
triangles), G (small orange circles), K (red crosses), and M (magenta rectangles) types.

the blue end, in which the wavelength calibration and efficiency of the instrument are not as good as
other lines, making the line index of CaII K be not very stable.

3 LINE INDEX-BASED CLASSIFICATION

Figure 2 shows the stellar loci in the parameter space definedby five line indices, Hγ, Mg, Fe,G
band and TiO2 for all 1.5 million selected stars (their distributions are represented as blue contours).
The unit of thex- and y-axes isÅ. The hollow circles with neighboring dark gray labels mark
the median positions of the main-sequence MK classes from the SIMBAD catalog. For instance, a
hollow circle with a label “G2V” is the median value of stars with types G0V, G1V, G2V and G3V.
Also, a symbol with “G5V” is the median value of all stars withtypes G3V, G4V, G5V and G6V.
The neighboring circles overlap each other by one decimal subtype in order to make the stellar locus
smoother. Similarly, the red asterisks with the neighboring labels indicate the locus of MK classes
for giant stars. The detailed positions of these circles (asterisks) for main-sequence (giant) stars are
listed in Table 3 (Table 4). Figure 3 magnifies the smaller regions for better illustration of early type
stars.

First, the stars from O to M type can be well separated and ordered in the Hγ vs. G4300 plane,
shown in the top-right panel of Figure 2. In the Hγ vs. Fe plane (top-left panel), the stars from O
to G type are well separated, but the M and K type stars overlapat the top of the stellar loci and
are hard to disentangle. A similar trend is shown in the Hγ vs. Mg plane in the middle-left panel of
Figure 2. However, the late type main-sequence stars are easily distinguished in the Mg vs. Fe, Fe
vs. G4300, and Fe vs. TiO2 planes shown in the middle-right, bottom-left, and bottom-right panels,
respectively. The early type stars in these planes are clumpy and hard to separate from each other.
Combined with the five line indices, we are able to separate all types of main-sequence stars from O
to M type.

Second, the separation of the luminosity type works well forK and M giant stars. Especially
in the Mg vs. Fe (middle-right panel of Fig. 2) and Fe vs. TiO2 (bottom-right panel) planes, the
cool star ends of the stellar loci for main-sequence and giant stars go to different directions. In the
Mg vs. Fe plane, the locus of the main-sequence stars goes down toward smaller Fe and larger Mg
indices at the coolest end, while the locus of the giant starsgoes up toward larger Fe but smaller
Mg indices. A similar trend can also be seen in the Fe vs. TiO2 plane. However, it is very hard to
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Table 3 The Median Locus for Equivalent Width of the Spectral Lines for Main-sequence Stars

Type EWG4300 EWHγ EWMg EWFe EWTiO2 Number
(Å) (Å) (Å) (Å) (Å) of stars

O6–9 –0.27±0.23 2.55±0.23 0.46±0.12 0.28±0.43 –0.00±0.28 6
B0–3 –1.07±0.45 4.20±1.72 0.22±0.12 0.10±0.35 0.03±0.49 35
B3–6 –1.60±0.59 6.76±1.62 0.12±0.11 0.35±0.28 –0.04±0.33 34
B6–9 –2.50±1.04 11.43±2.68 –0.01±0.28 0.49±1.96 –0.01±5.37 237
A0–3 –2.52±1.32 12.45±2.65 0.08±0.58 0.49±0.90 –0.05±0.43 684
A3–6 –1.29±1.01 11.07±2.09 0.51±0.33 0.62±0.29 –0.11±0.40 111
A6–9 –0.27±0.80 8.88±1.86 0.74±0.30 0.72±0.30 –0.27±83.98 33
F0–3 0.89±1.04 5.64±2.28 1.01±0.38 0.89±0.31 –0.21±7.70 72
F3–6 2.18±1.20 2.90±2.75 1.19±0.36 1.26±0.56 –0.17±7.61 90
F6–9 3.42±1.11 0.87±2.16 1.49±0.39 1.62±0.50 –0.15±3.48 82
G0–3 5.38±1.08 –3.15±2.29 1.98±0.61 2.59±1.93 –0.03±0.48 459
G3–6 5.86±0.98 –4.39±2.45 2.44±0.67 3.32±2.42 0.05±0.49 255
G6–9 6.21±0.72 –6.45±1.97 2.88±0.76 4.41±1.45 0.19±0.46 140
K0–3 6.28±1.35 –7.72±3.53 3.23±0.91 5.23±2.42 0.45±2.52 155
K3–6 5.92±0.84 –10.45±2.78 4.25±0.55 11.63±2.49 1.96±11.10 55
K6–9 5.12±0.94 –10.07±4.24 4.14±0.71 12.68±1.33 5.08±15.70 27
M0–3 3.52±1.31 –9.21±3.28 3.26±0.81 11.78±0.91 21.30±15.85 31
M3–6 2.72±1.02 –11.57±5.31 3.01±0.45 11.11±2.66 33.69±20.42 18

Table 4 The Median Locus for Equivalent Width of the Spectral Lines for Stars with
Luminosity Types IV or III

Type EWG4300 EWHγ EWMg EWFe EWTiO2 Number
(Å) (Å) (Å) (Å) (Å) of stars

B0–3 –0.51±0.34 2.78±1.78 0.34±0.21 0.09±0.33 0.07±13.83 20
B3–6 –1.55±0.59 6.70±1.33 0.17±0.21 0.16±0.32 0.01±0.34 17
B6–9 –1.85±1.04 8.36±2.35 0.04±0.35 0.50±0.34 –0.02±13.38 38
A0–3 –1.61±0.95 11.03±1.97 0.24±0.40 0.41±0.36 0.03±0.32 45
A3–6 –0.89±1.12 10.41±1.75 0.55±0.28 0.50±0.20 –0.35±0.08 4
A6–9 –0.83±1.16 10.02±2.17 0.63±0.32 0.63±0.23 –0.22±0.18 8
F0–3 1.09±1.10 5.50±2.58 1.14±0.21 1.04±0.36 –0.24±14.86 31
F3–6 2.46±0.91 2.41±1.80 1.34±0.31 1.30±0.45 –0.11±11.07 31
F6–9 3.62±1.03 0.61±2.01 1.61±0.33 1.56±0.50 –0.10±2.06 42
G0–3 5.05±1.28 –2.50±2.91 2.07±0.81 2.50±1.49 0.03±9.27 69
G3–6 6.27±1.17 –5.71±2.78 2.76±0.78 3.49±1.42 0.27±0.61 83
G6–9 6.93±0.91 –7.72±2.15 3.40±2.55 4.10±3.74 0.80±10.62 150
K0–3 6.90±0.88 –8.99±3.16 3.99±0.77 5.77±2.14 1.32±4.82 189
K3–6 6.67±0.93 –10.01±3.38 4.47±0.80 8.38±2.20 3.18±3.80 24
M0–3 5.79±1.42 –9.16±3.06 5.37±0.87 9.75±1.87 27.04±13.31 21
M3–6 3.59±0.99 –4.85±9.35 6.54±0.67 6.84±1.67 42.62±6.16 8

disentangle the early type giant stars, e.g. B, A and F type giant stars. These types of giant stars
are located at almost exactly the same position as the same type main-sequence stars. According to
Gray & Corbally (2009), some weaker lines, such as OII (at 4070, 4076, 4348 and 4416Å), SIIV at
4116Å, etc., may be helpful for discriminating the luminosity types of B type stars. However, they
are very weak in the low-resolution LAMOST spectra and may besignificantly affected by noise.

It is worth pointing out that variation in the Fe index for late type stars is mostly but not exactly
related to the Fe lines, but is significantly affected by prominent molecular bands, e.g. TiO, happens
to overlap at the same wavelength. Also, the response of the Mg index to cool stars is actually
dominated by the MgH band.
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Fig. 2 The contours show the distribution of LAMOST stars in the parameter space defined by
line indices. The top-left, top-right, middle-left, middle-right, bottom-left and bottom-right panels
are for Hγ vs. Fe, Hγ vs. G band, Hγ vs. Mg, Mg vs. Fe, Fe vs.G band, and Fe vs. TiO2 planes
respectively. The black lines with circles indicate the stellar loci of the main-sequence stars with their
MK designations from the SIMBAD database, while the red dashed lines with asterisks indicate the
stellar loci of the giant stars (type IV/III) with their MK designations from the SIMBAD database.

It can also be noted that the dispersions shown in Figure 2 arenot only contributed by uncertain-
ties in the line indices, which are only about 0.1Å. These dispersions may be intrinsic and related to
the broad diversity in metallicity. In this paper, we mainlyfocus on the effective temperature, which
corresponds to the spectral types, and the surface gravity,which is related to the luminosity. The
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Fig. 3 The panels are same as their counterparts in Fig. 2, but are enlarged to show details around
the locus of early type stars.

effect of metallicity in spectral classification may be morecomplicated, because it also reflects the
evolution of different stellar populations. We would like to leave this topic for future works.

The classification of stars based on their stellar loci can bedone by looking up the line indices in
Tables 3 and 4. For any statistical study of the Milky Way, onecan conveniently select stars located
in a segment of the stellar loci in Figures 2 and 3 according tothe listed MK classes. Compared
with the classical MK classes, the stellar loci in line indices, acting just like the color indices in a
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Fig. 4 The distribution of the SIMBAD MK classes of the test data resulting from an SVM applied
to the parameter space defined by line indices. The top-left,top-right, middle-left, middle-right,
bottom-left and bottom-right panels show the distributions in Hγ vs. Fe, Hγ vs.G band, Hγ vs. Mg,
Mg vs. Fe, Fe vs.G band, and Fe vs. TiO2 planes respectively. The marginalizeddistributions of one
single line index for different spectral types are shown at the right and top edges of each panel. The
colors and symbols denote the OB (blue pentagrams), A (large cyan circles), F (green triangles), G
(small orange circles), K (red hexagrams), and M (magenta rectangles) types.
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multi-band photometric system, provide natural and continuous sequences of stars, which are easier
to analyze using quantitative statistics. More discussions can be found in Section 5.

4 SVM-BASED CLASSIFICATION

Alternatively, we can also translate the line index-based stellar loci into the MK class system for
individual stars. To do this, we employ an SVM algorithm to automatically assign a stellar spectrum
to the proper MK class.

SVM is a supervised machine learning algorithm for classification and regression (Cortes &
Vapnik 1995). In general, a supervised algorithm uses a small sample with multi-dimensional input
variables and known labels of classes as the training dataset. The SVM classification is built in two
steps. First, with the training dataset, the optimized non-linear boundaries among different classes for
the input parameters are determined and defined by a subset ofthe training dataset, which is called
the support vectors, located around the boundaries. Second, for a given input datum, the trained SVM
model gives a prediction of the class depending on where the input datum is located with respect to
the support vectors. A typical sample of SVM classification can be found in Liu et al. (2014a) and a
sample of SVM regression can be found in Liu et al. (2012) and Liu et al. (2014b).

Chang & Lin (2011) provide a package in multiple programminglanguages, LIBSVM2, that
implements the SVM algorithm. Here, we use LIBSVM to classify the stars into MK types based
on their line indices. We arbitrarily separate the 3134 stars with both high signal-to-noise ratio
LAMOST spectra and SIMBAD MK types into two equal-size groups. One group is selected as
the training dataset to train the SVM, and the other is used asthe test dataset to assess the perfor-
mance. We use all 27 line indices listed in Table 2 as the inputvector. We only adopt six classes,
which are OB, A, F, G, K and M, and ignore the decimal subtypes and the luminosity types in the
SVM classification. O and B types are merged into one class since there are only very few O type
stars in the sample.

Figure 4 shows the stellar loci composed of the∼ 1500 test dataset with color coded SIMBAD
class labels from the parameter space defined by line indicesHγ, Fe, Mg,G band and TiO2. Because
we use the SIMBAD MK classes as the training dataset, it implies that we assume the SIMBAD MK
classes to be the “standard” classes with which to compare results. Figure 5 shows a similar set of
stellar loci with exactly the same test dataset as in Figure 4, but with colors representing the MK
classes derived from SVM.

Comparing Figure 4 and Figure 5 can give a qualitative impression of the performance of the
SVM classification. It is obviously seen that some OB type stars (blue pentagrams), located in the
bottom-right corner in the Hγ vs. Fe and Hγ vs. G4300 planes and which are shown in the two top
panels in Figure 4, are mistakenly classified as A type stars (cyan circles) by the SVM method, as
shown in the corresponding panels in Figure 5. Moreover, although the SVM classification works
quite well for stars from M to F type, it can still be relatively hard when applying artificial boundaries
to F, G, and K type stars in Figure 5.

A quantitative assessment of the performance of the SVM classification is based on the so called
confusion matrix shown in Table 5, in which the columns standfor the “true” class labels and rows
stand for the SVM derived class labels. The intersections give the percentage of stars which belong
to the class in a column but are assigned to the class in a row bythe SVM. The diagonal items show
the completeness of the classification, i.e., the percentage of stars in class X being correctly assigned
to the same class. The last column in Table 5 gives the contamination, which is the percentage of
stars in the derived class X being contaminated by other classes.

Table 5 shows that A and G type stars have the highest completeness larger than 90%. This
means that more than 90% of A or G type stars are correctly classified by the SVM algorithm.
The completenesses of F and M type stars are about 72% and 68%,respectively, which are still

2 http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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Fig. 5 The distribution of the MK classes of the test data resultingfrom an SVM applied to the
parameter space defined by line indices. The top-left, top-right, middle-left, middle-right, bottom-
left, and bottom-right panels show the distributions in Hγ vs. Fe, Hγ vs. G band, Hγ vs. Mg, Mg
vs. Fe, Fe vs.G band, and Fe vs. TiO2 planes, respectively. The marginalized distributions of one
single line index for different spectral types are shown at the right and top edges of each panel. The
colors and symbols denote the OB (blue pentagrams), A (large cyan circles), F (green triangles), G
(small orange circles), K (red hexagrams), and M (magenta rectangles) types.
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Fig. 6 The stellar loci for main-sequence (luminosity type V) stars calculated from the median
location of each subtype resulting from the parameter spacedefined by line indices. The top-left,
top-right, middle-left, middle-right, bottom-left, and bottom-right panels show the loci in Hγ vs.
Fe, Hγ vs.G band, Hγ vs. Mg, Mg vs. Fe, Fe vs.G band, and Fe vs. TiO2 planes respectively. The
black lines with circles indicate the stellar loci of main-sequence stars from LAMOST spectra, while
the red lines with the effective temperatures labeled show the main-sequence locus of the MILES
library.



1150 C. Liu et al.

−16 −12 −8 −4 0 4 8 12 16

−1

0

1

2

3

4

5

6

7

3000

4000

5000

6000

7000

8000
10000

B2III B5IIIB8III A2VIII
A5IIIA8III

F2IIIF5III
F8III

G2III

G5III

G8III

K2III
K5III

M2III

M5III

Hgamma

F
e

 

 
MILES Giant
LAMOST Giant

−16 −12 −8 −4 0 4 8 12 16

−4

−2

0

2

4

6

8

3000

40005000

6000

7000

8000
10000

B2III

B5IIIB8III A2VIII
A5IIIA8III

F2III

F5III

F8III

G2III

G5III
G8IIIK2IIIK5III

M2III

M5III

Hgamma

G
43

00

 

 
MILES Giant
LAMOST Giant

−16 −12 −8 −4 0 4 8 12 16

−2

0

2

4

6

8

10

12

14

3000
4000

5000

6000
7000 800010000B2III B5IIIB8III A2VIIIA5IIIA8IIIF2IIIF5IIIF8III

G2III
G5III

G8III

K2III

K5III

M2III

M5III

Hgamma

M
g

 

 
MILES Giant
LAMOST Giant

−2 0 2 4 6 8 10 12 14

−1

0

1

2

3

4

5

6

7

3000

4000

5000

6000

7000

8000
10000

B2IIIB5IIIB8IIIA2VIII
A5IIIA8III

F2IIIF5III
F8III

G2III

G5III

G8III

K2III
K5III

M2III

M5III

Mg

F
e

 

 
MILES Giant
LAMOST Giant

−1 0 1 2 3 4 5 6 7

−6

−4

−2

0

2

4

6

8

3000

40005000

6000

7000

8000
10000

B2III

B5IIIB8IIIA2VIII
A5IIIA8III

F2III

F5III

F8III

G2III

G5III
G8IIIK2IIIK5III

M2III

M5III

Fe

G
43

00

 

 

MILES Giant
LAMOST Giant

−1 0 1 2 3 4 5 6 7
−5

0

5

10

15

20

25

30

35

40

45

3000

4000

500060007000800010000B2IIIB5IIIB8IIIA2VIIIA5IIIA8IIIF2IIIF5IIIF8IIIG2III G5IIIG8IIIK2III
K5III

M2III

M5III

Fe

T
iO

2

 

 
MILES Giant
LAMOST Giant

Fig. 7 The stellar loci for giant (luminosity type IV/III) stars calculated from the median location
of each subtype resulting from the parameter space defined byline indices. The top-left, top-right,
middle-left, middle-right, bottom-left, and bottom-right panels show the loci in Hγ vs. Fe, Hγ vs.
G band, Hγ vs. Mg, Mg vs. Fe, Fe vs.G band, and Fe vs. TiO2 planes respectively. The black
dashed lines with asterisks indicate the stellar loci of giant stars from LAMOST spectra, while the
red dashed lines with the effective temperatures labeled show the loci of giants from the MILES
library.

acceptable. However, the completeness for OB and K stars is only about 52%, implying that almost
half of these two types of stars are mis-classified in the SVM classifier. Indeed, about 44% of “true”
OB type stars are mis-classified as A type. A similar percent of “true” K type stars are mis-classified
as G type. This is probably because the spectral features of late B (early K) type stars are very similar
as those of early A (late G) type stars and thus they are very difficult for an SVM to disentangle. It
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Table 5 The Confusion Matrix in terms of Percentage of the SVM-basedMK
Classification

SIMBAD

OB A F G K M Contamination

OB 52.60% 6.97% 1.94% 0.00% 0.00% 0.00% 24.06%
A 44.79% 90.38% 8.39% 0.53% 1.43% 0.00% 21.83%

SVM F 1.56% 1.68% 72.26% 3.57% 0.95% 0.00% 22.22%
G 0.52% 0.48% 17.42% 90.91% 43.81% 2.86% 19.43%
K 0.52% 0.48% 0.00% 4.99% 52.86% 28.57% 26.97%
M 0.00% 0.00% 0.00% 0.00% 0.95% 68.57% 7.69%

may also be that the adopted “true” classes from the SIMBAD database are compiled from various
literatures and classified by eye, and hence are not well calibrated with each other. Therefore, the
large dispersions in the manually assigned MK classes may affect the performance of classification
using an SVM.

5 DISCUSSION

5.1 The Discrepancy between MILES and LAMOST Spectra

In order to provide an external comparison of the stellar locus arising from the parameter space de-
fined by the line indices, we calculate the same line indices for a sample prepared with the MILES
library (Sánchez-Blázquez et al. 2006), which contains 985 bright stellar spectra with wide exten-
sions in stellar parameters. We plot the stellar loci of MILES data with red lines in Figures 6 and 7
for main-sequence and giant stars, respectively. To be convenient, we also label the averaged effec-
tive temperatures along the stellar loci as a reference. They show that the stellar loci derived from
LAMOST and MILES do not completely overlap each other, especially for late type dwarf stars and
all giant stars. However, according to Tables 3 and 4, these differences are mostly within the uncer-
tainty of 1- or 2-σ, and the overall shifts in the loci of the MILES library in most panels of Figures 6
and 7 are likely systematic. Looking back to the bottom-right panel of Figure 2, it can be seen that
the SIMBAD stellar loci for M dwarf stars show a similar systematic bias compared to the full sam-
ple of LAMOST data (the contours). Therefore, it is likely that the M dwarf stars in the SIMBAD
database are a biased sample and cannot provide an accurate representation for the majority of the
LAMOST M dwarf samples. This also indicates that the stellarloci based on line indices derived
from one survey should not be directly extended to another survey. Calibrations in the line indices
and in the sample selection function are necessary before applying the extension.

5.2 How to Make the Decision, the MK Class or the Line Index-based Stellar Locus?

In the previous sections we show two kinds of classifications. The line index-based stellar locus
orders the different types of stars as a simple sequence, along which the effective temperature mono-
tonically changes from coolest to hottest. No hard boundaryhas to be set in the stellar locus to
artificially separate the stars into discrete classes. The users who want to select specific stars for
their statistical studies on the Milky Way can simply cut thedata from any segment of the stellar
locus.

On the other hand, the SVM based classification assigns discrete MK type labels to stars based
on prior knowledge—the SIMBAD MK class labels. The compiledMK classes in the SIMBAD
database are from many related literatures, and most of themare done by comparing the spectra
with a small sample of standard stars by eye. This may raise significant inconsistency between the
literatures. Calibrations among different literatures seem to be very difficult, since the MK classes
are not continuous but rather discrete.
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A realistic issue in large spectroscopic surveys, such as the LAMOST survey, is that millions of
stars are observed and it is impossible to inspect each spectrum by eye. As shown in the exercise with
SVM classification in Section 4, state-of-the-art machine learning techniques may not be very helpful
because they need to be trained by prior knowledge which should be accurate and self-consistent.

Based on this analysis, we therefore suggest that LAMOST users rely on the stellar locus that is
based on line indices, rather than directly using the derived MK classes from the catalog, to select
the proper types of stars to satisfy their specific requirements. If these users want to compare their
sample with literatures, which may use MK classes, they can quantitatively calculate the percentage
of completeness and contaminations via a comparison of the stellar loci defined by SIMBAD and
the SVM MK classes.

6 CONCLUSIONS

In this paper, we revisit the fundamental issue of stellar classification using 3000 high signal-to-
noise ratio LAMOST spectra with known MK classes obtained from cross-identification with the
SIMBAD database. Although the MK classes have been widely used for more than 70 yr and have
become a standard, it seems not easy to adapt the large amountof data from current spectroscopic
surveys. The MK classes are constructed based on a very smallsample of standard stars, which
are mostly very bright and located in a local volume near the Sun. New spectroscopic surveys, e.g.
SDSS and LAMOST, can detect deep sky targets as far away as 100kpc and hence contain millions
of stars from very different populations compared with the solar neighborhood. The current standard
star library then becomes incomplete compared with a surveythat is a few orders of magnitude
larger. Another issue is that almost all stars with known MK classes are classified by eye. This is
unfortunately impossible in the era of large data. A third issue is that the MK classes are discrete,
which makes them difficult to calibrate.

We map the MK classes to the parameter space defined by line indices and find that the resulting
stellar loci can describe the MK classes well. Moreover, these loci naturally follow the change in
effective temperature. For late type stars, the different luminosity types can also be disentangled by
using the stellar loci.

We then investigate the performance of an automatic MK classification based on the SVM tech-
nique. We find that although A, F, G, and M type stars can be accurately classified, almost half of
the B or K type stars are mis-classified.

We therefore suggest that the classification of stars shouldbe based on continuous stellar loci
representing line indices. The advantages of the stellar loci are that (1) they are continuous and one
can cut a group of data at any point on the loci; (2) the stellarloci are consistent with effective
temperatures; and (3) after selecting a group of stars from the stellar loci, one can easily estimate the
completeness and contamination of the sample in terms of MK classes.
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