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Abstract We model the evolution of the spin frequency’s second derivative ν̈ and the
braking indexn of radio pulsars with simulations within the phenomenological model
of their surface magnetic field evolution, which contains a long-term power-law decay
modulated by short-term oscillations. For the pulsar PSR B0329+54, a model with
three oscillation components can reproduce itsν̈ variation. We show that the “aver-
aged”n is different from the instantaneousn, and its oscillation magnitude decreases
abruptly as the time span increases, due to the “averaging” effect. The simulated tim-
ing residuals agree with the main features of the reported data. Our model predicts
that the averaged̈ν of PSR B0329+54 will start to decrease rapidly with newer data
beyond those used in Hobbs et al. We further perform Monte Carlo simulations for the
distribution of the reported data in|ν̈| and|n| versus characteristic ageτc diagrams.
It is found that the magnetic field oscillation model with decay indexα = 0 can re-
produce the distributions quite well. Compared with magnetic field decay due to the
ambipolar diffusion (α = 0.5) and the Hall cascade (α = 1.0), the model with no
long term decay (α = 0) is clearly preferred for old pulsars by the p-values of the
two-dimensional Kolmogorov-Smirnov test.

Key words: stars: neutron — pulsars: individual (B0329+54) — pulsars:general —
magnetic fields

1 INTRODUCTION

The spin-down of radio pulsars is caused by emitting electromagnetic radiation and by accelerating
particle winds. Traditionally, the evolution of their rotation frequenciesν may be described by the
braking law

ν̇ = −Kνn, (1)

wheren is the braking index, andK is a positive constant that depends on the magnetic dipole
moment and the moment of inertia of the neutron star (NS). By differentiating Equation (1), one
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can obtainn in terms of several observables,n = ν̈ν/ν̇2. For the standard vacuum magnetic dipole
radiation model with a constant magnetic field (i.e.K̇ = 0), n = 3 (Manchester & Taylor 1977).
Thus the frequency’s second derivative can be simply expressed as

ν̈ = 3ν̇2/ν. (2)

The model predicts̈ν > 0 and|ν̈| should be very small.
However, unexpectedly large values ofν̈ were measured for several dozen pulsars thirty years

ago (Gullahorn & Rankin 1978; Helfand et al. 1980; Manchester & Taylor 1977), and many of those
pulsars surprisingly showed̈ν < 0. Some authors suggested that the observed values ofν̈ could
result from a noise-type fluctuation in the pulsar period (Helfand et al. 1980; Cordes 1980; Cordes &
Helfand 1980). Based on the timing data of PSR B0329+54, Demianski & Proszynski (1979) further
proposed that a distant planet would influenceν̈, and the quasi-sinusoidal modulation in timing resid-
uals might be caused by changes in pulse shape, precession ofa magnetic dipole axis, or an orbiting
planet. Baykal et al. (1999) investigated the stability ofν̈ for pulsars PSR B0823+26, PSR B1706–
16, PSR B1749–28 and PSR B2021+51 using their time-of-arrival (TOA) data extending to more
than three decades. This analysis confirmed that the anomalous ν̈ terms of these sources arise from
red noise (timing residuals with low frequency structure),which may originate from external torques
applied by the magnetosphere of a pulsar.

The relationship between the low frequency structure in timing residuals and the fluctuations in
pulsar spin parameters (ν, ν̇ andν̈) is very interesting and important. We call both the residuals and
the fluctuations the “timing noise” in the present work, since we will infer that they have the same
origin. Timing noise for some pulsars has been studied for over four decades (e.g. Boynton et al.
1972; Groth 1975; Jones 1982; Cordes & Downs 1985; D’Alessandro et al. 1995; Kaspi et al. 1999;
Chukwude 2003; Livingstone et al. 2005; Shannon & Cordes 2010; Liu et al. 2011; Coles et al.
2011; Jones 2012). However, the origins of the timing noise are still controversial and there is still
unmodeled physics to be understood. Boynton et al. (1972) suggested that the timing noise might
arise from “random walk” processes. The random walk inν may be produced by small scale internal
superfluid vortices (Alpar et al. 1986; Cheng 1987a), or short-term (t ∼ 10 ms for the Crab pulsar)
fluctuations in the size of the outer magnetosphere gap (Cheng 1987b). Stairs et al. (2000) reported
long timescale, highly periodic and correlated variationsin the pulse shape and the slow-down rate
of the pulsar PSR B1828–11, which have generally been considered as evidence of free precession.
The possibilities were also proposed that the quasi-periodic modulations in timing residuals could be
caused by an orbiting asteroid belt (Cordes & Shannon 2008) or a fossil accretion disk (Qiao et al.
2003).

Recently, Hobbs et al. 2010 (hereafter H2010) carried out the most extensive study so far of
long term timing irregularities for 366 pulsars. Besides ruling out some timing noise models in
terms of observational imperfections, random walks and planetary companions, some of their main
conclusions were: (1) timing noise is widespread in pulsarsand is inversely correlated with pulsar
characteristic ageτc; (2) significant periodicities are seen in the timing noise of a few pulsars, but
quasi-periodic features are widely observed; (3) the structures seen in the timing noise vary with data
spans, i.e., more quasi-periodic features are seen for a longer data span and the magnitude of|ν̈| for
a shorter data span is much larger than that caused by the magnetic braking of the NS; and (4) the
numbers of negative and positiveν̈ are almost equal in the sample, i.e.Np ≈ Nn. Lyne et al. (2010)
showed credible evidence that timing noise andν̇ are correlated with changes in the pulse shapes,
and are therefore linked to and caused by changes in the pulsar’s magnetosphere.

Blandford & Romani (1988) re-formulated the braking law of apulsar aṡν = −K(t)ν3, which
means that the standard magnetic dipole radiation is still responsible for the instantaneous spin-
down of a pulsar, and̈νν/ν̇2 6= 3 does not indicate deviation from the dipole radiation model, but
only means thatK(t) is time dependent. Considering the magnetospheric origin of timing noise
as inferred by Lyne et al. (2010), we assume that magnetic field evolution is responsible for the



Modeling the Frequency’s Second Derivative of Pulsar Spin 965

variation ofK(t), i.e. K = AB(t)2, in which A = 8π2R6 sin θ2

3c3I
is a constant, andR (≃ 106 cm),

I (≃ 1045 g cm2), andθ (≃ π/2) are the radius, moment of inertia, and angle of magnetic inclination
for the NS, respectively. We can rewrite Equation (2) as

ν̈ = 3ν̇2/ν + 2ν̇Ḃ/B. (3)

Since the numbers of negative and positiveν̈ are almost equal, it should be the case thatB quasi-
symmetrically oscillates, and usually|2ν̇Ḃ/B| ≫ 3ν̇2/ν. In addition, it can be noticed that pulsars
with τc . 105 yr always havëν > 3ν̇2/ν (H2010); a reasonable interpretation is that their magnetic
field decays (i.e.Ḃ < 0) dominate the field evolution for these “young” pulsars.

Therefore, Zhang & Xie (2012a, hereafter Paper I) constructed a phenomenological model for
the dipole magnetic field evolution of pulsars with a long-term decay modulated by short-term os-
cillations,

B(t) = Bd(t)

[

1 +
∑

ki sin
(

φi + 2π
t

Ti

)

]

, (4)

wheret is the pulsar’s age, andki, φi andTi are the amplitude, phase and period of thei-th oscillating
component, respectively.Bd(t) = B0(t/t0)

−α, in which B0 is the field strength at the aget0, the
indexα = 0 means the field has no long-term decay, and it was found thatα & 0.5 for young pulsars
with τc < 106 yr (see Paper I for details). Substituting Equation (4) intoEquation (1), we get the
differential equation describing the spin frequency evolution of a pulsar as follows

ν̇ν−3 = −AB(t)2. (5)

In paper I, we showed that the distribution ofν̈ and the inverse correlation ofν̈ versusτc could
be explained well with analytic formulae derived from the phenomenological model. In Zhang & Xie
(2012b, hereafter Paper II), we also derived an analytical expression for the braking index (n) and
pointed out that the instantaneous value ofn of a pulsar is different from the “averaged”n obtained
from the traditional phase-fitting method over a certain time span. However, this “averaging” effect
was not included in our previous analytical studies; this work is focused on addressing this effect.

This paper is organized as follows. In Section 2, we show thatthe timescales of magnetic field
oscillations are tightly connected to theν̈ evolution and the quasi-periodic oscillations appearing in
the timing residuals, and the reported data of PSR B0329+54 are fitted. In Section 3, we perform
Monte Carlo simulations on the pulsar distribution in theν̈ − τc andn− τc diagram. Our results are
summarized and discussed in Section 4.

2 MODELING THE ν̈ AND N EVOLUTION AND TIMING RESIDUALS OF PULSAR
PSR B0329+54

PSR B0329+54 is a bright (e.g. 1500 mJy at 400 MHz1), 0.71 s pulsar that had been suspected of pos-
sessing planetary-mass companions (Demianski & Proszynski 1979; Bailes et al. 1993; Shabanova
1995). However, the suspected companions have not been confirmed and their existence is currently
considered doubtful (Cordes & Downs 1985; Konacki et al. 1999; H2010). Konacki et al. (1999)
suggested that the observed ephemeral periodicities in thetiming residuals for PSR B0329+54 are
intrinsic to this NS. H2010 believed that the timing residuals have a form that is similar to other
pulsars in their sample. They plotted|ν̈| obtained from the B0329+54 data sets with various time
spans (see fig. 12 in their paper). For data spanning∼ 10 yr, they measured a large and significant
ν̈, and found that the timing residuals take the form of a cubic polynomial. However, no cubic term
was found for data spanning more than∼ 25 yr, and|ν̈| became significantly smaller. The reported
periods of the timing residuals for PSR B0329+54 are1100 d, 2370 d, and/or16.8 yr (Demianski &
Proszynski 1979; Bailes et al. 1993; Shabanova 1995).

1 http://www.atnf.csiro.au/people/pulsar/psrcat/
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Table 1 Summary of All the Best-fitting Parameters

Parameters T1 T2 T3 k1 k2 k3 φ1 φ2 φ3

(yr) (yr) (yr) (10−4) (10−4) (10−4) (rad) (rad) (rad)

Best-fitting 15.870206 49.03738 7.869207 4.05 1.89 2.58 0.496 0.071 1.937
1σ error 5.1× 10

−6
1.6× 10

−4
2.5× 10

−6 0.11 0.12 0.21 0.148 0.36 0.427

Notes: The first row lists the best-fitting values for all the parameters, and the second row lists their1σ errors.

In order to model thëν evolution for pulsar PSR B0329+54, we first obtainν(t) by integrating
the spin-down law described by Equations (4) and (5), and then the phase

Φ(t) =

∫ t

t0

ν(t′)dt′. (6)

Finally, these observable quantities,ν, ν̇ and ν̈, can be obtained by fitting the phases to the third
order of its Taylor expansion over a time spanTs,

Φ(ti) = Φ0 + ν(ti − t0) +
1

2
ν̇(ti − t0)

2 +
1

6
ν̈(ti − t0)

3. (7)

We thus getν, ν̇ and ν̈ for Ts from fitting to Equation (7), with a certain time interval of phases
∆Tint = 106 s (interval between each TOA, i.e.∆Tint = ti+1 − ti).

We adopt a goodness of fit parameter to show how well the model matches the data, i.e.χ2 =
∑

χ2
i =

∑ (ν̈iM−ν̈iD)2

σ2

i

, where the subscriptsM andD refer to the model results and the reported

data respectively, andσi are the uncertainties in the reported data. In order to minimizeχ2, we adopt
the Simulated Annealing Algorithm to reach a fast convergence and avoid being trapped in a local
minimum, and we use a simulation based on the Markov chain Monte Carlo (MCMC) method for
the fitting to explore the whole parameter space.

In the top panel of Figure 1, we show the reported and the best-fitting (simulated) results of|ν̈|
for variousTs for PSR B0329+54; the reported data are read from figure 12 of H2010. There are
three oscillation components involved in the simulation, andα = 0 is taken from Equation (4). The
obtained smallest value ofχ2 is 9.1, with the number of degrees of freedom being20, and all the
best-fit parameters for the three oscillation components are listed in Table 1.χ2

i for each reported
data point is also shown in the middle panel; in the bottom panel, we show the correspondingn with
the same oscillation parameters obtained above. The braking indexn = ν̈ν/ν̇2 obtained directly
from Equation (5) is called “instantaneous”n; similarly, what is obtained by fitting phase sets to
Equation (7) is called “averaged”n. It can be seen that the averagedn has the same variation trends
asν̈, since|∆ν/ν| ∼ 10−6 and|∆ν̇/ν̇| ∼ 10−3 are tiny, compared to|∆ν̈/ν̈| ∼ 1. The magnitude
of the first period of the averagedn is close to the instantaneous one, but it decays significantly due
to the “averaging” effect.

Since both the fits with one and two oscillation components are not very good and are certainly
rejected by theχ2 test (e.g. the smallestχ2 of the two component simulation is128), andχ2 is
not significantly reduced after setting the indexα as a free parameter, we thus conclude that three
oscillation components are necessary for fitting the variation in |ν̈|.

We use the Pearson Correlation Coefficientρ = Covariance(X,Y )√
Variance(X)Variance(Y )

to measure the covari-

ance between the parameters, whereX andY are the parameters to be tested. We show the joint
posterior probability distribution between each pair of parameters in Figure 2, withρ labeled in each
panel. For each of the three oscillation components, their phaseφ is completely coupled with their
periodT . All other parameters are well determined independently.

The timing residuals, after subtraction of the pulsar’sν andν̇ over36.5 yr for PSR B0329+54,
are also simulated with exactly the same model parameters used for modeling̈ν. In the simulation,
the following steps are taken:
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Fig. 1 |ν̈|, χ2

i andn for PSR B0329+54.Top panel: reported and fitted|ν̈|. The values reported by
H2010 are represented by large cross symbols (ν̈ > 0) and large circles (̈ν < 0); the best-fitting
results are represented by small cross symbols (ν̈ > 0) and small circles (̈ν < 0); the horizontal
dashed line represents̈ν = 3ν̇2/ν. Middle panel: the goodness of fit parameterχ2

i for the fit of
|ν̈|. It is shown that the three component model fits the reported data quite well.Bottom panel:
instantaneous (solid line) and averaged (crosses) values ofn. The horizontal dotted line represents
n = 0.

(i) We get the model-predicted TOAs with∆Tint = 106 s using Equation (6) over36.5 yr, with the
same model parameters used for modelingν̈.

(ii) By fitting the TOA set{Φ(ti)} to

Φ(t) = Φ0 + ν0(t − t0) +
1

2
ν̇0(t − t0)

2, (8)

we getΦ0, ν0 andν̇0.
(iii) Then the timing residuals after the subtraction ofν andν̇ can be obtained by

Tres(ti) =
Φ(ti) − (Φ0 + ν0(ti − t0) + 1

2 ν̇0(ti − t0)
2)

ν0
. (9)

In Figure 3, we plot the reported timing residuals (from fig. 3of H2010) with crosses, and
the simulated result of the model with three oscillation components with a solid line. Note that the
simulated result is not the fit of the model to the reported timing residual. It is actually the application
of the model with the parameters derived from the fitting of|ν̈|, i.e. the figure shows a comparison
of the timing residuals of the model’s prediction with the reported data. The RMS of the reported
residuals and the differences are0.0086 and0.0048, respectively, i.e., indicating nearly a factor of
two reduction of timing noise in terms of RMS with the application of the three component model.
In order to show the effectiveness of the three component model, we perform an F-test for the three
component model and the base model adopted in the TEMPO2 program (Hobbs et al. 2006). TheF
statistic is given by

F =
(χ2

1 − χ2
2)/(d1 − d2)

χ2
2/d2

∼ 27, (10)
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Fig. 2 Correlation of the nine fitting parameters of|ν̈|. Each panel shows the joint posterior prob-
ability distribution between a pair of parameters, with correlation coefficientρ labeled in it. The
oscillation periodsT1, T2 and T3 are plotted in terms of the differences from their mean values
T1m = 5.00482804 × 10

8 s, T2m = 1.546443564 × 10
9 s andT3m = 2.48163290 × 10

8 s,
respectively.

whereχ2
1 andχ2

2 are Pearsonχ2 values, i.e.χ2 =
∑ R2

i

σ2

i

, whereRi is the residual of thei-th point,

andd1 = 133 andd2 = 124 are the number of degrees of freedom for the base model and three
component model, respectively. Here we assumeσi = σ0, i.e, all data points have the same weight;
this way, the result of the F-test is independent of the exactvalue ofσ0. F ∼ 27 means that the
probability of rejecting the three component model over thebase model is less than2.7 × 10−25,
and thus the significance of the three component model over the base model is higher than10σ. Our
model implies that the timing residuals are also caused by the magnetic field oscillation, and the
quasi-periodic structures in timing residuals have the same origin (which is determined by Eq. (5))
as those in̈ν, ν̇ andν variations. On the other hand, the fit is worse as the time spanincreases up
to ∼ 30 yr, which may be mainly due to the additional noise components not being included in̈ν
variations.
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Fig. 3 Timing residuals of PSR B0329+54. The reported timing residuals, after subtraction ofν and
ν̇ of the pulsar over the36.5 yr, are represented by crosses; the predicted residuals modeled by three
oscillation components are represented by the solid line. The model parameters are identical to those
for the ν̈ simulation, as shown in Fig. 1.

The model includes an oscillation component with a period of∼ 49 yr, however, it is hard
to test directly from the power spectrum of its timing residuals, since the period is longer than
the observational data span. However, there are still some features demonstrating its existence. For
instance, the observed data were reported about four years ago, and the model predicts thatν̈ of the
pulsar is now experiencing another switch from positive to negative (as shown in Fig. 1), which can
be tested with the latest observed data. The test could also be conducted by applying the model to
a larger set of pulsars, which have short oscillation periods (shorter than the observed time span),
and relatively large oscillation amplitudes (so that the swing behavior of̈ν could emerge; the exact
criteria ofk depend onν, ν̇ andT ).

From Equation (5), we can obtain an analytic approximation from the one oscillation component
model (in Paper I) for̈ν

ν̈ ≃ −2ν̇
[

α/t + f cos
(2πt

T
+ φ

)]

, (11)

wheref = 2πk/T represents the magnitude of the oscillation term. Thus, both parametersk andT
are important. Forα = 0, Equation (11) can be simply rewritten as

ν̈ ≃ −2ν̇f cos
(2πt

T
+ φ

)

. (12)

One can see that the model predicts an oscillation behavior of ν̈, which implies that one may get
either a positive or a negativëν.

From Table 1, we know thatf1 ≈ f3 ≫ f2 for PSR 0329+54. Therefore the second compo-
nent is less important in contributing töν, according to Equation (12). It is possible that the third
component is the higher harmonic of the first component, since T1 ≈ 2T3. Thus it is likely that the
first oscillation component dominates the timing behavior of the pulsar. As a matter of fact, there
is almost always one dominant peak in the power spectrum of the timing residuals of most radio
pulsars (H2010), i.e., one dominant oscillation componentassociated with their magnetic evolution.

A major prediction of this model with three oscillation components is that the averagedν̈ will
start to decrease rapidly with additional data that extend just a few years beyond the span that was
used in H2010, as shown by the black crosses in the top panel ofFigure 1. As the data are already
available to the observers, we suggest that this predictioncan be used to confirm or deny our model.



970 Y. Xie, S. N. Zhang & J. Y. Liao

3 SIMULATING THE DISTRIBUTIONS OF ν̈ AND N AND THEIR CORRELATIONS
WITH τC

In this section, based on our phenomenological model, we usethe Monte Carlo method to simulate
the distributions of̈ν andn, and their correlation withτc. The “averaging” effects are naturally
included in the simulations. For simplicity, in the following simulation we assume that there is
one dominant oscillation component, which mainly determines the variations of̈ν and the timing
residuals, as discussed above. If the one oscillation component model is rejected by the reported
data, then a multiple component model shall be presented. This is not in conflict with the above
three component fit, since fitting to the distributions requires much less detailed information about
variations inν̈ for individual pulsars.

We assume that the sample of phasesφ of the field oscillation follows a uniform random distri-
bution in the range from−π to π. Randomly drawing a data set{ν, ν̇, Ts} from the reported sample
space, i.e. from table 1 of H2010, calculating a corresponding start timet0, and assuming some
certain values fork andT , we can obtain a rotation phase set{Φ(ti)} using Equation (6). In the
calculation, the time interval for TOAs is also assumed to bea constant, i.e.∆Tint = 106 s. Then
the “averaged” values ofν, ν̇ andν̈ can be obtained by fitting{Φ(ti)} to Equation (7). Hence one
has its averaged|ν̈|, |n| andτc. Repeating this procedureN times, we will haveN data points in the
|ν̈|-τc and|n|-τc diagrams.

3.1 Effects of Oscillation Period and Amplitude

Analysis of a large sample of pulsar timing noise (H2010) showed that the oscillation periods are
usually on the order of about10 yr. However, the structures seem to vary with data span, and as more
data are collected, more quasi-periodic features are observed. In this subsection, we investigate the
ranges of variation ofk for a series ofT .

We show the measured|ν̈| and|n| versusτc for 341 normal radio pulsars withτc < 109 yr in
Figure 4, in which 184 pulsars with positivëν andn are plotted in the left panels, and the other 157
pulsars with negative values are in the right panels. The simulated results, for the case ofT = 10 yr,
with β = 4.6 or2.1 are also shown in the panels, in whichβ is defined byk = 10−β for convenience.
One can see that the envelopes ofβ = 4.6 and2.1 lie around the lower and upper boundaries of the
reported data, respectively. This gives a natural constraint for k. Meanwhile, in the simulation the
number of data points witḧν > 0 should be roughly equal to the number ofν̈ < 0, i.e.Np/Nn ≃ 1.

In Table 2 we summarize the ranges of variation ofβ for different T . Physically,β < 0 is
unacceptable, thus it should beT . 105 yr. However, our model fails to give a tight constraint onT .
Note thatτc in the figure is the characteristic age of the pulsars. However, Ts in Figure 1 is the time
span of the observation. Thus, the positive correlation betweenτc andn in Figure 4 is not in conflict
with Figure 1 which showsn decaying withTs.

Table 2 Ranges of Variation ofβ for DifferentT

T (yr) 10 100 1000 10
4

10
5

(βmin, βmax) (2.1, 4.6) (1.9, 4.5) (0.8, 3.4) (0.3, 2.3) (–0.5, 1.6)

Notes:βmin andβmax are the minimum and maximum values ofβ, respectively.

3.2 Two-dimensional Kolmogorov-Smirnov Test

In this subsection, we perform a two-dimensional Kolmogorov-Smirnov (2DKS) test to reexamine
the consistency of the distributions of the reported data and the simulated data, using the KS2D
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Fig. 4 Simulations of the|ν̈|-τc distribution (top panels) and|n|-τc distribution (bottom panels) for
T = 10 yr.

package2. If the returned p-value is greater than 0.2, then it is a signthat we can treat them as drawn
from the same distribution.

We regardT as a random number and allow it to vary from1 to 100 yr to account for the diversity
of periodicities observed in the population. Letβmin andβmax vary from1.5 to 2.5 and from4.0 to
5.0, respectively. It is found thatβ varying from2.1 to 4.5 gives the highest p-value, as shown in the
top four panels of Figure 5. The returned probabilities are also labeled in each panel. Since the p-
values indicate that the two samples are highly consistent,we thus conclude that the one oscillation
component model withα = 0 is good enough to reproduce the|ν̈|-τc and|n|-τc distributions.

The simulated distributions with differentα are also examined with a 2DKS test. We show the
simulated distributions withα = 0.5 and1.0 in the middle and bottom four panels of Figure 5,
respectively. To describe the evolution of the pulsar magnetic field, three routes are generally pro-
posed (see e.g Goldreich & Reisenegger 1992), i.e. ohmic dissipation, the Hall effect and ambipolar
diffusion. Power law decays withα = 0.5 and1.0 are produced by the ambipolar diffusion and the
Hall effect, respectively (Paper I). Here we do not include ohmic dissipation since it is not important
for pulsars withτ & 104( B

1012 G)−3 yr (Cumming et al. 2004). For both cases ofα = 0.5 and1.0,
the p-values of the simulated data forν̈ < 0 are much lower than0.2, and thus are rejected by the
test. In fact, one can see that forτc & 106 yr there is a crowded area of data points along the lower
boundary forν̈ > 0, and the data points are scarce around the lower boundary forν̈ < 0. This is
mainly caused by the long-term magnetic field decay, i.e. thedecay term−2ν̇α/t > 0 dominates
the oscillation term−2ν̇f cos(2πt

T
+ φ) in Equation (11) for some cases. However, there is no such

crowded area or scarce area in the reported data, which clearly indicates that the model withα = 0
is preferred for pulsars withτc & 106 yr.

2 http://www.astro.washington.edu/users/yoachim/code.php
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Fig. 5 Simulations of|ν̈|-τc and|n|-τc distributions forT varying randomly from1 to 100 yr. The
cases ofα = 0, α = 0.5 andα = 1 are shown in the top four panels, middle four panels and bottom
four panels, respectively.

4 SUMMARY AND DISCUSSION

In this work we first modeled thëν andn evolutions and applied the obtained model parameters
to simulate the timing residuals for the individual pulsar PSR B0329+54. Using a Monte Carlo
simulation method, we simulated the distributions of pulsars in the|ν̈|−τc and|n|−τc diagrams, and
compared the simulation results with the reported data in H2010. Our main results are summarized
as follows:

(1) We modeled thëν evolution of pulsar PSR B0329+54 with a phenomenological model that
incorporates evolution ofB, which contains three oscillation components (top panel ofFig. 1).
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The model can reproduce the|ν̈| variation quite well, including the swings betweenν̈ > 0 and
ν̈ < 0. This model predicts that the averagedν̈ of PSR B0329+54 will start to decrease rapidly
with newer data beyond those used in H2010.

(2) We showed that the “averaged” values ofn are different from the instantaneous values (bottom
panel of Fig. 1), and the oscillation abruptly decays after the first period due to the “averaging”
effect. Using these parameters obtained from modeling the evolution of the averaged̈ν, we
simulated the timing residuals of the pulsar (Fig. 3), whichagrees with the reported residuals
(H2010) well.

(3) We performed Monte Carlo simulations for the distribution of |ν̈| and |n| in the |ν̈| − τc and
|n| − τc diagrams, respectively. The simulated results for different models of long-term decay
of the magnetic field (i.e.α = 0, α = 0.5 and1.0 in Fig. 5) are tested by the 2DKS. It is found
that the reported distributions can be well reproduced withthe one oscillation component model
with α = 0 for pulsars withτc & 106 yr.

Pons et al. (2012) proposed a similar model of magnetic field oscillations with a timescale of
(106 − 108)1012 G

B
yr and magnitudeδB/B ∼ 10−3, and obtained pulsar evolutionary tracks in

the P − Ṗ diagram. Lyne et al. (2010) showed credible evidence that timing residuals anḋν are
connected with changes in the pulse width. Therefore, timing residuals are more likely caused by
changes in a pulsar’s magnetosphere with periods of about1 − 100 yr. In Xie & Zhang (2013), we
suggested that perturbations from Hall waves in the dipole magnetic field associated with NS crusts
are probably responsible for the observed quasi-periodic oscillations in the timing data as well as
changes in the pulse width, which may provide a physical explanation for the present model.

We therefore conclude that magnetic field oscillations dominate the long term spin-down be-
haviors of old NSs, for which the long-term field decay is not important, in contrast to younger NSs
with τc . 106 yr. The fact that only one oscillation component is requiredto reproduce the observed
|ν̈|−τc and|n|−τc distributions suggests that there is one dominant oscillation component for most
NSs, and thus does not conflict with the fact that multiple oscillation components are also often ob-
served in some pulsars. In fact, for some pulsars, the structures seen in the timing noise vary with data
span and more quasi-periodic features are observed for a longer data span (H2010). Admittedly, our
current model cannot predict the number, amplitudes and periods of oscillation modes. However, our
model can adequately describe the acquired timing data witha small number of oscillation modes,
as shown in Section 2, which represents a first step towards understanding of the magnetic field
oscillations of NSs. As such, our understanding of the oscillation modes will be improved as more
quasi-periodic features are revealed with longer observations in the future. In addition, our model
can also describe the distributions ofν̈ andn reasonably well. As far as we are aware of, our work
is the first one in which the distribution of̈ν is used to test the long-term magnetic field evolution of
NSs, which is independent from tests based on the traditional ν − ν̇ diagram.
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