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Abstract We revisit the issue of constructing the first-order pecadtilution that in-
corporates the/,, tesseral harmonic and developing a new semi-analyticatisal
that may apply to any orbital eccentricity in [0,1). In our nkpthe solution is ex-
pressed in a finite compact form composed of several defimiggiials with varying
integration intervals constrained in ), in which the traditional Hansen coefficients
are no longer involved. Numerical experiments are alsorgarel compared with the
traditional series expansion method, and the results shatithe derived solution is
capable of dealing with highly eccentric orbits. Therefdhe solution given can pro-
vide a new technique to analyze the perturbation charatteriarising from the/s,
harmonic.
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1 INTRODUCTION

The motion of a satellite orbiting around a central body fhienced by many perturbations. Among
these, the inhomogeneous central gravitational pertiofbatays an important role in its motion.
Although numerical methods may provide greater accuracglyéical theories (Brouwer 1959;
Kozai 1959; Garfinkel 1958; Aksnes 1970) have an advantaghafing a clearly dynamical pic-
ture of the motion. Analytical investigations provide artemsive understanding of the gravitational
effects on satellite orbits (Hori 1966; Deprit 1969, 1981riand & Coffey 1984; Wnuk 1999).

One of the interesting issues associated with the analysgitude-dependent tesseral har-
monic perturbation has been extensively investigated hyymesearchers since the work of Kaula
(1966). Generally, the first-order solutions of tesseraiuaics present short-period effects, and
occasionally long-period effects occur due to resonari€asla 1966; Wnuk 1988; Wnuk & Breiter
1990; Rossi 2008; Sampaio et al. 2012). The coupling efteetiween them have been investigated
by several authors and their characteristics were also stfgénuk & Breiter 1991; Metris et al.
1993; Palacian 2007; Zhou et al. 2012). Besides the chlssiethods of elliptic motion expansion
(Kaula 1966), the relegation methods based on canonicalliications of a Hamiltonian system
with the elimination of the parallax (Deprit 1981; Depritat 2001) were also used to deal with
the tesseral perturbation (Segerman & Coffey 2000; Pata2007). Recently, Lara et al. (2013)
compared the two methods in detail, both analytically anaerically.
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Although relegation methods make a closed form of the smiypiossible, the traditional series
expansion methods are still widely used in aerospace eagine A theory developed by Proulx
et al. (1981) deals with the solution that is representethénform of double Fourier series of the
mean-longitude and the Greenwich sidereal time, where theséh coefficients were evaluated
in an efficient way (Proulx & McClain 1988). However, the ssrexpansion methods show a slow
convergence because Hansen coefficients converge very sitxn the eccentricity increases up to
1. To solve problems that arise in the case of highly ecaeothits, a series of work was presented by
Brumberg (1992), Brumberg & Fukushima (1994), and Brumle¢a]. (1995), in which the authors
replaced the traditional mean, true or eccentric anomalgrbglliptic anomaly and represented the
solution in a more compact and more quickly convergent fdramtthe conventional methods. This
method is a good approach in celestial mechanics, wheretiwept of anomalies is extended and a
Hansen-like coefficient is also introduced. However, thighod is complicated and not widely used
in mathematics, which has limited its application.

In the present work, we revisit the tesseral problem witly éiné .Joo harmonic considered, and
we present here a new first-order semi-analytical solutian is applicable to any eccentricity in
[0,1). The solution is represented in a finite compact foromposed of the definite integrals with
varying integration intervals constrained in-4{), In addition, the semi-analytical solution is also
suitable for numerical computation. In Section 2, we giveplerturbation function arising from the
Joo harmonic. Our theory and method are presented in detail étid®e3. In Section 4, we show
numerical results from the solution, and then compare i Wit traditional series method. Finally,
we present a brief discussion in Section 5.

2 PERTURBATION MODEL

The perturbing function of a satellite orbiting around atcarbody due to the/so harmonic may be
expressed in Keplerian elements as follows

sin? T

2
Us2 :7*76 cos’ g cos(2u + 2Q,.) + sin? gcos(Qu —2Q,) + cos(2Q.)|, (1)
whereJyy = 1/C%, + S3,. Co and S, are the corresponding spherical harmonic coefficientis
the mean equatorial radius of the central bady. I, Q2 andw are the semimajor axis, eccentricity,
inclination, longitude of the ascending node and argumipénastron of the satellite orbit, respec-
tively. r = a(1 — €2) is the radial distance and is the product of the gravitational constant and
mass of the central body. = f + w andQ), = Q — Sy — n,-(t — to). f is the true anomalyz,. is
the angular velocity of the central bodsy, is the local sidereal time (or the hour angle of the vernal
equinox) at timeg, and the longitudes. A22 is computed by

Ca . . S22
co8(2M22) = cos | ————= ], sin(2A\yp)=sin| ————| .
(2X22) < %0222 N S§2> (2A22) < *0222 n S§2>

To make the problem dimensionless, a new length séalend time scal¢l’] are introduced, where
[L] = ae, [T] = +/p/a?. Thus Equation (1) can be rewritten as

sin? T

1 1
Ugy = —22 [cos4 3 cos(2u + 29,.) + sin* 3 cos(2u — 29Q,) +

3 cos(2ﬂr)} . 2

In the expression fal/,o, there are two fast variableg:ands?,.. However2,. can be considered
as a slow variable for a central body with slow rotation, sastthe Moon, Venus, etc. Here we
emphasize that only cental bodies with fast rotation aresiclened in this work, such as the Earth,
Mars, Jupiter, asteroid (433) Eros, etc., even though theisp is also valid for in general for
bodies with slow rotation. Moreover, the non-resonancealitim is also assumed, which ensures
the applicability of our solution.
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3 THEORY AND SOLUTION
3.1 Lagrange'sPlanetary Equations

The perturbations to six Keplerian elements arising fromiysbing functionUs» are given in the
following Lagrange’s planetary equations

da 2 8U22

dt  nsa OM '’
% 1—828U22_\/1—628U22
dt nsae OM nsae Ow ’

dt  n.a?v/1— e2sini Ow on "’ @)
dQ 1 OUa»

dt nsa?v1 — e2sini 0i
dw vV 1-— 62 6U22 dQ

at nsaZe Oe SR

dmM 1—¢2 OUas 2 Uy
—— =ng— - ;
dt nsale Oe nsa Oa

whereM is the mean anomaly and, = /1/a3 is the mean motion of a satellite. The first-order
perturbatiornrs, due tolUss is represented in terms of mean elements as follows

oby (1) _/{<ddii> + {ni%am (t)]}dt (i=1,2,..,6), (4)

wherec® (i = 1,2, ...,6) represents six Keplerian elements, whichare, I, 2,w and M. dd—(f are
given by Equation (3), such that = 0 wheni = 1,2, ..., 5 andx® = 1.

We cannot obtain the explicit analytical solution of Eqoat{4) directly because of rapid varia-
tion in the two termgf andt¢. We will follow the conventional Fourier expansion methoahultiples
of the mean anomaly and some additional mathematical tqabniare introduced.

3.2 Two Trigonometric Series

In order to derive the formula, two trigonometric seriesfast introduced as follows

~ [coskx  coskz]  cos(Bx,, —fBm) 1

;[k—l—ﬁ_k—ﬁ]_ smpr B’ (5a)
o [sinkz sinkz] = sin(Bz, — Br)

= {k—i—ﬁ—i_k—ﬁ]__ﬂ sin A7 ’ (5b)

whereg € Randg ¢ Z, x € R andx # 2km, k € Z. x,, = mod(z, 27). Herein the function mod
(X,Y) means the modulus of division &f by Y. Therefore, we have,, € [0, 27).

Equation (5) is adopted when we derive the semi-analytiqaiessions ofias (t), eaa(t), 22 (t),
Qoo (t), wo9 (t) andMgg (t)



New Semi-analytical Method for the Periodic Motion duejte 899

3.3 Mathematical Treatments
To deal with the integrals, we introduce the following thtgees of differential equations

. a\"™ .
Ly = (;) sin (mf + ¢ + pw) s

= (E) sin (mf — gn,t + s) ng, (6a)
,
. a\"™
Tor = (%) cos (mf + g2+ pw)n,
= (E) cos (mf — qn,t + s) ns, (6b)
,
Ky =nslpygs (6c)
where q 4 4
i = Sy g = Ly g = S

andn,m,p,q are integerss = pw + ¢(Q — Sp + n,tp), and f andr are functions of time.
Equation (6c) is simply used fa¥/»5(¢). r, f andt are involved in the integration. Note that only
the primitive functiond;» )", J7-7* andKj-/" that do not contain constant terms are considered. For
Equations (6a)—(6c), according to the conventional apgrad Fourier expansion in multiples of
M, we have

k=00
N —n,mcos (kM — qn,t + s)
Ipvq == Z Xk L — qa } (7a.)
k=—o0
k=00
— —nmSin (kM — gn,t + s)
k=00 .
o Sin (KM — gn,t + s)
KV = — X" , 7c
P k;m k (i — qa)’ (7¢)

wherea = n,./ns and the Fourier coefficient?é,;”’m are Hansen coefficients, defined by

xomm = L /Oﬂ (9)"cos (mf — kM) dM. ®)

™ r

Note that all the expressions of Equation (7) appl9 to e < 1.
To continue the derivation of Equation (7), we will show thetadled derivation process for
Equation (7a). Substituting Equation (8) into Equation) (iialds

k=00

o 1 [T ra\" cos (kM —qn,t + s
Lo =- Z <_ /o (_’) cos (mf’ = kM) dM/) ( )’
k=—oc0

i r k —qa

where the mark represents that this variable is involved in the integratio
With the assumption of the non-resonance condition ¢ghat Z, the sequence of summation
and integration may be exchanged as follows

k=00
o 1 [T ra\ cos kM’ cos (kM — gn,t + s)
I =— —/0 (—/) {cosmf’ E [

T T Nt k — qa

k=00 .
+sinmf’ Z [sm kM’ COSk(]i]\Za— qn,t + 5)} } dM’.

k=—o0
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With the product-to-sum formulae, we have

Ivm —= ! 7T(a)nx
L o \r!

k=o0 r_ / _
{cos mf! Z {cos (kz1" — qn,t + s) + cos (kzo" + qn,t s)]

k — qa

k=—o0

+sinmf! k:ZOO [sin (kz1" — qn.t + s) +sin (kz2' + qn.t — s)] } e
k — qa

k=—o00

wherez,’ = M’ + M andzy’ = M’ — M. Separating the summation, we obtain

mm — i " (g)n — oS mfl2COS (—gqnt + s)
P 2w Jo \r’ e
k=00 1
+cosmf’ —sin (—gn,t + s + sin kz;’
sz_;[ ] e
(—qnit+3) [ — ko
—cos (—qn,t + s - coskz
q k+qa k—qu !
1
+ sin (—gn,t + s) (k—i—qa + - qa> sin kzo'

—cos (—gqn,t + s) (k—l—lqa % —1qa> coskzz’}

S 1 —_
+sinmf ,; {cos(—ant—i—s) (k:—i—qa + k—qa) sin kzq

. 1 1 /
—sin (—gn,t + s) (k:—i—qa — k—qa) cos kzy

1 1 : ,

+ cos (—qn,t + s) (k—i—qa + P qa) sin kzo

. 1 1 , ,
+sin (—gn,t + s) (k—l—qa - k—qa) COSkZQ]}dM.

Considering that the measure of the points in thg 3ét| A/’ + M = 2kw, k € NYU{M'|M'—M =
2kw, k € N} which do not satisfy Equation (5) is zero, thus we obtain

om _ cos (—qn,t + s) /7T (a)n
P4 singarm o \r!

r ’ ’ ’ ’
X |cos (mf’ — qaw + qom) cos <qaw)] dM’

sin (—gn,t + s) /’T(a)n
sin gom o \1’

[ 21m’ + 2om’ 21m’ — 2om’
X |cos (mf’ - qaw + qom) sin (qau>} dM’,

(9)
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wherezy,,” = mod(z1,27), z2,,” = mod(z2’, 27). The result can be further formulated as

(5. — 7T n
m =95 0pg — 4O7T) ( Pq gor) / (2) cos (mf' — qaM’')ydM’
P sin gam o \r!

we 10)
+/ (;) sin (mf’ — qaM' + 6, 4) dM’,
whered, , = ¢ (2 + aM) + pw andM = mod (Mo + ns (t — to) , 27).

" Eor Joas applying (10) and performing a partial derivative withpest tos, we can easily
obtain

Jm = — sin (0p.4 — gam) / (g)ncos (mf' —qaM’)ydM’

sin gamw r!

u (11)
—|—/ (—/) cos (mf' — qaM' + 6, ,)dM’.
. \r
ForKj ", considering the following equation
Ky =ns(t—to) I,g" = a%Jp;q
then we have
1 [T /a\n 27 Zim! + Zom’
Kvm— _ - (_) % I gotm T 2m
bl 5 /0 o [sin2qom cos (mf qo 5
. Z1m — 22m/
X sin qaf —qn,t+s
o (12)
- ZIm cos (mf — qazim’ + qam + qnt — s)
sin qam
/
22m o (mf' — qazam’ + qam — qn,t + s)} dM’,
sin gar
or
n,m n,m T‘—Sinéﬂq T a\" ’ / !’
Kyt =M1 — 7sin2qom /0 (;) cos(mf' —qaM")dM
sin (8 _ T n
4 S0y — g0m) / (3,) M’ sin (mf — gaM")dM’ (13)
sin gam 0 \r

M a\" ! ! ! !
—/7r (?) M'sin (mf" — qaM' + 6, 4) dM".
Now, we have already converted the infinite series definecjoyaion (7) to definite integrals shown
in Equations (10), (11) and (13) with an integration intéra~] and a varying intervajr, M].
These results have compact forms compared with the infiaitesgiven in Equation (7) and are also
valid for 0 < e < 1. The definite integral parts of Equations (10), (11) and (hay be evaluated
with numerical quadrature methods, thus they may be redaadesemi-analytical expressions of
Equation (7) in this sense.

However, we note thaf, , is a discontinuous function in time because of the mod() tionc
that applies taV/, which indicates that each term of the definite integralsdudions (10), (11),
and (13) is discontinuous whereas the summation resultsoateuous.
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3.4 The Semi-Analytical Solution in Terms of Keplerian Elements

Using the formulae above, we derive the first-order pertiwhaxpressions due tés in terms of
Keplerian elements.
For Jao, ¢ = 2 is substituted in Equations (10), (11) and (13). Noting that
In ,m — _]:’ﬂ,7 m Jn,m Jn, m K'n,7m — _:[{’ﬂ,7 m

P.q —p,—q’ p.q —P,—q’ p.q —p,—q’

and applying the following shorter notation

In’m = IZ:;n ’ J;)Lm JZ;n ’ Kg,m = Kz.én ’ 617 = 61772 )
we obtain
12 I Wi sin? T
a9 (t) = 2&2U22 — M 4 13 2 + sin —13 o2 + o 1(3)70 5 (14a)
a 272 2 2
2
U] 6.J22m I T
622(t) = %agg(t) + a26 (CO 42 13 2 311145 . 152 2 s (14b)
3J22 sin [ 1 I )
122( ) 7 (COSQ§IS 2 + sin 513 2 Igo> s (14C)
3J 1 I _5_
oo (t) = QT? (—C0825J§’2 + sinQEJ:’L2 > fcosl - Jg’()) , (14d)
w29 (t) = w1 (t) —cosl - Qoo (t), (149)
9.J ol
My (t) = _n.wl(t)jt%[c 5" (J32+2 K32)
a
Wi ’r
—sin?= (J?i2 2 4 20K> ) SH; . (Jg’o + 204Kg’0)} , (14f)
where

3J. I
wl(t): 2277[ Al <J41+5J43

2 31 2 33
2a2e - 82J2 + 1—e¢2 J2

1

ad (141 4,-3 2 3.1 2 -
+ Sln (J_2 + 5J_2 1 — 62 J_2 1 _ 62 —2 (15)

3 ~
+Ssin’] (J3=1 + I 1)}

andn = v/1 — 2. The indirect term induced by, (¢) is included in Equation (14f). The following

relation ou ou
22 22
/ 501 —Z2dt = U22—/ 5t dt (16)

is utilized during the derivation of Equation (14a).

3.5 Noteson " and Jpm

In particular, fod;»™ andJ;-™, each expression is divided into two parts, where one magbeted

as theL termI"(’L”) andJ” m and the other as the termI”(m andJ"(’S”), that is

L =L + Lisy 57 =50 + s, (47
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Value
Value

0 5 10 15 20
M/2m
(b)

Fig.1 Variations of I3 IS(QL) and 13(25 with M for different e and a, where M is the mean
anomaly without applylng the mod functloa.is set to approximate the resonance condition. The
time span covers 20 orbital periods. ¢ 0.1, « = 1.05, (b) e = 0.75, a = 1.05.

where
L) = A-cos(0p — 2am)
n,m Morayn / / ’
Lis) = i (;) sin (mf' — qaM' + 6, ,) dM’,
Iy = —A-sin (6, — 2am),
n,m a "
Jois) = / (r_) cos (mf' — qaM’' + 6, ) dM’,
A= / (g/)ncos (mf —qaM’)ydM’.
sin g r
Note that

0p =2 +aM) + pw
= —4aN7m+pw+2(Q—Sy+aMy), NeZ,

Mo +ng (t —to) = M + 2N

Because of the discontinuity @i, at the periastron, thé terms andS terms are discontinuous
functions of time.

The division above is a somewhat artificial treatment. Ninadess, they have different prop-
erties in general. A&« approaches a certain integer, the amplitudeiill increase to as large as
infinity, indicating that thel. terms contain potential resonance terms but&terms do not.

Figure 1 shows the variation &%, T} |, andI} %, with time near the resonance condition for

different eccentricities, where we can clearly see thatllhlerm I3 dep|cts the averaged change
in near-resonance cases.
Interestingly, the amplitude of thé term A can also be expressed in a kind of generalized
Hansen coefficient as follows
T Xoq "

A=l (18)

sin 2a7m
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Sincea € R, the definition given by Equation (8) has been generalizethft € Z to k € R.
Such treatment differs from those presented by Breiter.g8D4) and Laskar (2005). For near-
resonance cases, the valueXdf "™ is essential because it directly reflects the amplitude ef th
resonance effect. Thus in the framework of the first-ordértem, the evaluation ofd shows us a
simple way to evaluate the resonance strength for neanaese cases.

4 COMPUTATION OF Ix*, 3% AND K

First, for an estimation, we have

(1 - 6)2_7117’1

nm 19a

| P < sin 2am (192)
m(l—e)* "yt

Jmm 19b

| p < sin 2aer (19b)
m2(1—e)* "t 2r(1—e)* "yt

K™ 19c¢c

| P < sin?2am sin 2aem ( )

The proofs are not complicated. For Equation (19a), conisig&quation (9), we have

1 T n
: / (5) anr
sin2am Jo \7’
- 1 /F l(g)n_Qdf/
sin2am Jo n\r’

1 T 1
< . / n—2 df/
sin 2am J, (1—e) n

m(l — 6)27717771
sin 27 '

L™ <

The proof of Equation (19b) is similar and we can also easilgv@ Equation (19c) using
Equation (12).

Equations (19a)—(19c) are very rough estimations becadssewgeral overestimations.
Nevertheless, they give the clear upper boundaiy df, J7-* andKj"™ when2a ¢ 7Z*. However,
it is hard for us to obtain this property if we use the infiniegies solution directly, especially for
high eccentricity cases. If the estimated upper boundal§&f, J;-™ or K;-™ is less than the error
for some actual problems, the effect.h may be ignored.

The conventional analytical method to compljje”, J7-™ andK;™ may involve two kinds of
series. One is used to compute the Hansen coefficients amdhbieis the series Equation (7) used
to compute the final results. Both of them converge slowlymiaege eccentricity is present, which
makes the estimation of truncation error difficult.

However, for our solution, methods that rely on numericahdyature, such as the adaptive

Simpson’s method (Lyness 1969), can be used to directly aterthe definite integrals appearing
in Equation (14) for a given precision.
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For the purpose of improving numerical efficiency, the faflog representations are used for

thecasd) < M <1
cos (0, — 2am) cosd
Izym / } f — / IQdf/v

sin 2a7r sin 2am
Jrm _ _ sin (0, — 2am) / Fdf — sin 6, / Fydf’.
p sin 2aﬂ' sin 2a7

5 = e ([ s [ )

and the following equations are used for the case M < 2«

cos (8, — 2am) [>1 cos (0, —dam) [T
vm = 220 2 Fidf’ p—/ Fydf’
p sin 2am /0 e sin 2am on—f 2df
o _ _M/Q”fﬂdf_ M/ oy
p sin 2ar o sin 2am 2r—f 7
1 2n—f ™
KMm — / Gldf/ —|—/ ngf/ s
p sin 2am \ /g 2n—f
where
1 a\n—2
Fr= ()" costms’ — 2000,
1 a\"—2 / /
Fy= ﬁ(p) cos(mf' —2aM' + 2am) ,
1 a\"2 /. / /
FB:il—eQ(F) M'sin (mf" —2aM"),
1 a\"2 7 . / /
F, ﬁ(p) M'sin (mf’ —2aM’ + 2am) ,
and
G = 71-smdpFl + M cos (0, — 2am) Fy + sin (6, — 2aur) F,
sin 2am
Go = ﬂ-bmapFl + M cos 0, F + sin 6, Fy,
sin 2am
7 sin (0, — 4a)
Gy =— siinFl + (M — 27) cos (6, — dam) Fy
+ sin (0, — 4am) Fy.

As mentioned above, the mafkepresents that the variable is involved in the integratidmrese
equations restrict the integration intervald@or|. Moreover, the original integration variable (mean
anomaly) has been converted to a true anomaly, which wilegaly be more numerically efficient
for cases of moderate and high eccentricity.

Numerical experiments are carried out fI)}2 with our method (denoted as method A).
Averaged evaluation numbers of integrand functions in aibé éor a provided absolute precision
of 102 are given with different eccentricities and five differeatastial bodies, where the software,
Matlab’s built-in function ‘quad’ using adaptive Simpsomagirature, is used. A fixed radial distance
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at periastrom;, = 1.05 is assumed and may be calculated for a given eccentricity. Table 1 lists the
results.

A comparison with the traditional series expansion methlimhéted as method B) based on

Equation (7) is interesting. With a truncated orderdf and D», for ¢ = 2, Equation (7) can be
rewritten as

k=Dy
—n.m €08 (KM + 2Q, + pw)
"= X,
Z k-2« ’
k=—D;
k=D .
nom Zn,mSin (KM + 2, + pw)
I = Z X k-2« ’
k=—D,
K — kZDQ X msin (kM + 2Q, + pw) .
Py (k— 2a)

However, comparing the methods used for computing in thenhethods is naturally different. It is
hard for us to compare their numerical efficiency fairly. Betieless, for a comparison, Table 2 lists
the numbers of required computed Hansen coefficidntsy{ Ds) for the same precision. The results
clearly show the advantage of our method over the serieswsigramethod becomes more and more
obvious with the growth in eccentricity. The issue of fuseynputation with Hansen coefficients is
another disadvantage that is apparent in results from tte laethod.

Table1 Evaluation Numbers of Integrand ff’*> — Method A

e=02 e=04 e=06 e=07 e=08 =08 =09 =095

Earth 28 28 28 28 32 31 38 08
Mars 28 28 28 28 39 33 36 47
Jupiter 26 28 28 29 35 64 58 84
(433) Eros 28 28 26 33 63 51 84 153
(4) Vesta 27 36 26 34 34 75 59 88

Table2 Numbers of Computed Hansen Coefficientsipf — Method B

=0.2 =04 e=06 e=07 e=08 =08 =09 e=0.95
Earth 7 9 16 34 55 155 241 442
Mars 7 9 16 34 54 155 241 442
Jupiter 7 9 15 34 54 154 242 441
(433) Eros 7 9 16 33 54 154 242 439
(4) Vesta 7 9 15 33 54 154 242 439

5 CONCLUSIONS

In this work we develop a new semi-analytical theory to deitithe perturbation due to thé

tesseral harmonic and derive the first order semi-analydmation in terms of six Keplerian ele-
ments. Unlike the traditional series solution based optlimotion expansion, this solution, which
is applicable to any eccentricity in [0,1), has a finite cootdarm with several definite integrals,

and the Hansen coefficients that usually appear in othezssesipansion solutions are no longer
involved.
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The solution is based on three kinds of integigls', J7-" andK» which may be rewritten as
the summation of several definite integrals. We find that ¥peessions ol andJ;»"™ naturally
separate the potential-resonance terms from the otheasldition, the amplitudes of the potential-
resonance terms are related to a kind of generalized Hanséficeents. Therefore, we may evaluate
the amplitude of the solution for near-resonance casesvaiough judgment of the resonance
strength due to théy, perturbation. In addition, the boundarieskgf™, J;»™ andKj-™ are also
easily given, which reflects another merit of our method.

The numerical computation scheme of our solution is thonbuigvestigated. The final integra-
tion intervals may be restricted [f, 7]. An adaptive Simpson quadrature method is used to perform
the numerical experiments and the results show that outisnlis suitable for computing in cases
with highly eccentric orbits.

The advantage of the theory shown herein is its compactmabshat it provides a new way
to analyze the perturbation characteristics/gf. By only considering/ss, this theory is useful,
especially for highly eccentric orbits. Actually, the tinganay also be applicable to other tesseral
harmonics with higher orders and degrees and the corresppfigt-order solutions also have finite
terms. However, with the increase in order and degree, thregmonding definite integrals assume
faster oscillations, which will thereby increase the amafrcomputation. In future work, we will
take this problem into account to extend this theory to higinder and degree.
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