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Abstract We have developed a new stellar evolution and oscillation code YNEV,
which calculates the structures and evolutions of stars, taking into account hydrogen
and helium burning. A nonlocal turbulent convection theoryand an updated over-
shoot mixing model are optional in this code. The YNEV code can evolve low- and
intermediate-mass stars from the pre-main sequence to a thermally pulsing asymptotic
branch giant or white dwarf. The YNEV oscillation code calculates the eigenfrequen-
cies and eigenfunctions of the adiabatic oscillations for agiven stellar structure. The
input physics and numerical scheme adopted in the code are introduced. Examples
of solar models, stellar evolutionary tracks of low- and intermediate-mass stars with
different convection theories (i.e. mixing-length theoryand nonlocal turbulent con-
vection theory), and stellar oscillations are shown.
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1 INTRODUCTION

We have developed a new stellar evolution and oscillation code named YunNan EVolution code
(YNEV). This evolution code calculates the structures and evolutions of stars, taking into account
hydrogen and helium burning. A feature of this code is that a nonlocal turbulent convection theory
and an updated overshoot mixing model are optional to deal with stellar turbulent convection. This
evolution code can evolve a single low- or intermediate-mass star with spherical symmetry from
the pre-main sequence (PMS) stage with a center temperatureTC = 105 K to a thermally pulsing
asymptotic branch giant (TP-AGB) (for intermediate-mass stars) or white dwarf (for low-mass stars).
The accessorial oscillation code calculates the eigenfrequencies and eigenfunctions of adiabatic os-
cillations for a given stellar structure. This paper introduces the input physics and the numerical
scheme adopted in the code and shows examples of solar models, stellar evolutionary tracks and
stellar oscillations.

The contents of this paper are as follows: the physics involved in the YNEV code and their
treatments are described in Section 2, the numerical calculations and the time/space step setting
are introduced in Section 3, the generations of initial stellar models are introduced in Section 4,
examples of stellar structures and evolutions, and stellaroscillations are shown in Section 5, and
possible improvements are discussed in Section 6.

∗ Supported by the National Natural Science Foundation of China.
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2 INPUT PHYSICS

2.1 Equation of State

The equation of state (EOS) part of the YNEV code calculates thermal functions of pressureP ,
(∂ lnP/∂ lnT )ρ, (∂ lnP/∂ ln ρ)T , adiabatic temperature gradient(∂ lnT/∂ lnP )S and specific
heatcP for input densityρ, temperatureT and chemical abundanceXi.

In the low T (default of lg T < 8.2) and lowZ (default ofZ < 0.045) regime, we use the
EOS2005 tables (Rogers & Nayfonov 2002) to interpolate the thermal functions of gas, and then
modify the thermal functions by taking into account the contribution of the radiative field which
is assumed to be in local thermodynamic equilibrium with thegas. In the calculations of thermal
functions for gas, we adopt a bicubic interpolation onρ andT in order to obtain smooth (such that
first-order derivatives exist) thermal functions, and use linear interpolations on hydrogen abundance
X andZ (for Z, quadratic interpolation between three tables with different metallicity values is
optional and this is usually used in solar models).

In the highT (default oflg T > 8.3) or highZ (default ofZ > 0.05) regime, we assume there
is an ideal gas mixture comprised of ions, electrons, positrons and the radiative field. The thermal
functions of the ideal gas mixture can be solved by using statistical physics (see, e.g., Timmes &
Arnett 1999). In order to reduce the time costs in the calculations of thermal functions for electrons
and positrons, we interpolate them from a table calculated offline. The table lists thermal functions
of electrons and positrons with different values for rest electron number densityρE (in mol cm−3)
and temperatureT . In the calculations used for constructing the table, Aparicio’s (1998) scheme is
adopted to calculate the integral of the Fermi functions.

In the connecting region between the above parts, we interpolate thermal functions from the two
schemes above as follows. For a thermal function, sayA, we denote the value ofA calculated using
the first scheme to beA1 and that using the second scheme to beA2. We calculate the final result of
A by using the interpolation:

A = aA1 + (1 − a)A2, (1)

a = f(lg T, 8.2, 8.3)f(Z, 0.045, 0.05),

f(x, x1, x2) ≡
1

2

{

1 − sin
{{

max
[

0, min
(

1,
x − x1

x2 − x1

)]

−
1

2

}

π
}

}

.

It is obvious that the interpolation leads to a smooth thermal function denoted byA.

2.2 Opacity

There is a part of YNEV that calculates opacity for input density ρ, temperatureT and chemical
abundanceXi. Similar to the EOS, the bicubic interpolation onρ andT and linear interpolations of
hydrogen abundanceX andZ (for Z, quadratic interpolation is optional) are performed. The opacity
tables are the same as those used in MESA (Paxton et al. 2011).For the electron conduction opacity,
Cassisi et al. (2007), Iben (1975) and Yakovlev & Urpin (1980) are used. For the radiative opacity,
the OPAL tables with fixed metallicity and enhanced CO (Iglesias & Rogers 1996) are used. The OP
tables (Seaton 2005) and the F05 low-temperature tables (Ferguson et al. 2005) are also employed.

The choice of using tables with fixed metallicity or with enhanced CO is based on the input
chemical abundanceXi. Tables with fixed metallicity are adopted in the case ofZ ≤ 0.045 and
tables with enhanced CO are adopted in the case ofZ ≥ 0.05. A smooth interpolation similar to
the EOS is used when0.045 < Z < 0.05. Since the YNEV code can be used for stars with initial
Z < 0.04 (higherZ is not supported by the EOS tables, and we do not attempt to usethe ideal
gas mixture model in the envelope of a star), this scheme is ingeneral reasonable. An inconsistency
occurs at the start of helium burning, where tables with enhanced CO should be used but tables with
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fixed metallicity are actually implemented. This should notlead to unacceptable results, since the
duration from the helium ignition toZ = 0.05 is not long.

2.3 Nuclear Reaction

In the YNEV stellar evolution code, we trace the evolution ofthe following elements:1H, 2H, 3He,
4He,7Li, 12C, 13C, 14N, 15N, 16O and17O.

The hydrogen and helium burnings (p-p chains, CNO cycles,3α, 4α and5α reactions) are taken
into account:

1H(p, ve+)2H(p, γ)3He, (2)
3He(3He, pp)4He;3He(α, γ)7Be,
7Be(e−, v)7Li(p, α)8Be(, α)4He,
7Be(p, γ)8B(ve+)8Be(, α)4He,
12C(p, γ)13N(, ve+)13C(p, γ)14N(p, γ)15O(, ve+)15N,
15N(p, γα)12C; 15N(p, γ)16O(p, γ)17F(, ve+)17O(p, γα)14N,
4He(αα, γ)12C(α, γ)16O(α, γ)20Ne,
14N(α, γ)18F, 15N(α, γ)19F, 13C(α, nγ)16O, 17O(α, nγ)20Ne.

The basic rates of all reactions above are based on Angulo et al. (1999), except for theβ-decay
of 7Be, which is based on Caughlan & Fowler (1988). The electron screening factors are based on
Salpeter (1954) (for weak screening) and Dewitt et al. (1973) (for intermediate or strong screening)
with a smooth interpolation. The neutrino energy loss ratesare calculated by using a public code
by Itoh et al. (1996). In the calculation of chemical evolution due to nuclear reactions, we use an
implicit scheme to work out the nuclear reaction networks, and the abundance of7Be is assumed
to be in equilibrium. In the fully mixed burning zone (e.g. convective burning core), nuclear rates
are integrated over the whole zone to calculate variations in the average chemical abundance. The
initial metal composition can be set to values given by Grevesse & Noels (1993) (GN93), Grevesse
& Sauval (1998) (GS98) or Asplund et al. (2009) (AGSS09). Theinitial abundance of isotopesD
(i.e. 2H), 3He,7Li, 13C, 15N and17O are based on AGSS09.

2.4 Convection

Convection in the stellar interior plays an important role because this convection leads to entropy
and chemical mixing which dominates the stellar structure and evolution. Unfortunately, proper-
ties associated with convection are still not very clear. Atpresent, a local convection theory named
Mixing-Length Theory (MLT) (Böhm-Vitense 1958) is widelyused in modeling stars. Although
MLT has some significant shortcomings (for example, it is a phenomenological theory, it is unable
to be used in the study of convective overshoot and it describes stellar turbulence as a single length
scale), it is very convenient to implement in code. More reasonable theories of stellar convection
are the Turbulent Convection Models (TCMs) (e.g., Xiong 1981; Xiong et al. 1997; Canuto 1997,
2011; Canuto & Dubovikov 1998; Deng et al. 2006; Li & Yang 2007; Li 2012) which are based on
equations from fluid dynamics. The TCMs are capable of studying the overshoot and show results
that are consistent with helioseismology (Christensen-Dalsgaard et al. 2011). On the other hand,
on a large scale, the results of the MLT theory are similar to those of TCM except for the case of
a convective envelope and a convective stable region. For convection zones in the stellar interior,
both MLT and TCM show efficient entropy and chemical mixing sothat the temperature gradient is
almost adiabatic and chemical elements are fully mixed.

In the standard version of the YNEV code, the MLT is still adopted to deal with convective
entropy transport. Also, the convective unstable zone (i.e. the convection zone as determined by the
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Schwarzschild criterion) is artificially fully mixed and convective overshoot can be taken into ac-
count in the traditional way in that the artificially fully mixed region is extended bylOV = αOVHP,
whereHP is the pressure scale height andαOV is a parameter. In the helium burning phase, the
induced semiconvection outside the convective core is implemented (Castellani et al. 1985). The
temperature gradient∇ determined by the standard MLT theory is calculated as follows (which may
not have appeared before but is equivalent to other forms of the standard MLT theory)

f3 + af2 + (b − a)f − b = 0, (3)

where

f =
∇−∇ad

∇R −∇ad
, (4)

a =
23

4
K−1; b =

(

1 +
729

64
K−1

)

K−1,

K =
1

32

[

(

αρcpl

λ

)2

gδHP(∇R −∇ad)

]

,

andl = αHP in which l andα are the mixing length and the MLT parameter respectively. A table
of the rootsf within an accuracy of10−13 with different values ofK in the range−5 ≤ lg K ≤ 40
was calculated offline. When we need to solve the MLT, the table is read to get a good initial value
of f for input K, which converges with high accuracy after a few Newton iterations. Outside the
range−5 ≤ lg K ≤ 40, the following approximate solutions within the accuracy of f being10−12

are used
f = 1 − 64

729K2 , lg K < −5 ;

f = K− 1

3 , lg K > 40 .
(5)

It is not difficult to find those approximate solutions based on the behavior described by Equation (3)
asK → 0 or K → +∞.

In a beta version of the YNEV code, the TCM developed by Li & Yang (2007) can be used to
replace the MLT to study convective entropy transport, and the turbulent convective mixing model
developed by Zhang (2013) can be used to study convective overshoot mixing.

2.5 Diffusion

The particle diffusion and gravitational settling, which are optional in the code, are calculated by
solving Burger’s equations with diffusion velocities/coefficients given by Thoul et al. (1994). The
elements are assumed to be fully ionized. The electrons are included. By default,1H, 3He,4He,12C,
13C, 14N and16O are taken into account and other elements are assumed to be20Ne.

2.6 Atmosphere

Boundary conditions for the atmosphere are based on the definition of effective temperature and the
implementation of the adoptedT − τ relationT = T (τ). In the YNEV code, the outer boundary
of stellar structure equations is set to be the location where T = Teff . The definition of effective
temperature gives a boundary conditionLS = 4πr2

SσT 4
S . Another boundary condition is based on

the integral of the differential equation describing the atmosphere (assumed to be homogeneous)

d ln ρ

dτ
= δ

[

g

Pκ

(

∂ lnT

∂ lnP

)

ρ

−
d lnT

dτ

]

, (6)
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whereδ = −(∂ ln ρ/∂ lnT )P andg = GM/R2; g is assumed to be a constant in the atmosphere.
The region where this differential equation can be applied is from τ = 0 to τ = τS whereτS is
defined by(Teff =)TS = T (τS), and we adopt the initial conditionρτ=0 = 10−10. We set the
initial condition of the equation above asρτ=0 = 10−10 by default. The second-order Runge-Kutta
method is adopted in the numerical solution. The solution gives the value of density at the surface
ρS . d lnT/dτ and the value ofτS are determined by the adoptedT − τ relation. In the YNEV code,
there are two optionalT −τ relations: the Eddington gray model and Krishna Swamy’s (1966)T −τ
relation.

2.7 Mass Loss

The mass loss is implemented in the YNEV code by ejecting the stellar outer envelope with the mass
Menv = −dM/dt·∆t wheredM/dt is the mass loss rate and∆t is the time step between the current
stellar model and the previous one. There are three options for the mass loss rate: Reimers (1975),
Waldron (1985) and de Jager et al. (1988). It is not difficult to implement other expressions for the
mass loss rate.

3 NUMERICAL CALCULATION

3.1 Numerical Scheme

The code assumes that the star is one-dimensional and in hydrostatic equilibrium, and ignores the
effects of rotation. The evolution of the element abundances in the stellar interior and the stellar
structure equations are solved alternatively. The evolution of the element abundances is calculated
based on the previous stellar structure, then the new structure is determined by the updated element
abundance profile. Although this scheme may lead to problemswith self consistency, the errors are
small in most cases since the time step is not very large.

The stellar structure equations are written in the form as follows:

d lg P

dq
+

Mm(1 − m)

ln 10

g

4πr2P
= 0, (7)

d lg T

dq
+

Mm(1 − m)

ln 10

g∇

4πr2P
= 0 , (8)

d lg r

dq
−

Mm(1 − m)

ln 10

1

4πr3ρ
= 0 , (9)

dlr
dq

−
Mm(1 − m)

L0

[

εN − εν −

(

cP
∂T

∂t
−

δ

ρ

∂P

∂t

)]

= 0 , (10)

where the independent variableq = ln[m/(m − 1)], m = Mr/M is the mass fraction,lr = Lr/L0

is dimensionless luminosity, andL0 = max(Lr) is the maximum value of luminosity in the stellar
interior.∇ is the temperature gradient determined by convection theory, e.g. for the MLT theory, and
∇ is calculated by using Equations (3) and (5). The boundary conditions are as follows: for the inner
boundary wherer = r1

r1
3 =

3m1

4πρ1
, (11)

and

lr,1 =
m1

L0

[

εN − εν −

(

cP
∂T

∂t
−

δ

ρ

∂P

∂t

)]

1

, (12)
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and for the outer boundary wherer = rN

lr,NL0 = 4πrN
2σTN

4 ; (TN = Teff) , (13)

and

ρN = ρS , (14)

whereρS is determined by integrating the differential equation representing the atmosphere de-
scribed in Section 2.6 fromτ = 0 to τ = τS .

The chemical evolution equations in the stellar interior are in general given by the diffusion
equation

∂X

∂t
+ b

∂(aF )

∂q
= b

∂

∂q

(

a2bD
∂X

∂q

)

+ R;
{

a =
dm

dr
, b =

dq

dm

}

, (15)

whereX is the chemical abundance vector,F is the flux vector,D is the matrix of diffusion coef-
ficients, andR is a vector of the nuclear reaction rates. When settling is taken into account,F and
D are calculated based on Thoul et al. (1994). The convective/overshoot mixing can be represented
by adding a diffusion coefficient to the diagonal componentsin D. This equation can be rewritten as
two first-order equations by definingW as the total diffusion flux vector:

b
∂(aW )

∂q
−

(

R −
∂X

∂t

)

= 0 , (16)

abD
∂X

∂q
− (F − W ) = 0 . (17)

The boundary conditions for the diffusion equations are

W = 0 , (18)

at the center and the stellar surface.
The radial part of the stellar adiabatic oscillation equation is a linear differential equation

∂J

∂ ln r
− A(r, ω)J = 0 , (19)

whereJ = (ξr, P
′, Φ′, g′)T is the vector determining the properties of stellar oscillations, A is

the coefficient matrix of the oscillation equation, andω is the frequency. The elements of matrixA

can be found in literature about stellar oscillations. Two boundary conditions are at the center and
the other two boundary conditions are at the surface. Four boundary conditions are all linear and
homogeneous.

The stellar structure Equations (7)–(14), the diffusion Equations (16)–(18) and the stellar adi-
abatic oscillation Equation (19) are all first-order equations with two points that act as boundary
conditions. We use the Newton iterations (linearization) method to obtain solutions with the two
points as boundary conditions (7)–(14) and (16)–(18). The implicit discretization is adopted for the
time derivative in Equations (10), (16) and (17). Equation (19) and its boundary conditions are al-
ready linear. The general form of those problems is

H

(

∂U

∂q
, U, q

)

= 0 , (20)

with the boundary conditions atq1 andqN being

B(U1, q1) = 0 , (21)
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C(UN , qN ) = 0 , (22)

whereq is the independent variable,U is the vector of dependent variables withn elements, elements
in vectorsH (includingn elements),B (includingn1 elements),C (includingn2 = n−n1 elements)
are determined by the differential equations and equationsof the boundary conditions. The two point
second order discretization is adopted. For the diffusion equation, we adopted the conservation form,
in which the flux and the chemical abundance are not represented by the same mesh points, to ensure
a correct flux, i.e. we setWk to beW at the middle point between mesh pointk andk+1. In general,
the first-order equation between mesh pointk andk + 1 is as follows

Hk = Hk(Uk, Uk+1) = 0 ; k = 1, 2, ..., N − 2, N − 1. (23)

We use the method of Newton iterations to solve these equations on all mesh points. Expanding
Hk(Uk, Uk+1) around the initial solutionU (i)

k (for the stellar structure equations and the diffusion
equations, which are time-dependent, the initial solutionU (0) is set as the values in the previous
model, and for stellar oscillations, the initial solution is U (0) = O) and ignoring higher order term,
we found

∂Hk

∂Uk
∆Uk +

∂Hk

∂Uk+1
∆Uk+1 = −Hk(U (i)

k, U (i)
k+1) ; k = 1, 2, ..., N − 2, N − 1 , (24)

where∂Hk/∂Uk and∂Hk/∂Uk+1 are Jacobi matrices. A revised solution is

U (i+1)
k = U (i)

k + ∆Uk . (25)

For the boundary conditions, similar results are

∂B

∂U1
∆U1 = −B(U (i)

1) , (26)

∂C

∂UN
∆UN = −C(U (i)

N ) . (27)

Equations (24), (26) and (27) are the complete equations forcalculating the corrections∆Uk. Those
equations are equivalent to a linear equation with a huge coefficient matrix with only the elements
at/near the diagonal being nonzero. It is not difficult to solve these equations by using the method
of forward eliminations and backward recursions. When the corrections are not small enough, the
elements in vectorH are therefore not close enough to zero. We then repeat this process until the cor-
rections are in the allowed range of errors. Typically, we set the accuracies asmax(|δ lg ρ|, |δ lg T |,
|δ lg r|, |δlr|) < 10−6 in the stellar structure equations, and|δX(1H)| < 10−8, |δX(4He)| < 10−8

and|δXi/ max(10−10, Xi)| < 10−8 for other chemical elements in the chemical evolution equation.
The oscillation equation is already linear, and it is equivalent to Equations (24)–(27) withU (0) = O.
We only need to solve the linear equations once.

In scanning the eigenfrequencies in the oscillation equation, we define the discriminantV (ω) as
the determinant of the coefficient matrix of the equation on an arbitrary mesh pointk0 (by default
k0 = N )

Pk0
∆Uk0

= Qk0
; V (ω) = Det(Pk0

) , (28)

where the coefficient matrixP k0
and the vectorQk0

can be worked out in the process of forward
eliminations and backward recursions.ω is an eigenfrequency whenV (ω) = 0, since the homoge-
neous equation only has nonzero solutions if the coefficientmatrix has a singularity. This definition
ensures the continuity of the discriminantV (ω) and makes it convenient to scan for eigenfrequen-
cies. In solving for eigenfunctionsU of a validated eigenfrequencyωi, we use an inhomogeneous
boundary condition (e.g.ξr = 1) to replace a homogeneous boundary condition in order to eliminate
the singularity in the coefficient matrix.
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3.2 Numerical Scheme: Implementing the Turbulent Convection Model

In a beta version of the YNEV evolution code, the TCM developed by Li & Yang (2007) can replace
the MLT theory and be used to calculate variables associatedwith TCM. The equations describing
TCM are as follows:

2

ρr2

∂

∂r

(

ρr2Cskrτ
∂kr

∂r

)

=
1

3
kτ−1 −

δg

T
ur

′T ′ + Ckτ−1(kr −
k

3
) , (29)

2

ρr2

∂

∂r

(

ρr2Cskrτ
∂k

∂r

)

= kτ−1 −
δg

T
ur

′T ′, (30)

4

ρr2

∂

∂r

(

ρr2Ct1krτ
∂ur

′T ′

∂r

)

= −
δg

T
T ′T ′ − 2kr

T

HP
(∇−∇ad) + Ct(1 + Pe

−1)τ−1ur
′T ′,(31)

1

ρr2

∂

∂r

(

ρr2Ce1krτ
∂T ′T ′

∂r

)

= −ur
′T ′

T

HP
(∇−∇ad) + Ce(1 + Pe

−1)τ−1T ′T ′, (32)

wherekr = u′
ru

′
r/2 is the radial turbulent kinetic energy,k is the turbulent kinetic energy,u′

rT
′

describes the convective heat flux,T ′T ′ is the temperature variance,τ = k/ε is the dissipation
timescale with the turbulent dissipation rateε = k3/2/l andl = αTCMHP, andPe = lk1/2/DR is
the Péclet number with radiative diffusion coefficientDR = λ/(ρcP). Cs, Ct1 andCe1 are dimen-
sionless diffusion coefficients,αTCM, Ct andCe are dimensionless dissipation coefficients, andCk

is a parameter that dominates the rate ofkr/k.
The default values for the parameters in the TCM are as follows (Zhang & Li 2012; Zhang

2012):Cs = 0.08, Ct = 7.5, Ce = 0.2, Ck = 2.5, Ct1 = 0.02 or 0, andCe1 = 0.02 or 0. The tur-
bulent kinetic dissipation parameterαTCM = 0.8 is based on the solar calibration with Eddington’s
gray atmosphere model, orαTCM = 1.0 for Krishna Swamy’s (1966) atmosphere model. Solar
calibrations for different compositions showα = (2.1 ∼ 2.2)αTCM.

We solve the stellar structure equations and the TCM equations alternately to find the solution
satisfying both equations. The TCM equations are solved by using an iterative method based on the
multigrid method. In numerically solving the TCM equations, the variables (except for the tempera-
ture gradient∇) are based on the current stellar structure. The following equation is substituted into
the TCM equations for the temperature gradient∇

∇ = ∇R,therm −
HP

T

ρcPur
′T ′

λ
, (33)

where∇R,therm is the radiative temperature gradient for thermal energy flux (Zhang 2014)

∇R,therm = ∇R −
HP

T

FK

λ
, (34)

andFK is the turbulent kinetic energy flux calculated as follows

FK = −2Csρkrτ
∂k

∂r
. (35)

In solving the TCM equations,∇R,therm is determined by the current stellar structure and the previ-
ous turbulent kinetic energy flux.

The steps for implementing TCM in the code have been described by Zhang (2012):
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(1) Solve the TCM equations based on the current stellar structure and previous turbulent kinetic
energy flux. Calculate the temperature gradient∇ at all mesh points according to Equation (33).

(2) Solve the localized TCM in which the diffusion terms are ignored. Calculate the corresponding
temperature gradient∇L at all mesh points.

(3) Calculate the ratioη = ∇/∇L at all mesh points. Calculate a relaxedη′ = η′
pre + ξ(η − η′

pre),
where the subscript “pre” means previous values. The relaxation parameterξ is 0.618 by default.

(4) Solve the stellar structure equations in which the temperature gradient is calculated as∇ =
η′∇L and update the stellar structure.∇L is calculated by the localized TCM when solving the
stellar structure equations.

(5) Check the differences|η − η′| and|η − ηpre|. The calculations are thought to converge if both
differences are less than the required accuracy (10−3 by default) at all mesh points; otherwise,
return to step 1.

Although the relaxation improves the numerical stability and ensures that the scheme works in
most cases of stellar evolutions, it should be mentioned that this implementation of TCM still does
not work in some cases. There are still some numerical problems when implementing TCM.

When the TCM is adopted, the updated overshoot mixing model by Zhang (2013) is also adopted
in solving the stellar chemical evolution. The diffusion coefficient for mixing in the overshoot region
in this model is as follows

DOV = COV
ε

N2
turb

, (36)

whereN2
turb is calculated as

Nturb
2 = −

δg

HP

[

∇−∇ad − C1CA

M
∑

k=1

(

∂ lnT

∂Xk

)

P,ρ,X−{Xk}

dXk

d lnP

]

, (37)

whereCA = Ce+COV and, according to Canuto (2011),C1 = σt = 0.72. The turbulent dissipation
rateε is calculated by using the TCM. It is optional to use the exactrepresentation of the diffusion
coefficient (see Zhang 2013, equation (26)), but there is no obvious difference. The only parameter,
i.e. the dimensionless diffusion coefficientCOV, is suggested to beCOV ∼ 10−3 based on tests of
the solar model and the restriction of the classical overshoot length being less than0.4HP (Zhang
2013), and the calibrations on effective temperatures and radii for low-mass eclipsing binary stars
(Meng & Zhang 2014).

3.3 Time Step

In the normal case, the time step in the calculations of stellar evolution depends on the following
factors: the maximum correction from the Newton iterations, the variations of1H and4He abundance
in the center, the ratio of burned1H in the previous time step to1H abundance in the center, the ratio
of burned1H (and4He) in the previous time step to1H (and4He) abundance in burning shells, the
ratio of burned minor elements (D, 3He, 7Li and 12C) in the previous time step to their abundances
in the center during the PMS stage, and variations oflg Teff andlg L between the previous two stellar
models.

When a solution for stellar structure converges in the Newton iterations, the time step for the
next stellar model is estimated by taking into account thosefactors. In the next calculation of the
stellar structure, if there is no convergence, the time stepis reduced and calculations are redone.
If there is still no convergence after reducing the time stepand re-calculating many times (50 by
default), the code checks whether helium flashes occur in thestellar model. In the case of a helium
flash, we do not attempt to trace the changes in stellar structure and let the star jump to the zero age
horizontal branch (ZAHB) model. In the case of no helium flash, the code stops.



558 Q. S. Zhang

3.4 Space Step

The mesh points in the calculation of stellar structure are controlled by the the differences inlg ρ,
lg T , r/R, Lr/Lmax, lg τ , ln[Mr(/M − Mr)] (the independent variable) andXi (chemical abun-
dance of all elements) between two adjacent grids. Near the Schwarzschild convective boundaries
and the boundaries of artificially fully mixed regions, the density of mesh points is enhanced to be
5–10 times the normal case. This is designed to ensure accuracy in the location of convective bound-
aries and the boundaries of fully mixed regions, which may sensitively affect the outcome of stellar
evolution.

In the oscillation code, the mesh points of the input stellarmodel are all taken into account.
However, especially for oscillation modes with a large number of nodes, the mesh points in the
stellar model may not be dense enough in regions where the wavelength is short, thus the difference
in radius between two adjacent grids is much longer than the wavelength. This leads to the problem
that the resolution is not enough to reveal the wave. Therefore, in the calculation of each oscillation
mode, extra mesh points are temporarily added by linear interpolation to ensure that there are at least
five mesh points in a wavelength, where the wavelength is estimated by using the dispersion relation.

3.5 Time Costs

The time cost for the YNEV code calculating stellar evolutionary models depends on the time/space
step settings, stellar parameters (i.e. stellar mass), software (adopted Fortran compiler) and hardware.
For a computer with two cores that have a∼ 3 GHz CPU and are compiled by using the Intel Fortran
compiler, with the number of mesh points being1000 ∼ 1500 and the number of time grids∼ 1100,
the process of YNEV evolving an intermediate-mass star fromthe PMS to the helium burning out
in the core costs about five minutes. With the same time/spacestep settings, the process of YNEV
evolving a low-mass star from the PMS to a low temperature white dwarf costs more than three
hours, and the total number of time grids is about∼ 30 000. The phase with the greatest time cost is
the TP-AGB.

The part of the YNEV code with the greatest time cost is solving the nuclear reaction networks
on all mesh point. The opacity and EOS are interpolated from tables with different metallicites
becauseZ slightly changes in the hydrogen burning region. If we ignore this slight change and
calculate opacity and EOS based on the tables with fixedZ, the time costs should be reduced. We
have tested the time costs by using the nuclear reaction partof Paczyński’s (1969) code to replace
the nuclear reaction networks of YNEV and calculate opacityand EOS based on fixedZ. It is found
that the time costs are significantly reduced, e.g. the case of an intermediate-mass star mentioned
above costs only half a minute. In order to ensure accuracy, we usually prefer to use the nuclear
reaction networks and interpolate opacity and EOS from tables with different metallicites.

The use of nonlocal TCM significantly increases time costs. The reason is that, for all stellar
models in the evolutionary phases, the stellar structure equations and the TCM equations are solved
alternately to find the final solution satisfying both equations. The case of an intermediate-mass
star mentioned above costs nearly an hour when we adopt the nonlocal TCM to deal with stellar
convection.

4 INITIAL MODEL

The YNEV code evolves a star from PMS with center temperatureTC = 105 K, zero age main
sequence (ZAMS) or ZAHB. A database of initial PMS and ZAHB models with different stellar
masses (both helium core mass and hydrogen envelope mass, for ZAHB models), metal composi-
tions and fixed MLT parameterα in the cases ofX = 0.7, Z = 0.02 andX = 0.75, Z = 0 are
calculated offline and stored.
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Table 1 Parameters of the Solar Models

Model Z93 Z09 Z98OPKS R98TCM

Atmosphere EG EG KS EG
Composition GN93 AGSS09 GS98 GS98
Opacity OPAL OPAL OP OPAL
α 1.744 1.645 2.277 0.8069 (TCM)
X0 0.7050 0.7179 0.7079 0.6998
Z0 0.0201 0.0152 0.0189 0.0200
Ys 0.2449 0.2359 0.2434 0.2565
Zs 0.0181 0.0136 0.0170 0.0186
(Z/X)s 0.0245 0.0181 0.0230 0.0257
Rbc/R⊙ 0.7136 0.7248 0.7140 0.7135
[Li]/[Li]0 5.7% 14.8% 8.2% 1.7%

The initial PMS model for given input stellar parameters is obtained by reading a stored PMS
model with the same metal composition and the closest stellar mass and using the method of Newton
iterations to solve the stellar structure with required stellar parameters. Relaxations are automatically
performed if there is no convergence in Newton iterations, i.e. the stellar parameters are gradually
changed from the stored PMS model to the required values. Theinitial ZAHB model for the given
input stellar parameters is obtained by using a similar method. For the ZAMS model, in order to
ensure accuracy in the compositions of metals in the stellarinterior (since they may change via
nuclear burning in the PMS stage), we do not use offline calculated models. The adopted method to
generate the ZAMS model evolves too quickly from PMS to ZAMS (defined byXS −XC = 0.001)
by using half the number of mesh points and double the time steps.

5 SAMPLES OF STELLAR EVOLUTION AND OSCILLATIONS

5.1 Solar Models

We have used the YNEV code to calculate four solar models named Z93, Z09, Z98OPKS and
R98TCM with different input physics. The models are evolvedfrom ZAMS to the solar age
of 4.57 Gyr. Their radii and luminosity are calibrated toR⊙ = 6.96 × 1010 cm andL⊙ =
3.846 × 1033 erg s−1 with an accuracy of10−4. In model Z93, the OPAL opacity and Eddington
gray (EG) model are used, the solar composition GN93 is adopted and the ratio of metallicity to
hydrogen(Z/X)S is calibrated to be 0.0245 (Grevesse & Noels 1993). In model Z09, the OPAL
opacity and EG model are used, the solar composition given byAGSS09 is adopted and(Z/X)S is
calibrated to be 0.0181 which is also consistent with AGSS09.

In model Z98OPKS, the OP opacity and Krishna Swamy’s (1966) atmosphere model (KS) are
used, the solar composition GS98 is adopted and(Z/X)S is calibrated to be 0.023 (Grevesse &
Sauval 1998). The MLT is applied in the Z93, Z09 and Z98OPKS models. In model R98TCM, the
GS98 composition (Grevesse & Sauval 1998), the OPAL opacityand Eddington gray model are
used, the TCM and the updated convective overshoot mixing model are adopted, and the base of the
convective envelope is calibrated to beRbc/R⊙ = 0.7135. Key information about the solar models
is listed in Table 1. A comparison of sound speed between models and helioseismic inversions (Basu
et al. 2009) are shown in Figure 1. Comparing with MESA (Paxton et al. 2011), the YNEV solar
model Z98OPKS shows almost the same results for the same parameters, e.g. for MESA,X0 =
0.7065, Z0 = 0.0191, Ys = 0.2433, Zs = 0.0170, Rbc/R⊙ = 0.7140 and the differences in sound
speed for MESA (see Paxton et al. 2011, fig. 21) are also similar to those given by YNEV.
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Fig. 2 Evolutionary tracks of intermediate-mass stars withX = 0.7, Z = 0.02 and MLT parameter
α = 1.75. The metal composition is the same as GN93. In the tracks, thegreen, red and blue parts
correspond to PMS, hydrogen burning and helium burning phases respectively. The numbers near
the ZAMSs indicate the stellar mass (in units of solar mass).

5.2 Evolutionary Tracks in the HR Diagram: for the Classical MLT Theory

Evolutionary tracks of intermediate-mass stars with mass between2.5 ≤ M/M⊙ ≤ 10 generated
by the YNEV code are shown in Figures 2 and 3. The two figures show results for different stellar
chemical compositions. Stars evolve from the PMS withTC = 105 K to the asymptotic branch
giant (AGB) stage. The PMS stage, the hydrogen burning stage(defined byXS − XC ≥ 0.001
andXC + YC ≥ 0.95) and the helium burning stage (defined byXC + YC ≤ 0.95) are shown as
green, red and blue lines, respectively. The YNEV evolutionary tracks are similar to tracks calculated
by the FRANEC code. The blue loops for intermediate-mass stars are sensitive to results in stellar
evolutionary codes. Comparing Figure 2 with the FRANEC evolutionary tracks (see Bono et al.
2000, fig. 3), it can be found that the tips of the blue loops in YNEV and FRANEC are at almost the
same locations:(lg T ≈ 4.12, lg L ≈ 4.2) for a 10 M⊙ star,(lg T ≈ 4.03, lgL ≈ 3.9) for an8 M⊙

star,(lg T ≈ 3.97, lgL ≈ 3.65) for a 7 M⊙ star,(lg T ≈ 3.90, lgL ≈ 3.4) for a 6 M⊙ star, and
(lg T ≈ 3.78, lgL ≈ 3.0) for a5 M⊙ star.
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Fig. 3 Similar to Fig. 2, but forX = 0.75, Z = 0.0001 and the AGSS09 metal composition.
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Fig. 4 Evolutionary tracks of1.5 M⊙, 1M⊙ and0.8 M⊙ stars withX = 0.7, Z = 0.02 and MLT
parameterα = 1.75. The metal composition is the same as GN93.

Three samples of evolutionary tracks for low-mass stars from PMS to white dwarf phases are
shown in Figure 4. When the helium flashes occur, the locations of the stars automatically jump to
ZAHB without tracing the helium flash process in detail. After the end of center helium burning,
Reimers’s (1975) mass loss rate is adopted. For the1.5 M⊙ star, the mass loss rate is enhanced by a
factor of 5. The stars lose their envelope in the AGB stage andfinally evolve to white dwarfs.

The YNEV evolution code traces variations in isotopesD and7Li, thus one can use it to study
the depletion of light elementsD and7Li in the PMS stage. Figure 5 shows the evolutionary tracks
of stars with0.15 ≤ M/M⊙ ≤ 1 from PMS to ZAMS and denotes the depletions (to1% of initial
abundance) ofD and7Li at the stellar surface. Compared with the MESA code (see Paxton et al.
2011, fig. 15), the YNEV code shows similar results, since both YNEV and MESA yield the same
luminosity for the ofD and7Li. The stellar models are standard in that only the full mixing occurs
in the convectively unstable zone and there is no extra mixing.
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Fig. 5 Evolutionary tracks of stars with0.15 ≤ M/M⊙ ≤ 1 from PMS to ZAMS.X = 0.7,
Z = 0.02 and MLT parameterα = 1.75. The metal composition is the same as GN93. Diamonds
and circles denote the location of[D]/[D]0 = 1% and[7Li]/[7Li]0 = 1% at the stellar surface. The
number below each track shows the mass of the star (in solar masses).

5.3 Chemical Composition in the Stellar Interior: Comparison with the STAROX Code

Figures 6 and 7 show the compositions in the stellar interiorof 0.9 M⊙ and5 M⊙ stars withX = 0.7,
Z = 0.02 at the stageXC = 0.35. α = 1.75 and the GN93 metal composition are used. The process
of 12C,16 O →14N in the CNO cycles are clearly shown.16O →14N can hardly occur in a0.9 M⊙

star since the temperature in the core is low. Those examplesare also shown by the STAROX stellar
evolution code (Roxburgh 2008). Comparing the results fromYNEV with those from STAROX,
there is no significant difference except for the age of the0.9 M⊙ star withXC = 0.35, which
is 6.839 Gyr in YNEV and6.675 Gyr in STAROX. The difference is thought to be caused by the
different initial abundance of isotopes in metals and3He.

5.4 Evolutionary Tracks in the HR Diagram: for the Nonlocal Turbulent Convection Model

The most important feature of the YNEV code is the ability to use nonlocal turbulent convection
theory in calculations of stellar structure and evolution.For example, we show the evolutionary
tracks of low- and intermediate-mass stars in Figures (8)–(10). The value of the turbulent kinetic
dissipation parameterαTCM is based on the solar calibration, and the value of the overshoot mixing
parameterCOV is based on some observational restrictions (Zhang 2013; Meng & Zhang 2014).
The stars evolve from the PMS with center temperatureTC = 105 K to where the numerical scheme
cannot find a solution satisfying both the TCM and the stellarstructure equations. The localized
TCM is used in the PMS withlg TC < 6.8, and the nonlocal TCM is used after that. It can be found
that the scheme implementing the nonlocal TCM works well in most cases of stellar evolution.

5.5 Comparing the Nonlocal Turbulent Convection YNEV Stellar Model with the Padova
and Yale-Yonsei Models

Figures 11 and 12 show the evolutionary tracks computed withthe Padova (Bressan et al. 1993;
Salasnich et al. 2000; Girardi et al. 2000), Yale-Yonsei (Y 2) (Yi et al. 2001; Kim et al. 2002; Yi
et al. 2003; Demarque et al. 2004) and YNEV stellar models. The nonlocal TCM and the updated
overshoot mixing model are used in the YNEV models, withαTCM = 0.8 andCOV = 10−3. The
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Fig. 6 Chemical composition in the stellar interior of a star withM = 5 M⊙ andXC = 0.35.
X = 0.7, Z = 0.02 and MLT parameterα = 1.75. The metal composition is the same as GN93.
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Fig. 7 Similar to Figure 6, but for a0.9 M⊙ star.
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Fig. 8 Evolutionary tracks of an intermediate-mass stars withX = 0.7, Z = 0.02, the nonlocal
turbulent convection model (convection parameterαTCM = 0.8) and the updated overshoot model
(with COV = 10−3). The metal composition is the same as GN93. In the tracks, the green, red
and blue parts correspond to PMS, hydrogen burning and helium burning phases respectively. The
numbers near the ZAMSs indicate the stellar mass (in units ofsolar mass).
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Fig. 9 Similar to Fig. 8, but forX = 0.75, Z = 0.006 and the AGSS09 composition.
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Fig. 10 Similar to Fig. 8, but for low-mass stars.

Padova stellar models haveX = 0.708, Z = 0.019 and incorporate the ballistic overshoot model
(Bressan et al. 1981) with an overshoot parameter that depends on stellar mass. TheY 2 stellar
models haveX = 0.71, Z = 0.02 and utilize a fully mixed core overshoot region inαOVHP with
the overshoot parameterαOV depending on stellar mass (Demarque et al. 2004).

Table 2 shows the age of the critical points in the stellar evolutionary tracks computed with the
Padova,Y 2 and YNEV (with nonlocal TCM) models. It is found that the age of the critical points
in the YNEV stellar models with nonlocal TCM and the updated overshoot is the same in as Padova
andY 2, except for the main sequence (MS) age of the low-mass star. The MS age for the YNEV
stellar models is a little larger than that of Padova andY 2. Those results show that the core overshoot
mixing strength in the three codes is similar and, for a low-mass star, YNEV shows slightly stronger
overshoot mixing. It can be noticed that the overshoot parameters in Padova andY 2 depend on stellar
mass but the overshoot parameter in the YNEV is constant.

Figure 11 shows the tracks for intermediate-mass stars. Thewidths of the main sequence band
for the three models indicate that the strengths of core overshoot mixing in the three codes are similar.
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mediate mass stars. The results from the YNEV model are the same those shown in Fig. 10.
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Fig. 12 Similar to Fig. 11, but for a1.5M⊙ star. The area around the bump is enlarged.

The extensions of the blue loops in the results from YNEV and Padova are similar. Compared to the
Padova tracks, the YNEV tracks have a lower temperature in the red giant branch (RGB) phase and
the differences increase as the stellar mass increases. It should be noticed that the low-temperature
opacity table in YNEV is different from that in Padova, i.e. Ferguson et al.’s (2005) tables are adopted
in YNEV and Alexander & Ferguson’s (1994) tables are adoptedin Padova. The efficiency of the
turbulent heat transport in the super-adiabatic convection zone shows a difference between the TCM
and the MLT.

Figure 12 shows the case of a1.5 M⊙ star. The main difference is that the YNEV and Padova
models show a large bump in the RGB phase, but theY 2 model shows a small bump. We think
that this is caused by the absence of the overshoot mixing below the convective envelope in theY 2

model.

5.6 Stellar Oscillations

The linear adiabatic oscillation part of the YNEV code is designed to scan the eigenfrequencies and
solve the eigenfunctions of stellar adiabatic oscillations. Here we show two examples of applications
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Fig. 14 Relation between period spacing and frequency of a1.5 M⊙ RGB star withR = 6.38R⊙

andL = 19.3L⊙. The dashed line shows the asymptotic value∆P = 72.61s.

of the YNEV oscillation code: oscillations in the solar model and mixed modes in an RGB low-mass
star.

Figure 13 shows the eigenfrequencies of the solar model Z93 calculated by using the YNEV
oscillation code. The eigenfrequencies are in the range200 ≤ f/µHz ≤ 10 000 for 0 ≤ l ≤ 150.
The dense part represents low frequencies with lowl that are g-modes and the other parts are p-
modes. Figure 14 shows the relation between period spacing∆P and frequencyf of the 1.5 M⊙

RGB star with radiusR = 6.38 R⊙ and luminosityL = 19.3 L⊙. A similar example was studied
by Bedding et al. (2011) using the ASTEC evolution code (Christensen-Dalsgaard 2008a) and the
ADIPLS oscillation code (Christensen-Dalsgaard 2008b).

6 DEVELOPMENTS PLANNED FOR THE FUTURE

There are many ways in which the code could be improved. In order to calculate results for massive
stars, more nuclear burning reactions should be included, and a possible H-semiconvection zone and
convective burning shell(s) outside the convective core should be treated properly. At present, the
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Table 2 The age (in Gyr) of critical points in stellar evolution. (Y2), (P) and (YN) mean Yale-Yonsei,
Padova and YNEV models, respectively.

Critical point 1.5M⊙ 3M⊙ 5M⊙ 7M⊙ 10M⊙

H burned out in the center 2.895 (Y2) 0.3921 (Y2) 0.1040 (Y2) -(Y2) - (Y2)
2.755 (P) 0.3793 (P) 0.1031 (P) 0.04784 (P) 0.02379 (P)

3.175 (YN) 0.3855 (YN) 0.1023 (YN) 0.04735 (YN) 0.02350 (YN)
He ignition in the center - (Y2) - (Y2) - (Y2) - (Y2) - (Y2)

- (P) 0.3834 (P) 0.1037 (P) 0.04803 (P) 0.02384 (P)
- (YN) 0.3905 (YN) 0.1031 (YN) 0.04759 (YN) 0.02357 (YN)

He burned out in the center - (Y2) - (Y2) - (Y2) - (Y2) - (Y2)
- (P) 0.4763 (P) 0.1174 (P) 0.05277 (P) 0.02585 (P)

- (YN) 0.4775 (YN) 0.1167 (YN) 0.05293 (YN) 0.02608 (YN)

stellar structure and composition are solved individually. A better approach is to solve them together.
The two point second order discretization could be upgradedto a higher order scheme. An important
improvement would be to apply parallel numerical calculations, which could significantly boost the
calculation speed. To my knowledge, YNEV is the first stellarevolution code that can incorporate a
nonlocal turbulent convection model in most simulations ofstellar evolution. As mentioned above,
there are still some numerical problems when implementing the nonlocal TCM. Correcting those
numerical problems is a priority. There is no doubt that the reader can think of other ways in which
the code could be improved.
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