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Abstract We have developed a new stellar evolution and oscillatiadeC6NEV,
which calculates the structures and evolutions of stakédanto account hydrogen
and helium burning. A nonlocal turbulent convection theand an updated over-
shoot mixing model are optional in this code. The YNEV code ewgolve low- and
intermediate-mass stars from the pre-main sequence toradhg pulsing asymptotic
branch giant or white dwarf. The YNEV oscillation code cdédas the eigenfrequen-
cies and eigenfunctions of the adiabatic oscillations fgiven stellar structure. The
input physics and numerical scheme adopted in the code aeliced. Examples
of solar models, stellar evolutionary tracks of low- anceimtediate-mass stars with
different convection theories (i.e. mixing-length theanyd nonlocal turbulent con-
vection theory), and stellar oscillations are shown.
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1 INTRODUCTION

We have developed a new stellar evolution and oscillatiaslecsamed YunNan EVolution code
(YNEV). This evolution code calculates the structures avalwgions of stars, taking into account
hydrogen and helium burning. A feature of this code is thav@alacal turbulent convection theory
and an updated overshoot mixing model are optional to dehlstellar turbulent convection. This
evolution code can evolve a single low- or intermediategrsiar with spherical symmetry from
the pre-main sequence (PMS) stage with a center tempefBture 10° K to a thermally pulsing
asymptotic branch giant (TP-AGB) (for intermediate-maass3 or white dwarf (for low-mass stars).
The accessorial oscillation code calculates the eigenéecjes and eigenfunctions of adiabatic os-
cillations for a given stellar structure. This paper intiods the input physics and the numerical
scheme adopted in the code and shows examples of solar mstidlsr evolutionary tracks and
stellar oscillations.

The contents of this paper are as follows: the physics irain the YNEV code and their
treatments are described in Section 2, the numerical @lonk and the time/space step setting
are introduced in Section 3, the generations of initiallatahodels are introduced in Section 4,
examples of stellar structures and evolutions, and ste8aillations are shown in Section 5, and
possible improvements are discussed in Section 6.
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2 INPUT PHYSICS
2.1 Equation of State

The equation of state (EOS) part of the YNEV code calculatesnmtal functions of pressuti,
(0InP/0InT),, (0lnP/0Inp)r, adiabatic temperature gradief@tln7"/01n P)s and specific
heatcp for input densityp, temperaturd” and chemical abundancg,.

In the lowT" (default oflg 7" < 8.2) and low Z (default of Z < 0.045) regime, we use the
EOS2005 tables (Rogers & Nayfonov 2002) to interpolate tieenhal functions of gas, and then
modify the thermal functions by taking into account the cifmition of the radiative field which
is assumed to be in local thermodynamic equilibrium with ¢glas. In the calculations of thermal
functions for gas, we adopt a bicubic interpolationoandT in order to obtain smooth (such that
first-order derivatives exist) thermal functions, and uisedr interpolations on hydrogen abundance
X and Z (for Z, quadratic interpolation between three tables with déffeérmetallicity values is
optional and this is usually used in solar models).

In the highT" (default oflg T > 8.3) or high Z (default of Z > 0.05) regime, we assume there
is an ideal gas mixture comprised of ions, electrons, pmsitand the radiative field. The thermal
functions of the ideal gas mixture can be solved by usingssid! physics (see, e.g., Timmes &
Arnett 1999). In order to reduce the time costs in the catmra of thermal functions for electrons
and positrons, we interpolate them from a table calculatiid®. The table lists thermal functions
of electrons and positrons with different values for rescabn number densityz (in mol cm™3)
and temperatur@&'. In the calculations used for constructing the table, Apals (1998) scheme is
adopted to calculate the integral of the Fermi functions.

In the connecting region between the above parts, we intagpthermal functions from the two
schemes above as follows. For a thermal function,Aaye denote the value of calculated using
the first scheme to bd; and that using the second scheme tolbeWe calculate the final result of
A by using the interpolation:

A= aA1 + (1 - a)AQ, (1)
a=f(lgT,8.2,8.3)f(Z,0.045,0.05),

Flavona) = 5 {1 sin { {max{omin(1 2220 ] - T}

It is obvious that the interpolation leads to a smooth théforection denoted b.

2.2 Opacity

There is a part of YNEV that calculates opacity for input digng, temperaturd’ and chemical
abundanceX;. Similar to the EOS, the bicubic interpolation pmndT" and linear interpolations of
hydrogen abundancE andZ (for Z, quadratic interpolation is optional) are performed. Thaaty
tables are the same as those used in MESA (Paxton et al. ZikXhe electron conduction opacity,
Cassisi et al. (2007), Iben (1975) and Yakovlev & Urpin (1p&@ used. For the radiative opacity,
the OPAL tables with fixed metallicity and enhanced CO (ligleg Rogers 1996) are used. The OP
tables (Seaton 2005) and the FO5 low-temperature tablegysen et al. 2005) are also employed.
The choice of using tables with fixed metallicity or with enbad CO is based on the input
chemical abundancg;. Tables with fixed metallicity are adopted in the caseZokK 0.045 and
tables with enhanced CO are adopted in the casg of 0.05. A smooth interpolation similar to
the EOS is used whelh045 < Z < 0.05. Since the YNEV code can be used for stars with initial
Z < 0.04 (higher Z is not supported by the EOS tables, and we do not attempt teheskeleal
gas mixture model in the envelope of a star), this schemegsiireral reasonable. An inconsistency
occurs at the start of helium burning, where tables with anbd CO should be used but tables with
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fixed metallicity are actually implemented. This should leatd to unacceptable results, since the
duration from the helium ignition t& = 0.05 is not long.

2.3 Nuclear Reaction

In the YNEV stellar evolution code, we trace the evolutiorhaf following elementstH, 2H, 3He,
4He,"Li, 12C, 13C, N, 1N, 160 and!70.

The hydrogen and helium burnings (p-p chains, CNO cy@lesia and5« reactions) are taken
into account:

IH( ve +)
“He(*He, p

"Be(e™, )7L1(p, a)®Be(, a)*He,

"Be(p,7)®B(ve™)®Be(, a)'He,

2C(p, )13N( ve™) P C(p,7) N (p,7)O(, ve ) N,

N(p,7@) " C; PN(p,7)°O(p, 1) "F(, ve ) TO(p, 7a) N,

‘He(aa, )2 C(a, 7)*°0(a, )*Ne,

141\1(0[7 ’7)18F, 15N( ’7)19F’ 130(0&, n,y)l(io7 170(04, n’y)QONe.

The basic rates of all reactions above are based on Angulo(@©89), except for the-decay
of "Be, which is based on Caughlan & Fowler (1988). The electroaesuing factors are based on
Salpeter (1954) (for weak screening) and Dewitt et al. (908 intermediate or strong screening)
with a smooth interpolation. The neutrino energy loss ratescalculated by using a public code
by Itoh et al. (1996). In the calculation of chemical evadatidue to nuclear reactions, we use an
implicit scheme to work out the nuclear reaction networke] the abundance 6f3e is assumed
to be in equilibrium. In the fully mixed burning zone (e.g.neective burning core), nuclear rates
are integrated over the whole zone to calculate variatinriie average chemical abundance. The
initial metal composition can be set to values given by Gssee& Noels (1993) (GN93), Grevesse
& Sauval (1998) (GS98) or Asplund et al. (2009) (AGSSO09). rtigal abundance of isotopds
(i.e.2H), *He, "Li, 13C, 1N and'70O are based on AGSS09.

“H(p,7)*He, (@)
p)*He;*He(av, ) Be,

2.4 Convection

Convection in the stellar interior plays an important roke@use this convection leads to entropy
and chemical mixing which dominates the stellar structur@ evolution. Unfortunately, proper-
ties associated with convection are still not very clearpigsent, a local convection theory named
Mixing-Length Theory (MLT) (Bohm-Vitense 1958) is widelysed in modeling stars. Although
MLT has some significant shortcomings (for example, it is amdmenological theory, it is unable
to be used in the study of convective overshoot and it dessskellar turbulence as a single length
scale), it is very convenient to implement in code. More oeable theories of stellar convection
are the Turbulent Convection Models (TCMs) (e.g., Xiong 1;:98iong et al. 1997; Canuto 1997,
2011; Canuto & Dubovikov 1998; Deng et al. 2006; Li & Yang 200i72012) which are based on
equations from fluid dynamics. The TCMs are capable of shglihie overshoot and show results
that are consistent with helioseismology (Christenselsdzeard et al. 2011). On the other hand,
on a large scale, the results of the MLT theory are similahtsé of TCM except for the case of
a convective envelope and a convective stable region. Foremtion zones in the stellar interior,
both MLT and TCM show efficient entropy and chemical mixingisat the temperature gradient is
almost adiabatic and chemical elements are fully mixed.
In the standard version of the YNEV code, the MLT is still athapto deal with convective

entropy transport. Also, the convective unstable zonetfigconvection zone as determined by the



552 Q. S. Zhang

Schwarzschild criterion) is artificially fully mixed and weective overshoot can be taken into ac-
count in the traditional way in that the artificially fully med region is extended byy = aov Hp,
where Hp is the pressure scale height andy is a parameter. In the helium burning phase, the
induced semiconvection outside the convective core isemphted (Castellani et al. 1985). The
temperature gradiei determined by the standard MLT theory is calculated asvialfwhich may
not have appeared before but is equivalent to other formseo$tandard MLT theory)

fPraf’+(b-a)f-b=0, 3)
where
V_vad
e 4
= e e 4)
_ § —1. _ 729 .4 -1
a—4K ; b—<1+—64K )K ,
1 apcpl 2
K = 39 b\ 95HP(VR—Vad) )

and! = aHp in which[ and« are the mixing length and the MLT parameter respectivelyadle
of the rootsf within an accuracy of0~*® with different values ofx in the range-5 < lg K < 40
was calculated offline. When we need to solve the MLT, theetébtead to get a good initial value
of f for input K, which converges with high accuracy after a few Newton tteres. Outside the
range—5 < lg K < 40, the following approximate solutions within the accuraéyfdeing10~'2
are used

f = 1—1%.!{2, lgK < —5;

f= K35, lg K > 40. ®)

It is not difficult to find those approximate solutions basadiee behavior described by Equation (3)
asK — 0or K — +o0.

In a beta version of the YNEV code, the TCM developed by Li & §4d8007) can be used to
replace the MLT to study convective entropy transport, dredttirbulent convective mixing model
developed by Zhang (2013) can be used to study convectivsloyet mixing.

2.5 Diffusion

The particle diffusion and gravitational settling, whicte aptional in the code, are calculated by
solving Burger’s equations with diffusion velocities/fi@ents given by Thoul et al. (1994). The
elements are assumed to be fully ionized. The electronseledied. By default H, *He, *He, '2C,
13C, 1N and!%0 are taken into account and other elements are assumedtblee

2.6 Atmosphere

Boundary conditions for the atmosphere are based on thatdefiof effective temperature and the
implementation of the adoptéd —  relationT = T'(7). In the YNEV code, the outer boundary
of stellar structure equations is set to be the location whiee= T.g. The definition of effective
temperature gives a boundary conditibg = 47r%07T4. Another boundary condition is based on
the integral of the differential equation describing thmasphere (assumed to be homogeneous)

dlnp
dr

olnT dinT
g(“)—“ , 6)
p

Pr\dInP dr
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where§ = —(0Inp/0InT)p andg = GM/R?; g is assumed to be a constant in the atmosphere.
The region where this differential equation can be appleffamr = 0to 7 = 75 whererg is
defined by(T.s =)Ts = T(7s), and we adopt the initial conditiop,—o = 107!°. We set the
initial condition of the equation above as_, = 10~!° by default. The second-order Runge-Kutta
method is adopted in the numerical solution. The solutimegihe value of density at the surface
ps.dInT/dr and the value ofs are determined by the adopt&d- r relation. In the YNEV code,
there are two optiondl — 7 relations: the Eddington gray model and Krishna Swamy'€6)%" — 7
relation.

2.7 MassLoss

The mass loss is implemented in the YNEV code by ejectingtéilasouter envelope with the mass
Meny = —dM /dt- At whered M /dt is the mass loss rate addt is the time step between the current
stellar model and the previous one. There are three optamrthé mass loss rate: Reimers (1975),
Waldron (1985) and de Jager et al. (1988). It is not difficnlimplement other expressions for the
mass loss rate.

3 NUMERICAL CALCULATION
3.1 Numerical Scheme

The code assumes that the star is one-dimensional and instgtc equilibrium, and ignores the
effects of rotation. The evolution of the element abundaringhe stellar interior and the stellar
structure equations are solved alternatively. The evariutif the element abundances is calculated
based on the previous stellar structure, then the new steus determined by the updated element
abundance profile. Although this scheme may lead to probieithsself consistency, the errors are
small in most cases since the time step is not very large.

The stellar structure equations are written in the form #evi:

dlgP  Mm(l—m) g o, 6
dq In10 47r2 P

dlgT Mm(l—m) gV —0. (8)
dq In 10 47r? P

dlgr  Mm(l-m) 1 )
dq In 10 4rr3p

dl,  Mm(1l—m) or éopr

Cr AU e~ (e 22 | 2, 10

e e et @0

where the independent varialyle= In[m/(m — 1)], m = M,./M is the mass fractior,. = L,./Lg

is dimensionless luminosity, andy = max(L,.) is the maximum value of luminosity in the stellar
interior.V is the temperature gradient determined by convection theay. for the MLT theory, and
V is calculated by using Equations (3) and (5). The boundanditions are as follows: for the inner
boundary where = r;

32 Sm (12)
4mpy
and
Cm aT  50P
I = To |:5N €y (CP ot p ot )L, (12)
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and for the outer boundary where= r
l,nLo = 4mrn2oTn; (T = Tent), (13)
and
PN = ps (14)

where pg is determined by integrating the differential equationresenting the atmosphere de-
scribed in Section 2.6 from=0to 7 = 75.

The chemical evolution equations in the stellar interiar er general given by the diffusion
equation

0X _ O(aF) 0/ 45 00X dm dq
—+D =b—|a“bD— ; =—,b=— 15
ot + dq dq (a dq ) + R {a dr’ dm}’ (15)

where X is the chemical abundance vect#t,s the flux vector,D is the matrix of diffusion coef-
ficients, andR is a vector of the nuclear reaction rates. When settlingkisrtanto account/" and

D are calculated based on Thoul et al. (1994). The conveotigeshoot mixing can be represented
by adding a diffusion coefficient to the diagonal componénis. This equation can be rewritten as
two first-order equations by definidd as the total diffusion flux vector:

0(aW) oxXyN
b5~ (R=5) =0 (1)
0X
bD— — (F —W)=0. 17
abDZ - = (F = W) (17)
The boundary conditions for the diffusion equations are
W =0, (18)

at the center and the stellar surface.
The radial part of the stellar adiabatic oscillation equais a linear differential equation

—A(r,w)J =0, (19)

whereJ = (&.,P',®',¢')" is the vector determining the properties of stellar ostidfes, A is
the coefficient matrix of the oscillation equation, ands the frequency. The elements of matax
can be found in literature about stellar oscillations. Tvewhdary conditions are at the center and
the other two boundary conditions are at the surface. Foundbary conditions are all linear and
homogeneous.

The stellar structure Equations (7)—(14), the diffusiou&pns (16)—(18) and the stellar adi-
abatic oscillation Equation (19) are all first-order eqomsi with two points that act as boundary
conditions. We use the Newton iterations (linearizatiomtimod to obtain solutions with the two
points as boundary conditions (7)—(14) and (16)—(18). Tna@icit discretization is adopted for the
time derivative in Equations (10), (16) and (17). Equatib®)(and its boundary conditions are al-
ready linear. The general form of those problems is

ou

with the boundary conditions at andqy being

B(Uy,q1) =0, (21)
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C(Un,qn) =0, (22)

whereyg is the independent variabl¥, is the vector of dependent variables witklements, elements
in vectorsH (includingn elements)B (includingn; elements)C' (includingns = n—n4 elements)
are determined by the differential equations and equatibtiee boundary conditions. The two point
second order discretization is adopted. For the diffusgpraéion, we adopted the conservation form,
in which the flux and the chemical abundance are not repredéytthe same mesh points, to ensure
a correct flux, i.e. we sé¥/;, to belV at the middle point between mesh pairdandk + 1. In general,
the first-order equation between mesh péiaindk + 1 is as follows

Hy = Hy(Up,Ups1) =0;  k=1,2,..,N—2,N—1. (23)

We use the method of Newton iterations to solve these equsatia all mesh points. Expanding
Hy,(Uk, Ug+1) around the initial solutio/ (), (for the stellar structure equations and the diffusion
equations, which are time-dependent, the initial solutib® is set as the values in the previous
model, and for stellar oscillations, the initial solutiai(®) = O) and ignoring higher order term,
we found

0H OH, ) )
T AU A+ i AUy = —Hy(UD 4, UDy0); k=1,2,.,N-2,N—1, (24)
oU}, OUk41
wheredHy, /0U,, anddHj, /0Uy1 are Jacobi matrices. A revised solution is
Uit = U9, + AU, . (25)
For the boundary conditions, similar results are
0B ,
— AU, = -B{UY 26
aUl 1 ( 1) ) ( )
oC ,
—— AUy =-C(UDy). 27
auy UN (UYN) (27)

Equations (24), (26) and (27) are the complete equationsafioulating the correction&U},. Those
equations are equivalent to a linear equation with a hug#icieat matrix with only the elements
at/near the diagonal being nonzero. It is not difficult toveahese equations by using the method
of forward eliminations and backward recursions. When threections are not small enough, the
elements in vectaH are therefore not close enough to zero. We then repeat tiisegs until the cor-
rections are in the allowed range of errors. Typically, wietlse accuracies asax(|d 1g p|, |0 1g T,
|61g 7|, |61,) < 10~ in the stellar structure equations, add (*H)| < 1078, [§X (*He)| < 1078
and|§ X,/ max(10719, X;)| < 10~ for other chemical elements in the chemical evolution equat
The oscillation equation is already linear, and it is eqgl@mato Equations (24)—(27) wittf () = O.
We only need to solve the linear equations once.

In scanning the eigenfrequencies in the oscillation equatie define the discriminait(w) as
the determinant of the coefficient matrix of the equation nragbitrary mesh point, (by default
ko = N)

P, AUy, = Qry s V(w) = Det(Py,), (28)

where the coefficient matri®;, and the vecto),, can be worked out in the process of forward
eliminations and backward recursionsis an eigenfrequency whéri(w) = 0, since the homoge-
neous equation only has nonzero solutions if the coefficraitix has a singularity. This definition
ensures the continuity of the discrimindnfw) and makes it convenient to scan for eigenfrequen-
cies. In solving for eigenfunctions of a validated eigenfrequenay;, we use an inhomogeneous
boundary condition (e.d,- = 1) to replace a homogeneous boundary condition in orderruredite

the singularity in the coefficient matrix.
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3.2 Numerical Scheme: Implementing the Turbulent Convection M odel

In a beta version of the YNEV evolution code, the TCM devetbpg Li & Yang (2007) can replace
the MLT theory and be used to calculate variables associgitbdT CM. The equations describing
TCM are as follows:

%% (pTQCskrT%) = %kal - %W-ﬁ- Crr ™ (ky — g)’ (29)

%% (PTQC’SkTT%> =kr ! - %W, (30)

%% (pT'QCtlkrTauar—?) = _%}W - riHlp(V = Vaa) + C(1+ P~ u,'T7(31)
p—,la% <pr2celkﬂaw) _ —WH%(V ~ Vo) 4 C(1+ P )T, (32)

wherek, = w’u! /2 is the radial turbulent kinetic energy,is the turbulent kinetic energy,. T’
describes the convective heat flik/7T" is the temperature variance, = k/e is the dissipation
timescale with the turbulent dissipation rate= £%/2/1 andl = arcv Hp, andP, = 1k*/? /Dy is
the Péclet number with radiative diffusion coefficidng = \/(pcp). Cs, Ci1 andC,; are dimen-
sionless diffusion coefficients;rcn, C; andC, are dimensionless dissipation coefficients, ahd
is a parameter that dominates the raté,ofk.

The default values for the parameters in the TCM are as fall®@hang & Li 2012; Zhang
2012):Cs =0.08,C, = 7.5,C. = 0.2, C}, = 2.5, Cy1 = 0.02 0r 0, andC,; = 0.02 or 0. The tur-
bulent kinetic dissipation parametetcy = 0.8 is based on the solar calibration with Eddington’s
gray atmosphere model, arrcy = 1.0 for Krishna Swamy’s (1966) atmosphere model. Solar
calibrations for different compositions shew= (2.1 ~ 2.2)apcm.

We solve the stellar structure equations and the TCM equatdiernately to find the solution
satisfying both equations. The TCM equations are solvedsinyguan iterative method based on the
multigrid method. In numerically solving the TCM equatiotiee variables (except for the tempera-
ture gradien¥’) are based on the current stellar structure. The followigéon is substituted into
the TCM equations for the temperature gradient

Hp pcpu,'T"

V=V erm — ; 33
Rtherm — - (33)

whereVg therm IS the radiative temperature gradient for thermal energy(ffinang 2014)

Hp Fx
erm — — T TN 34
VR, th V& 7D (34)
and I is the turbulent kinetic energy flux calculated as follows

Fx = —2CSp/€TTak (35)

E.
In solving the TCM equations/r therm 1S determined by the current stellar structure and the previ

ous turbulent kinetic energy flux.
The steps for implementing TCM in the code have been desthp&hang (2012):
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(1) Solve the TCM equations based on the current stellactstret and previous turbulent kinetic
energy flux. Calculate the temperature gradirat all mesh points according to Equation (33).

(2) Solve the localized TCM in which the diffusion terms agadred. Calculate the corresponding
temperature gradient ;, at all mesh points.

(3) Calculate the ratig = V/V, at all mesh points. Calculate a relaxgd= n;,,.. + £(7 — 7ye ),
where the subscript “pre” means previous values. The rétaxparametef is 0.618 by default.

(4) Solve the stellar structure equations in which the tenaipee gradient is calculated & =
1’V and update the stellar structuféy, is calculated by the localized TCM when solving the
stellar structure equations.

(5) Check the differencelg — n’| and|n — npre|. The calculations are thought to converge if both
differences are less than the required accuraty{ by default) at all mesh points; otherwise,
return to step 1.

Although the relaxation improves the numerical stabilitgl&nsures that the scheme works in
most cases of stellar evolutions, it should be mentionetthiigimplementation of TCM still does
not work in some cases. There are still some numerical pnublghen implementing TCM.

When the TCM is adopted, the updated overshoot mixing mod2hilang (2013) is also adopted
in solving the stellar chemical evolution. The diffusiorefficient for mixing in the overshoot region
in this model is as follows

3

Dov = Cov—5—: (36)
Nt2urb
whereN? . is calculated as
g M /omT dx
thurb2 =——- |V —=Vau — C1Cy < > u ) (37)
Ap ; OXk ) ppx—(xydin P

whereC'4 = C.+Cov and, according to Canuto (2018}, = o, = 0.72. The turbulent dissipation
ratee is calculated by using the TCM. It is optional to use the exaptesentation of the diffusion
coefficient (see Zhang 2013, equation (26)), but there isavioas difference. The only parameter,
i.e. the dimensionless diffusion coefficiefiyy, is suggested to b€y ~ 10~ based on tests of
the solar model and the restriction of the classical ovesslamgth being less tham4 Hp (Zhang
2013), and the calibrations on effective temperatures adil for low-mass eclipsing binary stars
(Meng & Zhang 2014).

3.3 Time Step

In the normal case, the time step in the calculations ofastelolution depends on the following
factors: the maximum correction from the Newton iteratighe variations ofH and*He abundance

in the center, the ratio of burné#l in the previous time step tH abundance in the center, the ratio
of burned'H (and*He) in the previous time step tdd (and*He) abundance in burning shells, the
ratio of burned minor element®( *He, "Li and '2C) in the previous time step to their abundances
in the center during the PMS stage, and variatiorig @f andlg L between the previous two stellar
models.

When a solution for stellar structure converges in the Navitierations, the time step for the
next stellar model is estimated by taking into account tHastors. In the next calculation of the
stellar structure, if there is no convergence, the time &apduced and calculations are redone.
If there is still no convergence after reducing the time sted re-calculating many times (50 by
default), the code checks whether helium flashes occur isttiar model. In the case of a helium
flash, we do not attempt to trace the changes in stellar streieind let the star jump to the zero age
horizontal branch (ZAHB) model. In the case of no helium flakk code stops.
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3.4 Space Step

The mesh points in the calculation of stellar structure amrolled by the the differences ig p,
lgT,r/R, L/Lmax, lg7, n[M,. (/M — M,)] (the independent variable) add; (chemical abun-
dance of all elements) between two adjacent grids. Near ¢thev&zschild convective boundaries
and the boundaries of artificially fully mixed regions, thendity of mesh points is enhanced to be
5-10 times the normal case. This is designed to ensure aydarthe location of convective bound-
aries and the boundaries of fully mixed regions, which maysgizely affect the outcome of stellar
evolution.

In the oscillation code, the mesh points of the input steatiadel are all taken into account.
However, especially for oscillation modes with a large nembf nodes, the mesh points in the
stellar model may not be dense enough in regions where thel@ayth is short, thus the difference
in radius between two adjacent grids is much longer than theslgngth. This leads to the problem
that the resolution is not enough to reveal the wave. Theseio the calculation of each oscillation
mode, extra mesh points are temporarily added by lineargatation to ensure that there are at least
five mesh points in a wavelength, where the wavelength imestid by using the dispersion relation.

3.5 Time Costs

The time cost for the YNEV code calculating stellar evolatioy models depends on the time/space
step settings, stellar parameters (i.e. stellar massyyaid (adopted Fortran compiler) and hardware.
For a computer with two cores that have-& GHz CPU and are compiled by using the Intel Fortran
compiler, with the number of mesh points beirt)0 ~ 1500 and the number of time grids 1100,

the process of YNEV evolving an intermediate-mass star fiteenPMS to the helium burning out
in the core costs about five minutes. With the same time/sgtepesettings, the process of YNEV
evolving a low-mass star from the PMS to a low temperaturdewthivarf costs more than three
hours, and the total number of time grids is abeut0 000. The phase with the greatest time cost is
the TP-AGB.

The part of the YNEV code with the greatest time cost is sg¢he nuclear reaction networks
on all mesh point. The opacity and EOS are interpolated frabhes with different metallicites
becauseZ slightly changes in the hydrogen burning region. If we igntris slight change and
calculate opacity and EOS based on the tables with fixethe time costs should be reduced. We
have tested the time costs by using the nuclear reactiorop®dczyhski's (1969) code to replace
the nuclear reaction networks of YNEV and calculate opaaity EOS based on fixed. It is found
that the time costs are significantly reduced, e.g. the chae mtermediate-mass star mentioned
above costs only half a minute. In order to ensure accuraeysually prefer to use the nuclear
reaction networks and interpolate opacity and EOS fronetablith different metallicites.

The use of nonlocal TCM significantly increases time coste fleason is that, for all stellar
models in the evolutionary phases, the stellar structunatons and the TCM equations are solved
alternately to find the final solution satisfying both eqoa$i. The case of an intermediate-mass
star mentioned above costs nearly an hour when we adopt tileaad TCM to deal with stellar
convection.

4 INITIAL MODEL

The YNEV code evolves a star from PMS with center temperafigre= 10° K, zero age main
sequence (ZAMS) or ZAHB. A database of initial PMS and ZAHBduls with different stellar
masses (both helium core mass and hydrogen envelope magaH® models), metal composi-
tions and fixed MLT parameter in the cases oK = 0.7, Z = 0.02 and X = 0.75, Z = 0 are
calculated offline and stored.
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Table1 Parameters of the Solar Models

Model Z93 Z09 Z980PKS R98TCM
Atmosphere EG EG KS EG
Composition GN93 AGSS09 GS98 GS98
Opacity OPAL OPAL OoP OPAL
« 1.744 1.645 2.277 0.8069 (TCM)
Xo 0.7050 0.7179 0.7079 0.6998
Zo 0.0201 0.0152 0.0189 0.0200
Ys 0.2449 0.2359 0.2434 0.2565
Zs 0.0181 0.0136 0.0170 0.0186
(Z)X)s 0.0245 0.0181 0.0230 0.0257
Ryc/Ro 0.7136 0.7248 0.7140 0.7135
[Li]/[Li]o 5.7% 14.8% 8.2% 1.7%

The initial PMS model for given input stellar parameterslisained by reading a stored PMS
model with the same metal composition and the closest stelias and using the method of Newton
iterations to solve the stellar structure with requiretl@t@arameters. Relaxations are automatically
performed if there is no convergence in Newton iteratiomes,the stellar parameters are gradually
changed from the stored PMS model to the required valuesiriitred ZAHB model for the given
input stellar parameters is obtained by using a similar oeetiror the ZAMS model, in order to
ensure accuracy in the compositions of metals in the steltarior (since they may change via
nuclear burning in the PMS stage), we do not use offline caledimodels. The adopted method to
generate the ZAMS model evolves too quickly from PMS to ZAMSf{ned byXs — X = 0.001)
by using half the number of mesh points and double the tinpesste

5 SAMPLESOF STELLAR EVOLUTION AND OSCILLATIONS
5.1 Solar Models

We have used the YNEV code to calculate four solar models dafi®3, Z09, Z98OPKS and
R98TCM with different input physics. The models are evolfesm ZAMS to the solar age
of 4.57 Gyr. Their radii and luminosity are calibrated &, = 6.96 x 10!° cm andL, =
3.846 x 1033 erg s'* with an accuracy ot0~%. In model 293, the OPAL opacity and Eddington
gray (EG) model are used, the solar composition GN93 is &diophd the ratio of metallicity to
hydrogen(Z/X)g is calibrated to be 0.0245 (Grevesse & Noels 1993). In mo@8| Zhe OPAL
opacity and EG model are used, the solar composition givelG§S09 is adopted and/ X ) s is
calibrated to be 0.0181 which is also consistent with AGSS09

In model Z98OPKS, the OP opacity and Krishna Swamy'’s (196&paphere model (KS) are
used, the solar composition GS98 is adopted @idX )s is calibrated to be 0.023 (Grevesse &
Sauval 1998). The MLT is applied in the 293, Z09 and Z980OPKS%lemm In model RO98TCM, the
GS98 composition (Grevesse & Sauval 1998), the OPAL opasity Eddington gray model are
used, the TCM and the updated convective overshoot mixindgfrere adopted, and the base of the
convective envelope is calibrated to Bg./ Rs = 0.7135. Key information about the solar models
is listed in Table 1. A comparison of sound speed between lmade helioseismic inversions (Basu
et al. 2009) are shown in Figure 1. Comparing with MESA (Paxdbal. 2011), the YNEV solar
model Z98OPKS shows almost the same results for the sameets, e.g. for MESAX, =
0.7065, Zy = 0.0191, Y, = 0.2433, Z, = 0.0170, Ry,./Rs = 0.7140 and the differences in sound
speed for MESA (see Paxton et al. 2011, fig. 21) are also sitoildnose given by YNEV.
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Fig.1 Differences in sound speed between models and helioseisweicsions.
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Fig.2 Evolutionary tracks of intermediate-mass stars with= 0.7, Z = 0.02 and MLT parameter
a = 1.75. The metal composition is the same as GN93. In the trackgyréen, red and blue parts
correspond to PMS, hydrogen burning and helium burning gthasspectively. The numbers near
the ZAMSs indicate the stellar mass (in units of solar mass).

5.2 Evolutionary Tracksin the HR Diagram: for the Classical MLT Theory

Evolutionary tracks of intermediate-mass stars with mateéen2.5 < M/Mg < 10 generated
by the YNEV code are shown in Figures 2 and 3. The two figuresvstesults for different stellar
chemical compositions. Stars evolve from the PMS With = 10° K to the asymptotic branch
giant (AGB) stage. The PMS stage, the hydrogen burning di@efined byXs — X > 0.001
and X< + Yo > 0.95) and the helium burning stage (defined By + Yo < 0.95) are shown as
green, red and blue lines, respectively. The YNEV evolwtigiiracks are similar to tracks calculated
by the FRANEC code. The blue loops for intermediate-mass sti@ sensitive to results in stellar
evolutionary codes. Comparing Figure 2 with the FRANEC etiohary tracks (see Bono et al.
2000, fig. 3), it can be found that the tips of the blue loops NEX/ and FRANEC are at almost the
same locationgllg T ~ 4.12,1g L =~ 4.2) for a10 M, star,(gT =~ 4.03,1g L ~ 3.9) for an8 M
star,(lgT ~ 3.97,1g L ~ 3.65) for a7 M, star,(lg7 ~ 3.90,1g L ~ 3.4) for a6 M star, and
(lgT ~ 3.78,1g L =~ 3.0) for a5 M, star.
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Fig.4 Evolutionary tracks of.5 Mg, 1 Mg and0.8 Mg stars withX = 0.7, Z = 0.02 and MLT
parametery = 1.75. The metal composition is the same as GN93.

Three samples of evolutionary tracks for low-mass stan® flRMS to white dwarf phases are
shown in Figure 4. When the helium flashes occur, the locatidithe stars automatically jump to
ZAHB without tracing the helium flash process in detail. Aftee end of center helium burning,
Reimers’s (1975) mass loss rate is adopted. Fot thé/, star, the mass loss rate is enhanced by a
factor of 5. The stars lose their envelope in the AGB stagdfiaatly evolve to white dwarfs.

The YNEV evolution code traces variations in isotofpeand?Li, thus one can use it to study
the depletion of light elemenid and’Li in the PMS stage. Figure 5 shows the evolutionary tracks
of stars with0.15 < M /Mg < 1 from PMS to ZAMS and denotes the depletions (£ of initial
abundance) ob and’Li at the stellar surface. Compared with the MESA code (seedPzet al.
2011, fig. 15), the YNEV code shows similar results, sincéhbYIEV and MESA yield the same
luminosity for the ofD and’Li. The stellar models are standard in that only the full mixbccurs
in the convectively unstable zone and there is no extra mixin
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Fig.5 Evolutionary tracks of stars with.15 < M /Mg < 1 from PMS to ZAMS. X = 0.7,

Z = 0.02 and MLT parametet = 1.75. The metal composition is the same as GN93. Diamonds
and circles denote the location [@]/[D]o = 1% and|["Li]/[ Li]o = 1% at the stellar surface. The
number below each track shows the mass of the star (in soksesn

5.3 Chemical Compositionin the Stellar Interior: Comparison with the STAROX Code

Figures 6 and 7 show the compositions in the stellar intefior9 M and5 M, stars withX = 0.7,

Z = 0.02 at the stage&X = 0.35. « = 1.75 and the GN93 metal composition are used. The process
of 12C,16 O —!N in the CNO cycles are clearly shomt¥O —!*N can hardly occur in 8.9 M,

star since the temperature in the core is low. Those exaraptesiso shown by the STAROX stellar
evolution code (Roxburgh 2008). Comparing the results f\AREV with those from STAROX,
there is no significant difference except for the age ofleM., star with X = 0.35, which

is 6.839 Gyr in YNEV and6.675 Gyr in STAROX. The difference is thought to be caused by the
different initial abundance of isotopes in metals dhig.

5.4 Evolutionary Tracksin the HR Diagram: for the Nonlocal Turbulent Convection M odel

The most important feature of the YNEV code is the ability & unonlocal turbulent convection
theory in calculations of stellar structure and evolutibor example, we show the evolutionary
tracks of low- and intermediate-mass stars in Figures (®)-(The value of the turbulent kinetic
dissipation parameterrcy; iS based on the solar calibration, and the value of the oweishixing
parameteiCoy is based on some observational restrictions (Zhang 2018gMeZhang 2014).
The stars evolve from the PMS with center temperafyre= 10° K to where the numerical scheme
cannot find a solution satisfying both the TCM and the stedtancture equations. The localized
TCM is used in the PMS withg 7 < 6.8, and the nonlocal TCM is used after that. It can be found
that the scheme implementing the nonlocal TCM works well oshtases of stellar evolution.

5.5 Comparing the Nonlocal Turbulent Convection YNEV Stellar Model with the Padova
and Yale-Yonsei Models

Figures 11 and 12 show the evolutionary tracks computed thghPadova (Bressan et al. 1993;
Salasnich et al. 2000; Girardi et al. 2000), Yale-Yon3é&t)((Yi et al. 2001; Kim et al. 2002; Yi
et al. 2003; Demarque et al. 2004) and YNEV stellar modelg. fidnlocal TCM and the updated
overshoot mixing model are used in the YNEV models, withr-y; = 0.8 andCoy = 1073, The
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numbers near the ZAMSs indicate the stellar mass (in uniéelair mass).
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Fig.9 Similar to Fig. 8, but forX = 0.75, Z = 0.006 and the AGSS09 composition.
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Fig.10 Similar to Fig. 8, but for low-mass stars.

Padova stellar models havé = 0.708, Z = 0.019 and incorporate the ballistic overshoot model
(Bressan et al. 1981) with an overshoot parameter that dspen stellar mass. ThE? stellar
models haveX = 0.71, Z = 0.02 and utilize a fully mixed core overshoot regiondiyy Hp with
the overshoot parameter,y depending on stellar mass (Demarque et al. 2004).

Table 2 shows the age of the critical points in the stellatianary tracks computed with the
Padovay? and YNEV (with nonlocal TCM) models. It is found that the adelwe critical points
in the YNEV stellar models with nonlocal TCM and the updatedrshoot is the same in as Padova
andY 2, except for the main sequence (MS) age of the low-mass dtarMS age for the YNEV
stellar models is a little larger than that of Padova EddThose results show that the core overshoot
mixing strength in the three codes is similar and, for a loasmstar, YNEV shows slightly stronger
overshoot mixing. It can be noticed that the overshoot patarain Padova arid? depend on stellar
mass but the overshoot parameter in the YNEV is constant.

Figure 11 shows the tracks for intermediate-mass starswiditbs of the main sequence band
for the three models indicate that the strengths of corestvt mixing in the three codes are similar.
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Fig.11 Evolutionary tracks computed with the Padova, Yale-Yomrsel YNEV models for inter-
mediate mass stars. The results from the YNEV model are the gazose shown in Fig. 10.
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Fig.12 Similar to Fig. 11, but for d.5 M, star. The area around the bump is enlarged.

The extensions of the blue loops in the results from YNEV aadidva are similar. Compared to the
Padova tracks, the YNEV tracks have a lower temperaturesimeti giant branch (RGB) phase and
the differences increase as the stellar mass increasémuldsbe noticed that the low-temperature
opacity table in YNEV is different from that in Padova, i.erfuson et al.’s (2005) tables are adopted
in YNEV and Alexander & Ferguson’s (1994) tables are adofe®adova. The efficiency of the
turbulent heat transport in the super-adiabatic conveatime shows a difference between the TCM
and the MLT.

Figure 12 shows the case ofl& M, star. The main difference is that the YNEV and Padova
models show a large bump in the RGB phase, butfiemodel shows a small bump. We think
that this is caused by the absence of the overshoot mixirapitle convective envelope in thé?
model.

5.6 Stellar Oscillations

The linear adiabatic oscillation part of the YNEV code isigasd to scan the eigenfrequencies and
solve the eigenfunctions of stellar adiabatic oscillagidriere we show two examples of applications



566 Q. S. Zhang

10000

8000

6000

4000

Frequency / pHz

2000

O " | 1 1 1
0 30 60 ; 90 120

150

Fig. 13 Eigenfrequencies in the rangé0 < f/uHz < 10000 of the solar model Z93
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Fig. 14 Relation between period spacing and frequency bball, RGB star withR = 6.38R,
andL = 19.3Lg. The dashed line shows the asymptotic valuB = 72.61s.

of the YNEV oscillation code: oscillations in the solar mbaded mixed modes in an RGB low-mass
star.

Figure 13 shows the eigenfrequencies of the solar model Z8ilated by using the YNEV
oscillation code. The eigenfrequencies are in the raige< f/uHz < 10000 for 0 < 1 < 150.
The dense part represents low frequencies with ldhat are g-modes and the other parts are p-
modes. Figure 14 shows the relation between period spakiigand frequencyf of the 1.5 M,
RGB star with radius? = 6.38 R and luminosityL, = 19.3 L. A similar example was studied
by Bedding et al. (2011) using the ASTEC evolution code (§&krisen-Dalsgaard 2008a) and the
ADIPLS oscillation code (Christensen-Dalsgaard 2008b).

6 DEVELOPMENTSPLANNED FOR THE FUTURE

There are many ways in which the code could be improved. lardalcalculate results for massive
stars, more nuclear burning reactions should be includetagossible H-semiconvection zone and
convective burning shell(s) outside the convective comukhbe treated properly. At present, the
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Table2 The age (in Gyr) of critical points in stellar evolution. ()Y 2P) and (YN) mean Yale-Yonsei,
Padova and YNEV models, respectively.

Critical point 1.5M¢, 3 Mg 5Mg 7 Mg 10Mp

H burned out in the center 2.895(Y2) 0.3921(Y2) 0.1040(Y2) (Y2) -(Y2)
2.755 (P) 0.3793 (P) 0.1031 (P) 0.04784 (P) 0.02379 (P)
3.175(YN) 0.3855(YN) 0.1023 (YN) 0.04735(YN) 0.02350 (YN)

He ignition in the center -(Y2) -(Y2) -(Y2) -(Y2) -(Y2)
-(P) 0.3834 (P) 0.1037 (P) 0.04803 (P) 0.02384 (P)
- (YN) 0.3905 (YN)  0.1031 (YN) 0.04759 (YN) 0.02357 (YN)

He burned out in the center -(Y2) -(Y2) -(Y2) -(Y2) -(Y2)
-(P) 0.4763 (P) 0.1174 (P) 0.05277 (P) 0.02585 (P)

-(YN)  0.4775(YN) 0.1167 (YN) 0.05293 (YN) 0.02608 (YN)

stellar structure and composition are solved individu@llipetter approach is to solve them together.
The two point second order discretization could be upgraaeadigher order scheme. An important
improvement would be to apply parallel numerical calcwoliasi, which could significantly boost the
calculation speed. To my knowledge, YNEV is the first stedlavlution code that can incorporate a
nonlocal turbulent convection model in most simulationsteflar evolution. As mentioned above,
there are still some numerical problems when implementiegnonlocal TCM. Correcting those
numerical problems is a priority. There is no doubt that tredier can think of other ways in which
the code could be improved.
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