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Abstract The problem of body-fixed hovering over an asteroid usingraprct form
of nonideal solar sails with a controllable area is invexttg. Nonlinear dynamic
equations describing the hovering problem are constriforea spherically symmet-
ric asteroid. Numerical solutions of the feasible regionody-fixed hovering are
obtained. Different sail models, including the cases o&ldeptical, parametric and
solar photon thrust, on the feasible region is studied thinauumerical simulations.
The influence of the asteroid spinning rate and the sail erenass ratio on the feasi-
ble region is discussed. The required orientations for #ileasd their corresponding
variable lightness numbers are given for different hogradii to identify the feasible
region of the body-fixed hovering. An attractive scenariodanission is introduced
to take advantage of solar sail hovering.
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1 INTRODUCTION

Missions that explore hazardous asteroids that might cdose ¢to Earth (Scheeres 2004) have been
frequently investigated as a precursor to some mitigati@tegyy or a controlled landing. According
to previous studies, there are a number of possible opti@nsexplorations in the vicinity of an
asteroid, including a Sun-synchronous orbit (Morrow e801), a retrograde orbit (Broschart &
Scheeres 2005) or a heliostationary orbit (Morrow et al.20® which a spacecraft is placed at the
libration point (Baoyin & Mclnnes 2005) of a system. Besidesse methods, the spacecraft could
also maintain a required fixed position relative to the intpaisteroid in a configuration referred to
as “body-fixed hovering.” This has been proposed as an @féeatay for a human landing on an
asteroid or a sample return mission which was successfodgraplished byHayabusa (Scheeres
2004). If the mission requires prolonged observation ofecsjz area from a position away from
synchronous orbit, the application of thrust must consimeh gravitational and centrifugal forces.
Thus, the extended period of hovering will greatly dependt@onboard supplies of fuel for a
chemical or continuous low-thrust spacecraft. Comparea ¢onventional spacecraft, the inherent
capabilities of solar sailing, which does not consume faelke this approach well suited for ex-
ploring asteroids.

Orbital dynamics close to an asteroid is quite challengimgj @mplex due to their irregular
shape and rotation (Hu & Scheeres 2008; Li et al. 2013). Aaldhlly, solar radiation pressure
(SRP) becomes a significant perturbing force in the vicioitysmall asteroids (Scheeres 1999).
Another advantage of solar sailing is to utilize the SRPdas an active control. The first detailed
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analysis of sail operations applied to asteroids was madédoyow et al. (2001). Sawai et al. (2002)
and Broschart & Scheeres (2005) investigated body-fixeetoy with conventional propulsion
systems. Zhang et al. (2013) extended such hovering froroabe of a satellite near an asteroid to
two satellites near each other. However, body-fixed hogeoirer an asteroid by using a solar sail
was not addressed before Williams & Abate (2009). In theirkywa model of an ideally reflecting
sail with an associated sail efficiency factor (to reflectdtierence between a true sail and an ideal
one) was adopted. The corresponding SRP force was nornied gail's surface. Nonideal sails have
not yet been discussed in the context of body-fixed hovetiog@an asteroid, although approaches
to heliostationary flights have been presented by Morrovi. ¢2802) and Farrés & Jorba (2012).

Use of a solar sail has been seriously considered as anadlterpropulsion system since the
proposed Comet Halley rendezvous mission. A number of dstrative missions (Mclnnes 1999;
Baoyin & Mclnnes 2006) have been investigated along withr tberresponding practical experi-
ments. Some dramatic mission concepts involving non-Kepleorbits (Gong et al. 2007, 2009a;
Vulpetti 1997) have been proposed that incorporate a salarie successful flight of IKAROS
andNanoSail-D2 have gained a lot of interest from the space community ailcthes first stone for
further missions that utilize solar sails (Gong et al. 20The concept of a furlable solar sail was
proposed by Williams & Abate (2009) to generalize the felasibgion where body-fixed hovering
can occur. Compared to a fixed-area solar sail with two viiatiitude angles, the essence of a
furlable sail is to separate the maximum magnitude of the fRfe as an independent control vari-
able. Such a performance can also be implemented with aol@arieflectivity sail film to control the
sail attitude, which was partially demonstrated on IKAROS.

In this paper, a compact form of nonideal sails (Mengali & @a2007) with a controllable
sail area is adopted to accomplish body-fixed hovering neasteroid. A comparison is made to
quantify the influence of the four different sail models (irding ideal-, optical-, parametric- and
solar photon thrust) on the hovering scenarios. For thetasgieroid, a spherically symmetric model
is applied as an estimation of the first step. The asteroidefroaoh be relaxed and extended in future
studies. The analysis presented here complements studibs by Williams & Abate (2009) and is
extended to scenarios with realistic sails. Section 2 dgivessquations of the body-fixed hovering
problem in terms of the compact sail model. In Section 3 tieces of the asteroid’s spinning and
the sail's area-to-mass ratio on body-fixed hovering is #lastrated via numerical simulations.
Moreover, sail control profiles corresponding to differbavering radii are presented to identify the
feasibility of body-fixed hovering by using a solar sail. Clusions are given in Section 4.

2 FORMULATION OF BODY-FIXED HOVERING
2.1 Equations of Motion

In this analysis, a two-body gravitational model is adoptedescribe the dynamics of the spacecraft
near an asteroid. The vector dynamical equation for a salbinghe uniformly rotating body-fixed
coordinate framexyz (Scheeres et al. 1998) can be written as
2
%—l—?wxZ—:—i-wx(wxr):asf{p—a(gir), (1)
wherer is the position vector from the asteroid’s center of mas$iéoshilcraftw is the rotational
angular velocity vector of the asteroid with respect to thertial reference framexyz, U(r) is
the gravitational potential of the asteroid adagkp is acceleration from the non-conservative SRP.
The coordinate systemXYZ centered on the asteroid is shown in Figure 1. TH& #axis is along
the direction of the asteroid’s angular velocity, theX-axis is along the anti-solar direction and in
the asteroid’s equatorial plane, and tH& -axis is also in the asteroid’s equatorial plane making up
an orthogonal right-handed triad. Strictly speaking, thertial framel XYZ is a nearly non-rotating
coordinate system due to the conic motion of the asteroididder, compared to the spinning period
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Fig. 1 Orbital reference frames and sail attitude angles.

of the asteroid, which is on the order of hours to days at ntlstrotation of the framé&XYZ is on
the order of a thousand days beyond 2 AU away from the Sun., Thuthose asteroids in the main
belt, the framdXYZ can be treated as an inertial reference frame.

The body-fixed framexyz coincides with the frameXYZ at the initial time and the transforma-
tion matrix fromoxyzto IXYZ is

cost)y —sinf; 0
Ci(t)=|sinf; cosb; 0|, (2)
0 0 1

where the angl®;(t) = wt andw is the scalar orbital angular velocity. In order to exprédes t
SRP force, a coordinate system for incident lighte,e., shown in Figure 1, is established where
the +se, axis is along the direction of sunlight. The axise, coincides with the #Y axis and
se, completes the right-handed frame. In this frame, the urdtores directed from the Sun to the
asteroid is alway$l, 0,0] ¥, which is the same as the unit vector of the axig:,.. If there is a solar
latitude anglep between the sunlight and the asteroid’s equatorial pldeetransformation matrix
fromIXYZ to segey e, is

cosp 0 singp
Co=| 0 1 0 ,cpe{—g,g}. 3)
—sing 0 cosy

As seen from Figure 1, if axis-se, is along axis +Z corresponding t@w = 7/2, the Sun is
located at the south pole of the asteroidp = 0, the sunlight is parallel to the asteroid’s equatorial
plane.

2.2 Force Model for a Solar Sail

A unified, compact design for solar sails with a fixed sail dnaa been presented by Mengali &
Quarta (2007) to carry out advanced heliostationary missi€ompared to an ideal sail with a
perfectly flat reflective surface, the optical model takesdffect of reflection, absorption and rera-
diation into account. The parametric model considers thating of the sail. Additionally, the solar
photon thrust (SPT, detailed by Guerman et al. 2010) is aldladed in the model. The acceleration
resulting from a sail with variable area can be written as

2 Ry

t un —
a’ (t) _ 6( ) Hs -COS(p q) - |:(1 _ q) by - e; + (qbl + b COS(3q+1) a+ by cos24 a) "I’LS} 7

(4)
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where the superscrips‘indicates that the vector is expressed in thge,e. frame. In the above
equation s,y is the solar gravitational constant§271244 x 102° m3s=2) and Ray is the Sun-
asteroid heliocentric distance in the unit of AUAU ~ 1.496 x 10*'m). The coefficientsy, q,
b1, ba, bs] corresponding to different sail models are specified inl@db(but see discussions by
Mengali & Quarta 2007).

Table 1 Four Different Groups of Solar Sail Force Model Coefficients

P q b1 ba b3
Ideal 1 0 0 2 0
Optical 1 0 0.1728 1.6544 -0.0109
Parametric 1 1 —0.5885 -0.1598 2.5646
SPT 0 0 0 2 0

The sail cone angle, shown in Figure 1, is defined as the angle between the saiisal vector
n and the incident light,. (e = [1, 0, 0] T) for both ideal and optical models. However, for the
parametric and SPT sails,is the angle between the SRP force and the vectoilhe orientation
of the sail can be explicitly expressed as

Cos &
s | o . a €0, /2]
n’ = s.lnasmé , {5 € [0, 27) (5)
sin v cos §

wheres is the clock angle shown in Figure 1, defined as the angle leehilee projected line of
incident light onto the planee, e, and axis+se.. For an ideal sail, Equation (4) becomes

a’(t)=p(t)- MSQUH cos® a-m?, (6)
Ry

where the sail lightness numb@(t) is the ratio of the SRP acceleration to the local solar gaavit
tional acceleration, which only depends on the area-tosmat® for the saib(¢)

_osL __ost
PO =20 = mjAm

where the critical sail loading parametsy;, is a constant whose value is approximately 15532,
m is the total mass of the spacecraft that uses the solar shil @ is the effective reflective surface

of the sail. Hereg,,.x is the maximum available lightness number, which is a keygigsarameter
for a mission.

ﬁ S ﬁmaxa (7)

2.3 Body-Fixed Hovering

The equations describing body-fixed hovering lead to a fixpdli®rium point in the framexyz at
a desired position. From Equation (1), the accelerationrésaults from SRP should be

U, w2 00 T
ASRpP = oU (r) twx(wxr)=|U, | —| 0 «*0]| |y]|. (8)
or U, 0 00]|]z2

The desired position can be expressed by the latitude anglé—7 /2, =/2] and the longitude
angled, € [0, 2n] as

T cos A cos by
r= |y | =r|cosAsinfy |, 9
z sin A
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wherer is the magnitude of the position vector. It is assumed heatttie asteroid is spherically
symmetric. Consequently, the gravitational acceleragierted on the spacecraft is

U, cos A cos O
3%(7’) =|u,| = “agtr — Ha;t cosAsinfq |, (10)
r U, r r sin A\

where 1,5 1S the gravitational constant of the asteroid. Substigutiguations (9) and (10) into
Equation (8), the acceleration produced by the sail is

asrp = [ (% — wgr) cos A cos B, (% — wgr) cos Asinfy, £t sin A ]T. (11)

A constraint on the solar sail is that the SRP force can onlgrbduced in the anti-solar hemi-
sphere. Therefore, acceleration from the sail must satisfy

(airp)’ €5 = (Co-C1(t) - asrp)’ - € > 0. (12)

Substituting Equations (2) and (3) into Equation (12), cae abtain

(aipp)’ - €5 = (M:;t — w?r) cos A cos @ cos ) + % sin Asinp > 0, (13)
wheref(t) = 0y + 01(t) = 0y + wt. Since body-fixed hovering of a solar sail occurs during the
entire period of asteroid rotation, the ang(@) takes all values from 0 to2 In order to guarantee
that the value of Equation (13) is always positive, the sddenm on the righty...; /7% sin A sin ¢,
should always be positive in that ¢bs [—1, 1]. It indicates that the anglesandy must have the
same sign. According to the definitions of these two anglescbrresponding situation is that the
spacecraft and the Sun must lie on different sides of theaidig equatorial plane.

To accomplish body-fixed hovering, the required SRP acatdtar in Equation (11) should be
the same as that provided in Equation (4)

II = a%Rp —a’ (t) = CQ . Cl (t) - ASRP — a’ (t) =0. (14)

There are three control variables, ¢v, §) corresponding to the above three dimensional nonlin-
ear equations. It is impossible to obtain analytical sohsibut they can be solved numerically. For
a specified position as expressed in Equation (9), if thesiesit of quantities that vary with timg(

«, §) making Equation (14) zero wheh takes all values of 0 t@r, the hovering orbit is feasible
and vise versa. The nonlinear equations can be solved usatigh/s’ fsolve' function with a default
method of dogleg.’ In order to improve the calculation efficiency, a progranmi Minpack-1 (More
et al. 1980), written in C++ (Jiang et al. 2012), is adopteddtve the nonlinear equations. In all
simulations, the tolerance of Equation (14) is set to beebétan10~°. Since Equation (14) is only
three dimensional and is not a differential equation, itdssensitive to initial values.

During the simulations whefi; takes all values from 0 t@r, there are some “bad” cases
that need to be verified. These correspond to feasible sokifi.e.0 < < fmax, ||||< 7/2).
Specifically, the angles used for attitude control must bthéir feasible domains. There are two
cases that have arisen in our simulation process which carabsformed into feasible solutions.
These two cases and their equivalent expressions are

a € (—m/2, 0] N a = o a€ [0, 7/2) L Ja=a
>0 0 =mod (7 +4,2m) > | 0 € [-2m, 0] 0 =mod (27 + 6, 27) ’
(15)
where the function ‘mod’ represents modulus after division
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3 CASE STUDY

The effects of sail coefficients, the angular velocity of #steroid and the sail's area-to-mass ra-
tio on the feasible region for body-fixed hovering are exadim this section. The influence of
the hovering radius on controlling the sail is investigate@ugh numerical simulations. The main
parameters related to the asteroid are the same as thosehyiwilliams & Abate (2009). The
heliocentric orbit of the asteroid is assumed to be circaté2.7 AU. Its diameter is 1.0 km with a
density of 2.410° kg m—2 and its rotational period is 9.0 h with the spin axis alignethuhe axis
+0z The highest lightness number is 0.153 corresponding toemta-mass ratio of 10 g ™. The
solar latitude angle is set to be Bfbr such a main-belt asteroid. Unless mentioned othenaise,
simulations in this section use these parameters.

3.1 Effect of Solar Sail Force Coefficients

Figure 2 shows the feasible regions where body-fixed hogeram occur with four different salil
models whose coefficients are already given in Table 1. Simeasteroid is assumed to be spheri-
cally symmetric, feasible regions fég from 0 to27 should be the same. Those feasible regions are
located in the asteroid’s northern hemisphere since thasSelow its equatorial plane(= 60°).

The region corresponding to the SPT sail is the largest vih#desmallest is the parametric case.
The feasible regions of the optical and parametric sailsnaggly the same although their model
coefficients are totally different.

For those four sail models, all regions start from the cqoesling synchronous points in the
equatorial plane at a radius @f;,, (Tsyn = / ftast/w?, herergy,, =~ 1.31km ). When the spacecraft
reaches the asteroid’s northern pole, all SRP force is wsedunterbalance the asteroid’s gravita-
tional force. For an ideal sail, it is easy to find that the eki$overing radius is

Hast
min — y 16
" \/ﬁmax . (MSun/R?\U) . Sin2 2 ( )

whose value in our case is approximately 0.95 km. The valug,gf for optical and parametric
sails is 1.03 km while it is 0.88 km for the SPT sail. As a rougtimation, an efficiency factor
of 0.85 can be added to Equation (6) to approximate the dmité parametric models here (see
results from Williams & Abate 2009). The effect of a shadoeanfrthe asteroid with respect to the
Sun is neglected, which reduces the effective hoveringrefgir such a spherical model. For other
irregularly shaped asteroids, such an effect needs to bestied in detail.

3.2 Spinning Effects of the Asteroid

Figure 3 illustrates the effect of the spinning rate of theergsd on the hovering regions with the
asteroid at the lower center. Two spin angular velocitiescansidered, i.e. 9h and 15h (which is
arbitrarily selected to be longer than 9 h). Only the idedlmadel is adopted here and that is why
the minimum anti-Sun pole radius,;, is the same at 0.95 km. For the hypothetical case of slow
spinning, the radius of the synchronous orbit is approxaiyat.84 km. There is an overlapping
area between the two regions when the hovering latitudesanglgreater than 0.265 The feasible
region for hovering with a lowe is a little larger than the higher case with a higher one didates
that there are more options for hovering positions (but witklatively farther hovering radius at the
same latitude) around slowly spinning asteroids comparé¢ldse with similar physical properties
and orbital parameters.
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Fig. 3 Effect of the asteroid’s spinning rate on the feasible negithere hovering can occur.

3.3 Effect of the Area-to-Mass Ratio

In this subsection, the effect of the sail’'s area-to-masie &(t) on the hovering radius will be
investigated. According to recent studies, a characieasteleration on the order of 0.5 mm?s
can be accomplished in near-term sail missions while aivelgtmid-term square sail with a side
length of 160 m has been envisaged by NASA for$hkar Polar Imager (SPI) mission (Mengali &
Quarta 2009). The characteristic acceleratipis defined as the maximum acceleration produced
by the sail at 1 AU when the normal direction with respect te #ail is parallel to the direction
of sunlight. Thus, the lower limit for,,;, is 10 g nT2 corresponding to a near-term sail with
a. = 0.91 mm s 2. The upper limit foro,;, is 4 g N2 whosea,. is approximately 2.27 mm=<.
For a sail with a variable sail area, the minimum area-tosmaoo ,,;,, corresponds to the highest
sail lightness number based on Equation (7). The valuebhtvat been investigated fot,i, (Gmax,
acmax) are given in Table 2 along with their corresponding minimuavéring radii. These four
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Table 2 Minimum Hovering Radius for Different Values of the Areafttass Ratio

Opmin (@M™2) 4 6 8 10
Bmax 0.3825 0.2550 0.1913 0.1530
Gemax (MM s2) 2.2682 1.5122 1.1344 0.9073
Tmin (KM) 0.599 0.734 0.848 0.947
4 L
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Fig.4 Relation between hovering radius and latitude for diffessil area-to-mass ratios.

values are enough to illustrate the influencesgf,, on the feasible regions where hovering can
occur. Additionally, the minimum hovering radius fer,;, = 4 g m—2 is 0.599 km, which is only
100 m away from the asteroid’s surface. There is no need téolsercfor an observation mission for
such an idealized asteroid.

Figure 4 shows the variation of the hovering radius with eespo the hovering latitude in terms
of each area-to-mass ratio. The curves above the synchsanbit, with radius 1.31 km, are the
outer boundaries of each feasible region while the curvies\bare the inner boundaries. The radius
for body-fixed hovering is obtained by varying the hoveriatiflide in steps of 0.002 It is easy to
find that the feasible region fer,,;, = 4 g m~2 is larger than the other three cases due to its higher
characteristic acceleration. The biggest gap in hoverddius between different values 6f,;, in
Figure 4 occurs at the asteroid’s polar region with a valu@.85 km from Table 2.

Body-fixed hovering for different latitudes with respectlie asteroid is feasible by using a solar
sail. When the hovering latitude is specified, an increasg,gf in the above scenarios can increase
the hovering boundaries a little, especially for areas afmay the polar region. For example, if
the hovering latitude\ is 0.264r, the inner boundary fos,,;, = 4 g m—2 is 0.94 km while it is
1.11 km foromi, = 10 g m—2. A decrease in hovering height of 170 m fey,;, = 10 g m—2
allows the mass of the spacecraft to be 2.5 times larger thrathé case of,,,;,, = 4 g m—2, which
indicates that there is a tradeoff between the hoveringisaaind the mass of the spacecraft. Taking
the 160 nd sail in the propose@PI mission as an example, the payload mass of the spacecraft for
omin = 10 g m~2 is 256 kg. By contrast, the payload mass &g, = 4 g m~2 is only 102 kg.
Therefore, it is preferable to have more mass with low-penmce sails to accomplish a mission
that requires body-fixed hovering.

3.4 Effect of the Hovering Radius

The effect of the hovering radius on the sail control profild e examined in this subsection.
Without loss of generality, the hovering latitude is set ¢éori¥4 and the minimum sail area-to-mass
ratio is 10 g n72. The boundary values for this hovering latitude are 1116 th B522 m. Three
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hovering radii are investigated, i.e. 1156 m, 1306 m and t5&here 1306 m is the synchronous
radius and the two others are in the feasible region, 150 ny &wen the synchronous orbit. Since
the incident light framéXYZ is assumed to be non-rotating, the sail control profile fahbfixed
hovering is symmetrical with respect to th&Z plane. Let us assume there ane 2 1 discrete
points in the control profile between 0 tar 2vheren is an integer. In the current simulationsjs
500, corresponding to a calculation step of 000@r spinning of the asteroid. Then, the control
variables afterr can be obtained as

Bln+1) = B(n-1),
an+1) =an-1), a7
d(n+1) =2r—-6(n—1).

The sail control profile in the first half period is shown in &ig 5 for each case, including the
sail lightness number and two attitude angles for the saildigtinguish orientations of the sail in
the bottom plot of Figure 5, the clock anglg,; for the outward case (1456 m) is shown separately.
For all these three cases, the peak in the lightness numiesrrdi exceed the maximum value of
0.153. For both the inward (1156 m) and outward cases, thinkgs number and attitude angles of
the sail vary with time to fulfill the requirement of non-symonous body-fixed hovering.

It is interesting that the clock anglg,,, is always zero for the synchronous case (1306 m with
A = w/4) while the control variableg,,, and asy, are constant. This result indicates that the
required acceleration from the sail is only provided to deudpalance the asteroid’s gravitational
acceleration along the axIZ. Such a condition can be explicitly deduced for an ideal faiih
Section 2.2. For a body-fixed hovering position at a synchusrheight out of the equatorial plane,
the required acceleration from the sail in Equation (11)mgéfied to

— [0, 0, Hast sin)\}T_ (18)

asyn
Substituting Equation (5) into Equation (6) with= 0, one can obtain

cos
a’(t)=p(t)- Hun 062 o - 0 . (29)

sin «
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In order to guarantee the feasibility of body-fixed hoveriihg acceleration from the sail accel-
eration provided by Equation (19) should be equal to thatired in Equation (18). Therefore, the
sail cone angle must satisfy = /2 — ¢ to make sure that the acceleration from the sail is along
the HZ direction. In such a case, the required lightness numbebearbtained as

ot R2 sin A
ﬁsyn = Hast : AU | (20)

2 -2
HSun  Tgyn  SINT @

For the above case, the lightness number for the sail can Ibelai@d from Equation (20)
as 0.057, which is consistent with the value shown in Figuré & interesting that body-fixed
hovering above the asteroid can be accomplished by usirag salling with constant values of
control variables at the synchronous radius out of the egizhplane. Such a property would be very
attractive for future missions that need body-fixed howgrfirst, the spinning periods of asteroids
are usually different in different asteroids. Second{uad# control with a sail made from a large thin
film is very challenging and complicated (Wie & Murphy 20071tg et al. 2009b). Therefore, for
specified hovering latitudes out of the asteroid’s equat@lane, a spacecraft placed at the height
of the synchronous orbit can maintain a fixed position witleastant attitude and lightness number.

For idealized spherical asteroids, gravitational acegiens from perturbations of other celestial
bodies are also ignored in this study. In fact, they may plagyarole in the stability of a hovering
orbit. Moreover, the variations in the Sun-asteroid diseadue to the eccentric orbits of asteroids
should have a great influence on the dynamics of the hoverlmg(@arrés & Jorba 2012). All the
above effects should be taken into account in future studies stability of these hovering orbits
and their controllability will be the subject of the next wadhat we will publish. In terms of diverse
shapes of the asteroids, a study of hovering around elothgateroids is in progress based on the
current framework.

4 CONCLUSIONS

Feasible regions for body-fixed hovering over an asteroite Heeen investigated by using solar
sails. Four different sail models with an active sail area @nsidered including cases of ideal,
optical, parametric and SPT sails. Nonlinear equationsanstructed to obtain the feasible region
for hovering and numerical solutions are obtained. Withaaxbed thrust ability, the SPT sail can
produce the largest hovering region, but the region shrioksther sails. For the inner and outer
boundaries of the hovering radius, the effect of nonidealefmmust be considered in planning the
mission. The spinning rate of the asteroid plays a key roleharacteristics of the feasible region
for hovering. With the same physical and orbital charasties, an asteroid with a longer spinning
period (in our study, the period of 15h corresponds to a sl@pinning asteroid) yields a larger

feasible region than the one with a shorter period (9 h). Fbesired hovering position away from

the synchronous orbit, both the lightness number of thessullits attitude have to be adjusted to
counterbalance the asteroid rotation with gravitatiomakteration out of the equatorial plane. For
hovering positions at the height of the synchronous orhitafuihe equatorial plane, acceleration
from the sail is only provided to counterbalance gravitadicacceleration, resulting in a constant
sail attitude and lightness number. Such a property is virgcive for missions that need body-

fixed hovering with a solar sail. This approach will be extethtb asteroids with different shapes in
future studies.
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