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Abstract We investigate equilibrium height of a flux rope, and its internal equilib-
rium in a realistic plasma environment by carrying out numerical simulations of the
evolution of systems including a current-carrying flux rope. We find that the equilib-
rium height of a flux rope is approximately described by a power-law function of the
relative strength of the background field. Our simulations indicate that the flux rope
can escape more easily from a weaker background field. This further confirms that a
catastrophe in the magnetic configuration of interest can be triggered by a decrease
in strength of the background field. Our results show that it takes some time to reach
internal equilibrium depending on the initial state of the flux rope. The plasma flow
inside the flux rope due to the adjustment for the internal equilibrium of the flux rope
remains small and does not last very long when the initial state of the flux rope com-
mences from the stable branch of the theoretical equilibrium curve. This work also
confirms the influence of the initial radius of the flux rope in its evolution; the results
indicate that a flux rope with a larger initial radius erupts more easily. In addition, by
using a realistic plasma environment and a much higher resolution in our simulations,
we notice some different characteristics compared to previous studies in Forbes.

Key words: Sun: eruptions — Sun: magnetic fields — magnetohydrodynamics
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1 INTRODUCTION

The most intense energetic activity in the solar system may be solar coronal mass ejections (CMEs).
During this process, a large number of magnetized energetic plasmas (with a mass of up to 1016 g
and an energy of 1032 erg) are ejected into interplanetary space within a short timescale, and hence
disturb the spatial and planetary magnetic field and significantly affect satellite operation, aviation
equipment and flight paths, human space exploration, communication and so on (Chen et al. 2002;
Schwenn 2006; Pulkkinen 2007; Lin 2007; Chen 2011; Mei et al. 2012b; Shen et al. 2013; Li &
Zhang 2013, and references therein).
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It is generally believed that two processes are involved in intense solar activities and eruptions.
The first one is called the storage phase, in which the magnetic flux transported from the photosphere
slowly accumulates in the corona, leading to a gradual increase of magnetic energy in the corona.
The timescale of the magnetic storage phase is typically several days, so this phase can be considered
as evolving through a series of equilibria in quasi-static processes. When the stored magnetic energy
surpasses critical values, the equilibrium will be broken, and the eruptive phase, i.e. the second pro-
cess, will occur. The system in this phase will promptly expand on a dynamic timescale of a few
minutes (i.e. in Alfvén time scales) due to the loss of balance. Transition from the quasi-static evo-
lution to the dynamic phase leads to a so-called catastrophe (e.g. Forbes & Isenberg 1991; Isenberg
et al. 1993; Forbes & Priest 1995; Forbes 1990, 2000; Lin & Forbes 2000; Lin et al. 2006; Yu 2012,
and the references therein).

It is well known that the motion of the photospheric material transports energy to the coronal
magnetic field that drives the eruption, so triggering and the consequent propagation of CMEs are
governed by changes in the photosphere. Recently, based on an MHD simulation, some authors
(Zhang et al. 2011; Welsch et al. 2011; Kusano et al. 2012; Kliem et al. 2013, and references therein)
investigated how physical features in the photosphere influence evolution in the coronal magnetic
configuration, as well as the initiation of CMEs. However, without detailed observations or theoret-
ical simulations, determinations of how the onset of CMEs occurs still remain unclear.

The decay of the background magnetic field may cause the CME progenitor structure to deviate
from equilibrium, as shown in Isenberg et al. (1993) and Lin et al. (1998). This decay could be a
consequence of the magnetic diffusion that leads to the formation, as well as the eruption of a flux
rope (Mackay & van Ballegooijen 2006). Gradually decreasing the background field may also cause
the state of the flux rope to transit catastrophically from the old equilibrium to the new one (Forbes
& Isenberg 1991; Isenberg et al. 1993). Lin et al. (1998) analytically extended this work to include
the curvature force that creates an additional outward force, and further realized that, in addition to
the impact of the background field, the radius of a flux rope plays an important role in its eruption.
However, these results are constrained by the analytical method. Although Wang et al. (2009) and
Mei et al. (2012a) numerically investigated the evolution of a flux rope, the initial distribution of
plasma density in the background field in their simulations is a bit far from the realistic case.

In this paper we will numerically investigate the evolution of the magnetic configuration and
a current-carrying flux rope while considering the effect of gravitational stratification and a more
realistic distribution of plasma density in the background field. This approach is crucial for the
generation of CMEs. Understanding the catastrophe model of CMEs can allow us to further study the
solar-terrestrial relationship. In addition, a number of numerical experiments have also been carried
out to study how variations in the background fields trigger the eruption of the flux rope and details
of how the radius of the flux rope influences the eruption. In Section 2, we describe the physical
model, formulae and numerical approaches. The numerical results are presented in Section 3. We
provide a discussion and draw conclusions in Section 4.

2 PHYSICAL MODEL AND NUMERICAL METHOD

We consider that a prominence or filament floating in the corona can be represented by a current-
carrying flux rope, and the photospheric background field can be represented by a linear dipole
below the photosphere. We assume there is a two-dimensional magnetic configuration in a semi-
infinite x-y plane in Cartesian coordinates. In the coordinates, y = 0 is assumed to be the boundary
between the photosphere and the chromosphere, and y > 0 corresponds to the chromosphere and the
corona. The location of the flux rope in our simulations is assumed to be y = h above the boundary
y = 0, and the depth of the photospheric background field is y = −d below y = 0. The empirical
atmosphere model described in Sittler & Guhathakurta (1999) (hereafter S&G) is used for the initial
background field density ρ0(y). The evolution of the magnetic system should satisfy the following
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ideal magnetohydrodynamic (MHD) equations:
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(1)

where B represents the magnetic field, J the electric current density, ρ the mass density, v the
velocity of the flow, p the gas pressure, e the internal energy density, γ the ratio of specific heats,
G the gravitational constant, M¯ the solar mass, R¯ the solar radius and mp the proton mass.
Equations in (1) are numerically solved by using the ZEUS-2D MHD code described in Stone &
Norman (1992a,b); Stone et al. (1992).

The magnetic configuration in our simulations is composed of the current-carrying flux rope,
the image of the current inside the flux rope, and the background magnetic field. We assume that
the background field is generated by a linear dipole below the bottom of the chromosphere (Forbes
1990; Wang et al. 2009). The relative strength of the dipole field M can be defined by a dimensionless
parameter M = m/(Id), which is related to the ratio of the strength of the dipole field m and the
product of the filament current I and the depth d of the dipole field.

The initial magnetic configuration from which the eruption occurs is given by

Bx = Bφ(R−)(y − h0)/R− −Bφ(R+)(y + h0)/R+

−Bφ(r + ∆/2)Md(r + ∆/2)[x2 − (y + d)2]/R4
d , (2)

By = −Bφ(R−)x/R− + Bφ(R+)x/R+

−Bφ(r + ∆/2)Md(r + ∆/2)2x(y + d)/R4
d , (3)

with

R2
± = x2 + (y ± h0)2 ,

R2
d = x2 + (y + d)2 .

As for the initial background plasma density ρ0(y), we use an empirical atmosphere given by
the S&G model:

ρ0(y) = ρ00f(y) ,

f(y) = a1z
2(y)ea2z(y)[1 + a3z(y) + a4z

2(y) + a5z
3(y)] ,

z(y) =
R¯

R¯ + y
,

(4)

where ρ00 = 1.672 × 10−13 g cm−3, which is about one order of magnitude smaller than that
in our previous work (∼ 10−12 g cm−3, Wang et al. 2009), and a1 = 0.001272, a2 = 4.8039,
a3 = 0.29696, a4 = −7.1743 and a5 = 12.321. The height y is measured from the surface of the
Sun. Equations (4) describe a slowly decreasing density distribution f(y) for the atmosphere in the
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lower corona. This density distribution was supported by the radio observations of type III bursts
over a wide frequency band of a few kHz to 13.8 MHz (Leblanc et al. 1998; Lin 2002). The density
model considered in this work is more realistic than that used in previous work (Wang et al. 2009;
Mei et al. 2012a).

For the initial background atmosphere, there is a balance between the pressure gradient of gas
and gravity

∇p0(y) = −ρ0(y)
GM¯

(R¯ + y)2
. (5)

From Equations (4) and (5), we can find the relation between the initial background pressure p0(y)
and the temperature distribution T0(y) as follows

p0(y) =
ρ0(y)
mp

kT0(y) , (6)

where k is the Boltzmann constant.
Subsequently the initial total pressure, including the gas pressure and the magnetic pressure, and

the mass density can be written as

p = p0 −
∫ ∞

R−
Bφ(R)j(R)dR ,

ρ = ρ0(p/p0)1/γ .

(7)

Bφ(R) in Equations (2), (3) and (7) is determined by the electric current density distribution
j(R) inside the flux rope, and reads as

Bφ(R) = −2π

c
j0R , for 0 ≤ R ≤ r −∆/2 ,
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, for r −∆/2 < R < r + ∆/2 ,

Bφ(R) = −2πj0
cR

[
r2 + (∆/2)2 − 2(∆/π)2

]
, for r + ∆/2 ≤ R < ∞;

j(R) = j0, for 0 ≤ R ≤ r −∆/2 ,

j(R) =
j0
2

cos[π(R− r + ∆/2)/∆] + 1, for r −∆/2 < R < r + ∆/2 ,

j(R) = 0, for r + ∆/2 ≤ R < ∞ . (8)

We take the computational domain to be (−4L, 4L) × (0, 8L) with L = 105 km, and the
arrangement of grid points to be 800× 800. A line-tied condition is applied to the bottom boundary
at y = 0, while an open boundary condition is used for the other three. The initial values of the
parameters in our simulations are listed in Table 1.

3 RESULTS

In this section, we present results of the numerical experiments. In order to understand the evolution-
ary process more comprehensively, we carried out a set of numerical experiments. The parameters
and their values for the experiments are listed in Table 2. Totally, 18 cases are investigated, in which
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Table 1 Initial Values for the Important Parameters in the Numerical
Experiments

ρ00 T00 j00 γ

(g cm−3) (K) (statamp cm−2)
1.672× 10−13 106 1200 5/3

Notes: ρ00 is the initial plasma density; T00 the initial temperature; j00 the initial
electric current density, and γ is the ratio of specific heats.

Table 2 Parameters and Their Values for Different Cases in the Simulations

Case M d (km) h0/d r0/d r0/∆

1 2.25 0.125× 105 0.5 0.2 2
2 1.0 0.125× 105 0.5 0.2 2
3 1.0 1.0× 105 0.125 0.03 2
4 1.0 1.0× 105 0.125 0.05 2
5 2.0 1.0× 105 0.125 0.05 2
6 3.0 1.0× 105 0.125 0.05 2
7 4.0 1.0× 105 0.125 0.05 2
8 5.0 1.0× 105 0.125 0.05 2
9 5.06 1.0× 105 0.125 0.05 2
10 5.25 1.0× 105 0.125 0.05 2
11 5.5 1.0× 105 0.125 0.05 2
12 5.75 1.0× 105 0.125 0.05 2
13 6.0 1.0× 105 0.125 0.05 2
14 6.5 1.0× 105 0.125 0.05 2
15 0.0 0.625× 104 2 0.8 2
16 1.0 0.625× 104 2 0.8 2
17 1.5 0.625× 104 2 0.8 2
18 2.0 0.625× 104 2 0.8 2

two correspond to a stable equilibrium (cases 1 and 9), and the rest correspond to states of nonequi-
librium.

Now we take case 16 as an example to show how evolution progresses from its initial state to
nonequilibrium. Figure 1 illustrates the evolution of the magnetic field and the plasma density as
the eruption progresses for case 16. Black solid lines represent the magnetic field lines and shadings
show the density distribution. In this case, the initial state is not in equilibrium. Because the magnetic
compression outstrips the magnetic tension, the flux rope begins to rise quickly from the start of
the experiment. The closed magnetic field lines become stretched with the lift-off of the flux rope,
and the X-type neutral point appears on the boundary surface in the magnetic configuration with
time progressing. This magnetic topology means that magnetic reconnection occurs, i.e. there exists
magnetic diffusion, which can convert magnetic energy to heating and the kinetic energy of the
plasma. In our experiments, although no physical diffusion is included in Equations (1), the results of
numerical diffusion are equivalent to the result of physical diffusion (e.g. see the detailed discussions
given by Wang et al. 2009). Moreover, we can notice in these panels that propagation of the fast shock
occurs, which appears as a crescent feature around the flux rope (Wang et al. 2009 and Mei et al.
2012a).

3.1 Relation between Equilibrium Height of the Flux Rope and the Relative Strength of the
Background Field

In this section, we study the final height of the flux rope in equilibrium as a function of the relative
background field M (the ratio of the strength of dipole field m to the product of the filament current
I and the depth d of the dipole field). Since this study is based on the equilibria curve through
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Fig. 1 Evolution of the magnetic field (black contours) and the plasma density (shadings) as the
eruption progresses for case 16. Propagation of the fast-mode shock around the flux rope is clearly
seen. An X-type neutral point is distinct at t = 600 s. The unit is second. The right color bar
represents values of the density in lg ρ (g cm−3).

theoretical analysis that is described in Forbes (1990), we choose the same radius and initial height
of the flux rope, except for different values of parameter M for cases 4–12. According to equation (3)
in Forbes (1990), the flux rope is only in stable equilibrium for case 9. Cases 3–8 and 10–12 are in
nonequilibrium at the initial time. On the basis of equation (3) in Forbes (1990), M = 5.06 is a
critical point, i.e. when M < 5.06, the final flux rope height is higher than the initial height; when
M > 5.06, the final height is lower than the initial one. However, in our numerical experiment, the
value of the critical point becomes M ≈ 5.25.

In order to obtain visual information, we plot Figure 2, which displays the final height of the
flux rope as a function of the relative dipole strength M . Solid points indicate the final location of
the flux rope. The starting point of the flux rope is at the location h/d = 0.125. The dashed line
is for the initial height. The red solid line is a fitting curve of the numerical results, which shows
the power-law function h/d = 10−0.1M−1.1. From Figure 2, we can see that the final height of the
flux rope is a power-law function of the relative strength of the dipole field M when M ≤ 5.25.
As M ≤ 5.25 − 0.3, the location at which the flux rope stops is higher than the starting location of
the flux rope. However, when M ≥ 5.25 + 0.3, the final location of the flux rope is lower than the
starting location of the flux rope. For M = 5.75, the stopping height of the flux rope is about 0.057,
less than the initial height of 0.125. So at M = 5.25 ± 0.3, there appears to be a transition in the
height at which the flux rope stops. The transition from upward to downward motion takes place at
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Fig. 2 The final height of the flux ropes as a function of the relative dipole magnetic field strength M .
Solid points indicate the final location of the flux rope. The dashed line denotes the initial height of
the flux rope at h/d = 0.125. The red solid curve is a freehand interpolation of the numerical results,
and it displays the power-law function h/d = 10−0.1M−1.1, where d is the depth of the background
dipole field, and M is a dimensionless parameter which gives the relative strength between the dipole
and the filament current.

about M ≈ 5.25, which is close to M = 5.06 that is predicted by the vacuum equilibrium model for
a filament or prominence with radius 0.05d (see eq. (3) in Forbes 1990).

Our results indicate that, from M ≈ 5.0 to M ≈ 5.25, the final location of the flux rope is
gradually changing, rather than steeply changing like in Forbes (1990). This is probably because
of the much higher resolution in our simulations, resulting from the double grid and the increased
number of grid points in the ZEUS-2D MHD code.

3.2 Evolution of the System with Different Background Fields

In this section, we focus on the influence of the background field on the evolution of the magnetic
system. First, in order to solve a few open questions in the work of Forbes (1990) and compare our
results with his, we investigate the influence of the different M on the evolution of the system. The
cases 15–18 are presented with different M given the same d, h0 and r0.

Figure 3 plots the height of the flux rope h as a function of time with different M . When the
background field is equal to zero (M = 0.0), the initial repulsive force on the flux rope is large,
and the flux rope promptly rises at the beginning. This agrees with the result in Forbes (1990),
when M = 0.0, at about t = 2.0 s the flux rope’s speed begins to increase again. However, after
about t = 2.0 s, our flux rope’s trajectory differs from the result of Forbes (1990). Figure 8 in
Forbes (1990) shows that at about t = 2.0 s and M = 0.0, the speed of the flux rope becomes
warped. However, this warp is not represented in our simulations. The reasons why we have different
results are: 1) this increase could be a numerical artifact of the open boundary conditions; or 2) it is
because of the lack of a gravitationally stratified solar atmosphere. In this work, we used the same
boundary conditions as Forbes (1990) and considered the gravitationally stratified background solar
atmosphere. By comparing our numerical simulations with Forbes (1990), we find that the warp of
the height of flux rope may be eliminated by the gravitational stratification effect. The flux rope
when M = 1 in the work of Forbes (1990) stops at some height after it starts rising at the very
beginning, and then moves slightly downward before continuing to rise further. Our results indicate
that the gravitationally stratified medium can account for this phenomenon.

At the beginning of the experiment, the flux rope keeps rising rapidly until the magnetic tension
produced by the stretching of the line-tied field lines becomes large enough to slow down its upward
motion. The Lorentz force J × B plays a main role in decreasing the initially upward velocity of
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Fig. 3 h/d as a function of time. h is the height of the flux rope. d is the depth of the background
dipole field. M is a dimensionless parameter which gives the relative strength between the dipole
and the filament current.
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Fig. 4 h/d as a function of time for different background fields m. h is the height of the flux rope.
d = 0.625 × 104 km and I0 = 3 × 1011 A are the depth of the background dipole field and the
initial current strength of the flux rope respectively. The solid line corresponds to m = 0, the dotted
curve is for m = dI0, and the dashed curve is for m = 2dI0. The lower panel is an enlarged view
for the time from 0 to 50 s.
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Fig. 5 Evolutions of the magnetic configuration with different values of m at t = 600 s. The left and
right panels show m = 2dI0 and m = dI0 respectively. They correspond to the dashed and dotted
curves in Fig. 4, respectively.

the flux rope. From Figure 3, we see that for M = 2 the height of the flux rope remains almost
constant after t = 500 s. This is because the flux rope reaches a new equilibrium state at that time.
From equation (3) in Forbes (1990), we can further check whether the state of the flux rope is in
equilibrium or not. We insert the height of the flux rope h, the depth of the dipole d and the relative
strength of the dipole M at t = 600 s into equation (3) of Forbes (1990), and find that the left side
almost equals the right side in that equation. This means that a new equilibrium state is achieved.

Since the evolution of the system in the corona may be controlled by the background field, we
need to investigate how the evolution of the magnetic system relies on the values of the background
field strength, i.e. m.

Figure 4 shows the height of the flux rope with different background field strengths m. The depth
of the background dipole field and the initial current strength of the flux rope are d = 0.625 × 104

km and I0 = 3 × 1011 A respectively. The solid line corresponds to m = 0, the dotted curve is for
m = dI0 and the dashed curve is for m = 2dI0. From Figure 4, we can see that the height of the
flux rope becomes higher when the background field strength gets smaller. This implies that the flux
rope can escape more easily following a catastrophe if the background field is weak.

To further demonstrate the relation between the strength of the background field and the flux
rope, we studied the evolutions of the magnetic configuration in two cases in Figure 4. As shown in
Figure 5, the magnetic field lines are represented by continuous contours. The left and right panels
show m = 2dI0 and m = dI0, and they correspond to the dashed and dotted curves in Figure 4,
respectively. From Figure 5, we can notice that the flux rope in the right panel is higher than in the
left one. In addition, we are also able to recognize the existence of the X-point in these two panels,
which may result in fast energy dissipation via magnetic reconnection.

3.3 The Internal Evolution of the Flux Rope and the Effect of Its Radius

The flux rope moves upward very quickly driven by the unbalanced magnetic compression at the
beginning of our simulation, while a small perturbation in the amplitude of the flux rope along its
radial direction always occurs since the initial state within the filament is never in exact equilibrium.
Flow always appears within the filament, almost at once, as shown in Figure 6. The upper panel in
this figure shows velocity streamlines at two different times for stable equilibrium with M = 2.25
(case 1), while the lower panel shows velocity streamlines for the nonequilibrium case with M = 1.0
(case 2). The circle in each panel represents the position of the flux rope. At t = 1 s, the flow
speed for the stable case is about 0.8 the speed for the nonequilibrium case. Meanwhile, the flow
speed at t = 2 s for the stable equilibrium case equals approximately the speed at t = 5 s for the
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Fig. 6 Velocity streamlines at two different times for the stable equilibrium case with M = 2.25
(case 1) in (a) and (b), and the nonequilibrium case with M = 1.0 (case 2) in (c) and (d). The circles
indicate the position of the flux rope.

nonequilibrium case. These results show that the internal flow of the flux rope remains small and
does not last very long when the initial state of the flux rope commences from the stable branch of
the theoretical equilibrium curve.

In order to understand the influence of the computational domain on the internal evolution of the
flux rope, we also investigate the internal evolution of the flux rope in two different computational
domains.

Figure 7 shows the evolution of the height of the flux rope with respect to time for the stable
equilibrium case with M = 2.25 (case 1) in the two computational domains ((−4L, 4L) × (0, 8L)
in (a) and (−L,L) × (0, 2L) in (b)) with the same set of 800 × 800 grid points. The solid curves
are the evolution of the height of the flux rope with respect to time for case 1, and the dashed lines
correspond to the initial height h0 = 0.0625×105 km for case 1. We can see that the readjustment of
the height of the flux rope is completed by t = 2 s in (a). After 2 s, the flux rope remains stationary
at a height of about 0.06 × 105 km. However, after taking t = 3 s in (b), it becomes stationary at a
height of about ∼ 0.0625× 105 km.

The information revealed by Figure 7 suggests that numerical diffusion is faster when the com-
putational domain is larger. However, the numerical error is larger in (a) than (b), since the numerical
error can be estimated by the ratio of the grid spacing to the initial height ∆x/h0, i.e. 16% in (a) and
4% in (b). Because of numerical error, the stationary height of the flux rope is closer to the initial
height in (b) than in (a).

In order to investigate the influence of the radius of the flux rope on its evolution, we have
performed two simulations (cases 3 and 4). We vary the radius of the flux rope in these two cases,
while other parameters remain unchanged. The values of these parameters are listed in Table 2.

Figure 8 displays the evolution of the height of the flux rope with respect to time in these cases.
Curve r0 = 3000 km is for case 3, while curve r0 = 5000 km is for case 4. From this figure, we see
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Fig. 7 The height of the flux rope h as a function of time for the same stable equilibrium (case 1) in
the different computational domains with the same grid points: the left panel represents (−4L, 4L)×
(0, 8L) with 800× 800 grid points, and the right panel depicts (−L, L)× (0, 2L) with 800× 800
grid points. The solid curves are for case 1, and the dashed lines correspond to the initial height
h0 = 0.0625× 105 km for case 1.
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Fig. 8 Variation of the flux rope height versus time for cases 3 and 4: curve r0 = 3000 km is for
case 3, and curve r0 = 5000 km is for case 4. d is the depth of the background dipole field, and it is
the same for these two cases.

that the flux rope with a larger radius apparently has faster upward velocity than that with a smaller
radius, which means that greater radii can more easily result in the eruption of a flux rope.

4 DISCUSSION AND CONCLUSIONS

We numerically investigate the evolution of the flux rope using the ZEUS-2D code for modeling a
prominence or a filament in the corona, which may eventually erupt as a catastrophe. The empirical
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S&G atmosphere model is employed for the distribution of the density of the background field. Our
present simulations have a higher resolution than the previous work, e.g. Wang et al. (2009) and
Forbes (1990), due to the larger simulation domain and more grid points. We studied the influence
of the strength of the background field and the radius of the flux ropes on the internal, overall equi-
librium and escape of the flux ropes in the detailed simulations, including 18 cases for the different
combinations of several important parameters. The main conclusions are drawn as follows.

(1) In our simulations, by using a realistic plasma environment and a much higher resolution, we
notice some different characteristics compared to previous studies in Forbes (1990). We find that
the speed of the flux rope does not increase after t = 2.0 s for M = 0 and for M = 1 (M is
the ratio of the strength of the dipole field m to the product of the filament current I and the
depth d of the dipole field, i.e. M = m/(Id)), which differs from the results in Forbes (1990).
Instead, the flux rope keeps rising slowly, and stops at some height after some time, then moves
downwards slightly before continuing to rise further.

(2) Among cases 4–12 (see nine solid points in Figure 2, each point represents one of the cases),
the final height of the flux rope varies with M described by a power-law function h/d =
10−0.1M−1.1.

(3) The flux rope can escape more easily if the background magnetic field is weaker. This implies
that catastrophic behavior can be triggered by suppressing the strength of the background mag-
netic field, which is consistent with previous work by Forbes (1990), Isenberg et al. (1993),
Lin et al. (1998); Lin (2007), Chen (2011). The decay of the photospheric magnetic field due
to magnetic diffusion may result in the eruption of the flux rope (Mackay & van Ballegooijen
2006), and further explain why the peak rate of CME occurrence is usually delayed by 6 − 12
months with respect to the peak of the sunspot number (Robbrecht et al. 2009).

(4) The initial radius of the flux rope may have a significant influence on its evolution. The results
indicate that the flux rope with a larger initial radius erupts more easily.

(5) The internal flow of the flux rope remains small and does not last very long when the initial state
of the flux rope commences from the stable branch of the theoretical equilibrium curve. We also
find that the time and velocity of this flow are related to the computational domain. Provided
that the grid points remain unchanged, the increase in the computational domain can result in
a shorter time for the internal equilibrium of the flux rope, while the numerical error is in an
expected range.
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