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Abstract We investigate the weak stability boundary (WSB) for a new primary, Mars,
in the framework of the planar circular restricted 3-body problem, and also in the pla-
nar bicircular restricted 4-body problem by including a perturbation due to Jupiter. For
the sake of a simple stability/instability criterion, our computations have been done us-
ing the equations of motion in polar coordinates. It is found that the relative size of
the weakly stable sets around Mars is much larger than that of the Earth-Moon and the
Sun-Jupiter systems, as the mass ratio of the Sun-Mars system is significantly smaller.
We propose that this difference could be scaled by the Hill radius. In an enlarged view
of the domain close to Mars, the geometry of the WSB has been presented for various
parameters and compared to previous works. Our results also show that Jupiter’s grav-
itational force would strongly affect the Martian stable regions and should be taken
into account to design a ballistic capture trajectory.
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1 INTRODUCTION

The transfer trajectory of a spacecraft from the Earth to the Moon is generally constructed by the
well known Hohmann transfer (Hohmann 1925; Bate et al. 1971). In this transfer technique, the
semimajor axis of the spacecraft about the Earth is increased by the first maneuver ∆V1, with apogee
reaching the lunar orbit. Upon arrival at the apogee of the transfer orbit, the second maneuver ∆V2

is applied to the spacecraft in order that the Keplerian energy with respect to the Moon becomes
negative, so that a Moon-centered elliptic orbit is obtained. This ∆V2 implies that a substantial
amount of fuel is needed to slow down the spacecraft for capture into a parking orbit around the
Moon.

A new type of Earth-to-Moon transfer was invented by Belbruno (1987) and Belbruno & Miller
(1993) based on the weak stability boundary (WSB). The motivation for these transfers is to design
a trajectory for the spacecraft to automatically reach lunar orbit without the use of rocket engines
to brake, which is termed ballistic capture. The WSB transfer is a low energy process since no
fuel would be required in the lunar capture (i.e. ∆V2 = 0). This is a remarkable property that
distinguishes it from the classical Hohmann transfer. Belbruno & Carrico (2000) compared these two
kinds of transfers in detail, showing that the WSB transfer can save as much as 25% of the energy;
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but the spacecraft will take about 90 days to arrive at the Moon instead of the standard three days.
It is important to note that the WSB transfer is not only of practical interest but also of theoretical
interest. As pointed out by Belbruno et al. (2010) in the context of the planar circular restricted 3-
body problem, the stable manifolds of Lyapunov orbits about Lagrangian equilibrium points L1 and
L2 are associated with the WSB for a significant range of energies. Therefore, the WSB may act as a
good substitute for hyperbolic invariant manifolds in the study of dynamics around a small primary.

The concept of the WSB transfer was first applied to redesign the trajectory of the Japanese
mission Hiten in 1991, and maneuver the spacecraft into an orbit around the Moon with the very
little fuel that it had left (Belbruno & Miller 1990). This success demonstrated the very advantage of
utilizing the methods of astrodynamics. In another application, WSB methodology was also used to
design a low-energy lunar transfer for the spacecraft SMART-1 of the European Space Agency (ESA)
in 2004 (Schoenmaekers et al. 2001). Currently, ESA plans to send BepiColombo to explore the
planet Mercury in 2015. Considering the high approach excess hyperbolic velocity of ∼ 300 m s−1

with respect to Mercury, a traditional chemical orbit insertion burn by the engine may fail and the
mission would be lost. To avoid such a single-point failure, a WSB capture trajectory has been
proposed (Jehn et al. 2004).

There is a considerable amount of literature devoted to mathematical definitions of WSB
(Belbruno & Miller 1990; Belbruno 2002; Yagasaki 2004a,b), although they are neither precise
enough nor suitable for visualization. The algorithmic definition of the WSB can be found in
Belbruno (2004), in the framework of the Earth-Moon-spacecraft restricted 3-body model. The
boundary can be viewed as a location r∗ along the radial line l from the Moon where the first
transition between weakly stable and unstable motion occurs. The stable/unstable motion refers to
the case that the spacecraft can/cannot perform a full cycle about the Moon without going around
the Earth. After this definition was proposed, Garcı́a & Gómez (2007) generalized the WSB region
by considering the fact that there are actually multiple transitions from stability to instability for a
lunar distance larger than r∗. They claimed that the geometry of WSB is much more complicated
than that in Belbruno (2002), since there is not a single location defining the WSB on each segment
l. Moreover, they further examined the n-stable trajectory, which makes n full cycles around the
Moon. Using the refined definition in Garcı́a & Gómez (2007), Topputo & Belbruno (2009) inves-
tigated the WSB for another case of the Sun-Jupiter system. They found that the variability of the
mass ratio of the primaries, relative to the Earth-Moon case, has an important effect of changing the
structure of the weakly stable sets. More recently, the applicability of the WSB sets within the lunar
Hill sphere in view of the low-energy transfer from the Earth to the Moon has been carefully tested
by Sousa Silva & Terra (2012a,b), and they showed how to select stable subsets which can provide
feasible ballistic captures, e.g. excluding collisional trajectories.

The general goal of the present paper is to draw the new geometry of the WSB in the Sun-Mars
system, which has not been published yet and is also of particular interest in some upcoming space
missions. In contrast to the cases of Earth-Moon and Sun-Jupiter considered in previous studies, the
mass ratio of the Sun-Mars system is four to five orders of magnitude smaller. In this way, we would
obtain a more comprehensive understanding of the WSB for a wider class of circular restricted 3-
body systems, since the mass ratio is the only parameter in their equations of motion. Furthermore,
we take into account the influence of Jupiter on the spacecraft, and the more realistic stable sets
around Mars could be obtained. In order to fulfill these computations, we extend the equations of
motion in polar coordinates defined by Garcı́a & Gómez (2007) to the bicircular restricted 4-body
model. Finally, it has to be remarked that in the widely-used approach, the excess hyperbolic velocity
associated with Mars is quite high, equivalent to that of Mercury, thus the WSB strategy could be
adopted to design an ideal transfer trajectory.

The remainder of this paper is organized as follows. Section 2 describes the motion of the space-
craft in the three and four body models. The algorithmic definition of the WSB is given in Section 3.
In Section 4, for ease of determining the stable/unstable points, we rewrite the equations of motion in
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Fig. 1 The synodic coordinate system (x, y), showing the locations of the Sun (m1), Mars (m2), the
spacecraft (m3) and Jupiter (mJ). The Lagrangian equilibrium points of the Sun-Mars system in the
framework of the PCR3BP are denoted by Li (i = 1, 2, 3, 4, 5).

polar coordinates; and the weakly stable regions around Mars are numerically computed for different
parameters. The conclusions and discussion are presented in Section 5.

2 EQUATIONS OF MOTION

In this section, we first introduce the Planar Circular Restricted 3-Body Problem (PCR3BP) that will
be used to study the WSB (see Fig. 1). In the framework of the PCR3BP, we consider the motion
of a massless particle m3 moving under the gravitational perturbations of two primary bodies m1

and m2 in the same plane. We assume that m1 and m2 have Keplerian circular orbits about their
common center of mass, and they exert forces on the particle m3 but are not affected by m3. In this
paper, the three bodies m1, m2 and m3 represent the Sun, Mars and a spacecraft, respectively.

Since m1 and m2 are moving on circular orbits, then they have a constant angular velocity
n = 2π/P , where P is their common orbital period. We adopt the synodic coordinate system (x, y)
that has its origin located at the center of mass of the two primaries, and rotates at a uniform rate
n. In such a system, m1 and m2 always lie on the x-axis. It is customary to choose the total mass
(m1 + m2), the mutual distance between the Sun and Mars, and the gravitational constant G to all
be 1. According to Kepler’s third law of planetary motion, we have P = 2π, i.e. n = 1. Let the
mass ratio µ = m2/(m1 + m2), then m1 can be fixed at (x1, y1) = (−µ, 0) and m2 is placed at
(x2, y2) = (1 − µ, 0). For the Sun-Mars case, we will restrict ourselves to µ = m2/(m1 + m2) =
3.2271504036× 10−7 in the following.

Let the coordinates of the spacecraft m3 in the synodic system be (x, y), then the equations of
motion are described by

ẍ− 2ẏ =
∂U

∂x
,

ÿ + 2ẋ =
∂U

∂y
, (1)

where the “pseudo-potential” U = U(x, y) is given by

U =
1
2
(x2 + y2) +

1− µ

r1
+

µ

r2
+

1
2
µ(1− µ), (2)
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with

r2
1 = (x + µ)2 + y2,

r2
2 = (x + µ− 1)2 + y2. (3)

The system of differential equations given in Equation (1) has the well known Jacobi constant
(or Jacobi integral)

C(x, y, ẋ, ẏ) = 2U(x, y)− (ẋ2 + ẏ2). (4)

The greatest usefulness of the Jacobi constant is associated with the locations where the velocity of
m3 is equal to zero, i.e.

C = 2U(x, y) = (x2 + y2) + 2
(

1− µ

r1
+

µ

r2

)
+ µ(1− µ), (5)

which determines a set of curves in the x-y plane for particular values of C. This is the concept of
zero-velocity curves. It is obvious that Equation (4) requires 2U ≥ C since otherwise the veloc-
ity would be complex. Thus a zero-velocity curve defines the boundary between permissible and
forbidden regions in the motion of m3.

The motion described by Equation (1) has five equilibrium points, where m3 has zero velocity
(ẋ = ẏ = 0) and zero acceleration (ẍ = ÿ = 0) in the rotating frame. As shown in Figure 1,
the three collinear Lagrangian equilibrium points L1, L2 and L3 lie along the x-axis; there are two
triangular Lagrangian equilibrium points L4 and L5, each of which forms an equilateral triangle
with the primaries m1 and m2. The topology of zero-velocity curves in the PCR3BP will change
when C passes through its critical values computed at these five Lagrangian equilibrium points. The
largest critical value of C is attained at the L1 point, and it can be expressed in terms of µ (Murray
& Dermott 1999)

CL1 ≈ 3 + 34/3µ2/3 − 10µ/3. (6)

If the Jacobi constant C > CL1 then the region of possible motion for m3 is divided into three
disjoint parts: one around m1, one around m2 and the other at a large distance. In this case the WSB
transfer of the spacecraft going from a long distance (e.g. near the Earth) to the vicinity of Mars is
not likely to take place, because to do so the spacecraft would have to cross the zero-velocity curves
and travel in the forbidden region of motion.

Next, we include the gravitational force of the giant neighbor of Mars – Jupiter – on the space-
craft by means of the Planar Bicircular Restricted 4-Body Problem (PBR4BP). The framework to
deal with it is the same the synodic system as in the PCR3BP (Fig. 1), where the Sun and Mars
are rotating around their center of mass, while Jupiter is supposed to be turning clockwise in a cir-
cle about the Sun-Mars barycenter. The four bodies are assumed to move in the same plane. Then in
PBR4BP, the motion of the spacecraft m3 is governed by the modified set of second order differential
equations

ẍ− 2ẏ =
∂(U + Ω)

∂x
,

ÿ + 2ẋ =
∂(U + Ω)

∂y
, (7)

with the terms related to Jupiter being

Ω =
mJ

rJ
− mJ

ρ2
(x cos φ + y sinφ) ,

r2
J = (x− ρ cos φ)2 + (y − ρ sin φ)2,
φ = φ(t) = ωJ · t + φ0, (8)



380 J. Li & Y.-S. Sun

where rJ is the distance between the spacecraft and Jupiter, φ is the phase angle between Jupiter and
the Sun-Mars direction (i.e. the positive direction of the x-axis), and the constant φ0 corresponds to
the initial value of φ at t = 0. Referring to the adimensional units as in the case of PCR3BP, we take
mJ = 9.5479163030 × 10−4 to be the mass of Jupiter, ρ = 3.4156295646 as the distance between
Jupiter and the Sun-Mars barycenter, and ω = −0.8415102846 as the relative angular velocity in
the rotating coordinate system.

The PBR4BP is a good approximate model for the Sun-Mars-Jupiter system, since Mars’s ec-
centricity is about 0.093 and Jupiter’s is about 0.048, and the inclination between the orbits of these
two planets is less than 1◦. However, it should be noticed that the system defined by Equation (7)
no longer admits either the Jacobi constant or equilibrium points like the one given by Equation (1)
does.

3 DEFINITION OF THE WEAK STABILITY BOUNDARY

In order to define the WSB according to Belbruno (2004), it is necessary to give the two-body
Keplerian energy H2 of the spacecraft m3 with respect to Mars m2. Let v be the magnitude of the
velocity of m3 in m2-centered inertial coordinates, then we have

H2 =
1
2
v2 − µ

r2
, (9)

where r2 is the distance from m3 to m2 and has been given in Equation (3).
In the framework of the PCR3BP, we will give the algorithmic definitions of the weakly stable

set W and the WSB ∂W . Consider all the trajectories of m3 with such initial conditions (Fig. 2):

(i) The initial position of the trajectory is on a radial segment l(θ) departing from Mars m2 and
making an angle θ with respect to the x-axis, in the rotating system. The motion of m3 is
assumed to start at the periapsis of an osculating ellipse with respect to m2 with eccentricity e,
i.e. the initial velocity vector of m3 is normal to the line l. This is

v(0) =

√
µ(1 + e)

r
, (10)

where r = r2(0) is the initial radius. It should be stated that there are two different choices for
the direction of the initial velocity, prograde motion and retrograde motion. In this paper, only
the prograde one will be investigated since such a trajectory is of great interest in the design of
WSB transfers.

Fig. 2 The algorithmic definition of stable and unstable orbits of m3.
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(ii) The initial Keplerian energy H2(0) is negative at t = 0. By virtue of Equations (9) and (10), we
obtain

H2(0) =
µ

2
· e− 1

r
. (11)

So, it is obvious that the requirement H2(0) < 0 on the initial conditions is equivalent to e ∈
[0, 1).

(iii) The eccentricity e of the initial osculating ellipse around m2 is constant along the line l. Then
after fixing the angle θ, the evolution of m3 only depends on the initial distance r. The value of
v(0) can be deduced from Equation (10) and it varies along l.

Suppose that m3 starts its motion with the above initial conditions. We define weak stability
and instability in the following way (Belbruno 2004; Romagnoli & Circi 2009).

Definition 1 The motion of m3 is said to be weakly n-stable if after leaving the point a ∈ l,
it makes n full cycles about m2 without going around m1 (Fig. 2), and it has negative or zero
Keplerian energy H2 relative to m2 for every return to the line l.

Definition 2 The motion of m3 is weakly n-unstable if:

(1) after leaving the line l, the forward trajectory of m3 intersects l again at a point where the
Keplerian energy H2 is positive, without going around m1;

(2) after leaving the point b ∈ l, m3 moves away from m2 towards m1 and performs a complete
turn around m1 before its n-th return to l (Fig. 2);

(3) after leaving the line l, m3 collides with either of the two primaries, m1 or m2.

Condition (1) of the weak instability is the ballistic escape and condition (2) is generally called
the primary interchange escape. To exclude condition (3) for a relatively large stability number n,
we may be able to construct safe capture trajectories in practical applications.

In the PCR3BP, the existence of the Jacobi constant does permit us to find the n-stable regime
in a sufficiently small open neighborhood of m2. For the spacecraft m3 having Jacobi constant
C > CL1 , if it is originally orbiting around m2 with small r, then it can never escape towards m1.
Otherwise, m3 would have to cross the forbidden region where the motion is impossible. Stability
against escape for this case is essentially Hill stability (Hill 1878; Szebehely 1978). However, as
the initial conditions vary along the line l satisfying (i)–(iii), there is a critical distance r∗(θ, e) ∈ l
from m2 having the following properties:
− if r ≤ r∗, the motion is n-stable;
− if r > r∗, the motion is n-unstable.

Then the WSB can be defined as (Belbruno 2004)

∂W ∗
n = {r∗(θ, e)|θ ∈ [0, 2π], e ∈ [0, 1)}, (12)

where r∗ is a smooth function of θ and e, and it indicates the first transition from stability to insta-
bility.

Furthermore, the definition of the WSB given by the set in Equation (12) has been generalized
by Garcı́a & Gómez (2007). They showed that, for values of the initial radius larger than r∗, there
are still a finite number of points r∗k along the line l for which stable/unstable transitions would also
occur. Then the weakly n-stable points on l can be given by a countable union of closed intervals

Wn(θ, e) =
⋃

k≥1

[r∗2k−1, r
∗
2k], (13)
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where r∗k≥2 depends on θ and e, and the precision of numerical calculations. Here, we denote r∗1 as
the physical radius of Mars, and r∗2 as the prescribed critical distance r∗ corresponding to the single
transition.

By varying the counterclockwise angle θ ∈ [0, 2π] measured from the positive direction of the
x-axis and the eccentricity e ∈ [0, 1) of the initial osculating ellipse, we have the following weakly
stable sets of order n:

Wn(e) =
⋃

θ∈[0,2π]

Wn(θ, e) , (14)

and
Wn =

⋃

θ∈[0,2π],e∈[0,1)

Wn(e) . (15)

As observed in Garcı́a & Gómez (2007), Wn is a complicated region that recalls a Cantor set and
has a fractional dimension between 2 and 3.

According to the above description of stable sets, if r ∈ [r∗2k−1, r
∗
2k] the motion is n-stable, and

for any arbitrarily small δ, all points r′ ∈ [r∗2k + δ, r∗2k+1 − δ] are n-unstable. Thus, the WSB of
order n comprises all endpoints of each interval [r∗2k−1, r

∗
2k]

∂Wn = {r∗k(θ, e)|θ ∈ [0, 2π], e ∈ [0, 1)} . (16)

It should be remarked that ∂W ∗
n defined by Equation (12) is a proper subset of the extended WSB

∂Wn.
In order to display the geometry of the WSB on the initial (r, θ) plane, we also define a subset

of ∂Wn by fixing the eccentricity e

∂Wn(e) = {r∗k(θ, e)|θ ∈ [0, 2π]} . (17)

Analogously, Definitions 1 and 2 for describing the weak stability and instability for spacecraft
m3 can be easily extended to the PBR4BP, just with one more unstable condition added, i.e. m3

collides with Jupiter. Consequently, we can obtain the refined weakly n-stable sets and their WSBs,
by introducing the gravitational perturbation of Jupiter on m3.

4 COMPUTATION OF WEAKLY STABLE SETS

According to the algorithmic definition given in Section 3, to determine the weakly stable/unstable
points around Mars, we have to integrate a large number of trajectories starting on the radial segment
l(θ) with the initial velocity vector that is normal to it. For a fixed eccentricity e ∈ [0, 1) (i.e.
H2(0) < 0), we have the initial conditions of the spacecraft at the time t = 0

x(0) = 1− µ + r cos θ , y(0) = r sin θ ,

ẋ(0) = −v sin θ + r sin θ , ẏ(0) = v cos θ − r cos θ, (18)

where the position and velocity are in the framework of the synodic system (x, y).
As θ2(t) stands for the polar angle that the position vector of m3 relative to m2 makes with the

positive direction of the x-axis, then we have θ2(0) = θ. By integrating the equations of motion (1)
or (7), we can track the time evolution of θ2(t) through the trigonometric relations

cos θ2 =
x− 1 + µ

r2
and sin θ2 =

y

r2
. (19)

However, the value of θ2(t), determined by this procedure, will vary within the limited range
[0, 2π] and discontinuously across θ2 = 2π. In order to verify whether m3 completes n full cycles
around m2 at t = tn by a simple criterion

|θ2(tn)− θ| = n · 2π , (20)

it is natural to consider the dynamical system in polar coordinates (r2, θ2) relative to m2, where
θ2(t) turns out to be a monotonic increasing function of time t.
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4.1 WSB in the PCR3BP

In this subsection, we will draw on some formulas deduced in the previous work of Topputo &
Belbruno (2009). In the m2-centered polar reference system, the coordinates (r2, θ2) are defined by

x = 1− µ + r2 cos θ2 , y = r2 sin θ2 , (21)

and the equations of motion (1) for m3 can be written explicitly as

r̈2 − r2θ̇
2
2 − 2r2θ̇2 = (1− µ) cos θ2

(
1− 1

r3
1

)
+ r2

(
1− 1− µ

r3
1

)
− µ

r2
2

,

r2θ̈2 + 2ṙ2θ̇2 + 2ṙ2 = (1− µ) sin θ2

(
1
r3
1

− 1
)

, (22)

with initial conditions

r2(0) = r, θ2(0) = θ ,

ṙ2(0) = 0 , θ̇2(0) =

√
µ(1 + e)

r3
− 1 . (23)

In the same manner, to check whether the spacecraft makes a full cycle around the Sun, we
also introduce the m1-centered polar reference system. The coordinates (r1, θ1) are related to the
Cartesian coordinates (x, y) through

x = −µ + r1 cos θ1 , y = r1 sin θ1 , (24)

and then Equation (1) becomes

r̈1 − r1θ̇
2
1 − 2r1θ̇1 = µ cos θ1

(
1
r3
2

− 1
)

+ r1

(
1− µ

r3
2

)
− 1− µ

r2
1

,

r1θ̈1 + 2ṙ1θ̇1 + 2ṙ1 = µ sin θ1

(
1− 1

r3
2

)
, (25)

with initial conditions

r1(0) =
√

r2 + 2r cos θ + 1 , θ1(0) = tan−1

(
r sin θ

1 + r cos θ

)
,

ṙ1(0) = −rθ̇2(0) sin(θ − θ1(0)) , θ̇1(0) =
rθ̇2(0)
r1(0)

cos(θ − θ1(0)) . (26)

By solving the coupled systems (22) and (25) simultaneously, we are able to produce both angles
θ2 and θ1 as smooth functions of time. Then we say that the motion of m3 is weakly n-stable if the
condition (20) is fulfilled, and the Kepler energy H2 ≤ 0 at each intersection of its trajectory with l,
and m3 has not completed a revolution around m1, i.e. |θ1(tn)− θ1(0)| < 2π.

The weakly n-stable sets Wn(e) have been numerically computed at six values of the eccen-
tricity given by e = 0.0, 0.2, 0.4, 0.6, 0.8, 0.95. For the initial radius r and azimuth θ, we choose a
reasonably high resolution of ∆r = 20 000 km (≈ 8.8× 10−4 in adimensional units) and ∆θ = 1◦.
Slightly different from previous works starting from r = 0, the minimum value of r is set to be
5000 km, which is a bit larger than Mars’s physical radius (≈ 3396 km). The maximum radius r is
taken to be one Sun-Mars distance, about 2.28× 108 km (i.e. 1 in the adimensional unit system).

We employed a 7-8th-order Runge-Kutta-Fehlberg algorithm with an adaptive stepsize, and lo-
cal truncation error as small as 10−20. The span of integration time is set to be equal to 200π in
adimensional time units, which corresponds to 100 orbital periods for Mars. After this time interval,



384 J. Li & Y.-S. Sun

Fig. 3 A global view of the weakly 1-stable set W1(0.0) for the radius r as large as one Sun-Mars
distance (∼ 2.28 × 108 km) in the PCR3BP. The origin of the polar reference system is located at
Mars (m2).

if m3 has not performed n complete turns around m2, the motion is classified as unstable. For the
sake of detecting a collision between the spacecraft and the surface of any primary, the regularization
transformation has not been included in our codes, and the numerical integration of an orbit would
be terminated early if r2 ≤ RMars or r1 ≤ RSun (or rJ ≤ RJupiter in the later PBR4BP), where R
is the physical radius of an object.

Figure 3 reports our preliminary results of weakly stable sets Wn(e) in the Sun-Mars system
for the case of n = 1 and e = 0.0. The geometry of W1(0.0) can be divided into three major
parts: (1) the domain close to Mars; (2) two curves extending as far as one Sun-Mars distance, but
they comprise a series of discrete stable points; (3) the region from θ = −75◦ to 60◦, where there
are multiple transitions from stability to instability, and the stable set along each radial segment l
possesses a Cantorian structure. These arc-like stable sets have not been observed in the Sun-Jupiter
system or the Earth-Moon system, as we discuss below.

The global geometry of the stable set W1(0.0) obtained here is clearly different from that shown
in previous studies (Garcı́a & Gómez (2007); Romagnoli & Circi 2009; Topputo & Belbruno 2009),
in the sense that the Sun-Mars system has an extremely small mass ratio (µ = 3.2271504036×10−7)
compared to both the Earth-Moon case (µEM = 1.2150585609 × 10−2) and the Sun-Jupiter case
(µSJ = 0.9538811803 × 10−3). This can be understood by looking at the equations of motion
(1), where the mass ratio is the only parameter. Indeed, if considering only the first stable/unstable
transition, the set ∂W ∗

n can be approximately represented by the surface of section C(r, θ, e) = CL1

in space (r, θ) for a fixed value of e (Belbruno 2002). As ∂W ∗
n is the boundary of the core of the

stable set Wn in the case of multiple transitions, we propose that the relative size of Wn could be
characterized by the Hill radius

rH =
(µ

3

)1/3

, (27)

which denotes the adimensional distance from m2 to the Lagrangian equilibrium point L1 (Fig. 1).
Taking into account the amplification factor (µEM/µ)1/3 ≈ 34, an enlarged view of the weakly

stable region in the neighborhood of Mars is shown in Figure 4, for different values of the eccentricity
e. As is clearly seen, with four arms extending from the four corners of the central stable core close
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Fig. 4 Weakly 1-stable sets W1(e) for eccentricities e = 0.0, 0.2, 0.4, 0.6, 0.8, 0.95 in the PCR3BP,
with an enlarged view of the domain relatively close to Mars.

to Mars, respectively, the main structure of the scaled 1-stable sets W1(e) is similar to the Earth-
Moon case (Romagnoli & Circi 2009); and the contraction of the stable core with increasing e has
also been identified. Likewise, our results can also be scaled to the Sun-Jupiter case by using the
amplification factor (µSJ/µ)1/3.

We recall that, in the case of n = 1 and e = 0.0, Figure 3 shows the arc-like stable sets in
the region from θ = −75◦ to 60◦. This very structure has been magnified in the upper left panel of
Figure 4, while the overwhelming majority of stable points reside in the sectorial area θ ∈ (0, 60◦),
which is recorded as Sector-D. Compared with the cases of the Earth-Moon and Sun-Jupiter, Sector-
D represents a new stable regime about m2 in the PCR3BP for the extremely small mass ratio of the
primaries.
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As illustrated, the surface of section C = CL1 represents an analytic approximation of
∂W ∗

1 (0.0), i.e. the boundary of the core of W1(0.0), out of which all the stable trajectories have
Jacobi constant values smaller than CL1 . Hence, the four arms and Sector-D are of particular inter-
est since for C < CL1 two branches of the zero velocity curves around m1 and m2 are connected
through a neck opened at L1, such that ballistic capture can take place. Furthermore, as shown in
Figure 4, the geometric configurations of the arms and Sector-D would barely change, even when
the eccentricity goes to 1.

It is important to note that our aim is to explore the WSB transfer by which the spacecraft
can approach a domain near Mars, hence only the ballistic capture for a not too large perimartian
altitude is worth studying further. From now on, we will investigate the weak stability problem using
the same scale as in Figure 4 that covers a relatively small initial distance r from Mars.

4.2 WSB in the PBR4BP

A more realistic model for computation of the Martian WSB is represented by the PBR4BP, in
which the gravitational perturbation from Jupiter on the motion of the spacecraft is included. For
the reasons given at the beginning of Section 4, we will establish the equations of motion in polar
coordinates for the PBR4BP.

In the m2-centered polar reference system, the set of differential equations given in
Equation (22) is modified as

r̈2 − r2θ̇
2
2 − 2r2θ̇2 = (1−µ) cos θ2

(
1− 1

r3
1

)
+r2

(
1− 1−µ

r3
1

)
− µ

r2
2

+f2 cos θ2+g2 sin θ2 ,

r2θ̈2 + 2ṙ2θ̇2 + 2ṙ2 = (1−µ) sin θ2

(
1
r3
1

−1
)
−f2 sin θ2 + g2 cos θ2 , (28)

where

f2(r2, θ2) = −mJ

(
r2 cos θ2 + 1− µ− ρ cos φ

r3
J

+
cosφ

ρ2

)
,

g2(r2, θ2) = −mJ

(
r2 sin θ2 − ρ sin φ

r3
J

+
sinφ

ρ2

)
. (29)

Analogously, the coupled system defined by Equation (25) relative to m1 in polar coordinates turns
out to be

r̈1 − r1θ̇
2
1 − 2r1θ̇1 = µ cos θ1

(
1
r3
2

− 1
)

+ r1

(
1− µ

r3
2

)
− 1− µ

r2
1

+ f1 cos θ1 + g1 sin θ1 ,

r1θ̈1 + 2ṙ1θ̇1 + 2ṙ1 = µ sin θ1

(
1− 1

r3
2

)
− f1 sin θ1 + g1 cos θ1 , (30)

where

f1(r1, θ1) = −mJ

(
r1 cos θ1 − µ− ρ cosφ

r3
J

+
cos φ

ρ2

)
,

g1(r1, θ1) = −mJ

(
r1 sin θ1 − ρ sinφ

r3
J

+
sin φ

ρ2

)
. (31)

Note that the initial conditions of both systems in Equations (28) and (30) are exactly the same as in
the PCR3BP, given by Equations (23) and (26), respectively.

In the framework of the PBR4BP, we have done the following numerical experiments to better
understand properties of the weakly n-stable sets W̃n(e) and their boundaries, for different values
of the eccentricity e, the initial phase angle φ0 of Jupiter and the stability number n.
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Fig. 5 Weakly 1-stable sets W̃1(e) for increasing e in the framework of the PBR4BP. It can be seen
that the stable Sector-D presented in the PCR3BP disappears, while a new stable branch is derived
from the lower left arm.

4.2.1 Structure of 1-stable sets

Figure 5 displays the behavior of the weakly 1-stable sets W̃1(e) for increasing values of e in the
PBR4BP. Comparing Figure 5 against Figure 4, it is immediately found that the stable Sector-D
presented in the PCR3BP disappears. Note that the Mars-Jupiter distance reaches its minimum when
the phase angle φ = 0 in the bicircular model, i.e. Jupiter lies on the radial segment l(θ = 0) outside
the position of Mars. This implies that Sector-D with θ ∈ (0, 60◦) suffers the strongest perturbation
from Jupiter and the points inside this region will lose their weak stabilities. Nevertheless, it can be
observed that there is a new WSB branch derived from the lower left arm of W̃1(e) in the PBR4BP,
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Fig. 6 Weakly 1-stable sets W̃1(0.0) for different values of the initial phase angle φ0 of Jupiter. The
case of φ0 = 0 has been shown in the upper left panel of Fig. 5.

extending from a fixed value of the azimuth θ∗ = 210◦. Moreover, even if the eccentricity increases
to about 1, the geometry of this branch remains unchanged. Besides these two apparent discrepancies
between the three and four body models, the overall configurations of W̃1(e) are almost identical for
each fixed eccentricity.

In the above research for the PBR4BP case, we require that Jupiter starts its motion from the
point in the positive direction of the x-axis, i.e. the initial phase angle φ0 = 0. As illustrated, the
influence of Jupiter on the Martian WSB is relatively large under such a configuration. Since Mars
and Jupiter are assumed to move on circular and non-resonant orbits, theoretically speaking, the
cumulative effect of Jupiter’s perturbation on the Sun-Mars system should be independent of φ0.
However, for a large proportion of stable points plotted in Figure 5, they return to the radial line
l(θ) within only one orbital period of Mars. During this time span, the angular displacement ∆φ
of Jupiter would be no greater than 57◦. Thus, in order to have a complete view of the case where
Jupiter is a perturbation, it is necessary to consider different initial positions of Jupiter relative to the
Sun-Mars system.

In Figure 6, we graph the 1-stable sets W̃1(0.0) for the other three representative angles of
φ0 = 90◦, 180◦ and 270◦. Combining the result from the upper left panel of Figure 5 for the case of
φ0 = 0, it is perfectly apparent that these stable sets are qualitatively the same. This suggests that
the influence of Jupiter’s initial phase could be neglected in the study of the WSB around Mars.

In the framework of the PBR4BP, all collisions take place at the surface of either Mars or the
Sun, and no collisions with Jupiter have been observed for the time span of 100 orbital periods of
Mars in our integrations.

4.2.2 The case of n-stability (n ≥ 2)

Since we want to use the WSB to design low-energy transfer trajectories by the mechanism of
ballistic capture, we must take into account the lifetime of the spacecraft around Mars. The period
of a spacecraft orbiting Mars can be estimated by its perimartian altitude and eccentricity, then we
may determine how many revolutions it should complete to accomplish the exploration task, i.e. with
regard to the stability number n.

Once the 1-stable sets W̃1 have been carried out in the PBR4BP, the next step is the computation
of W̃n corresponding to increasing order n. It is straightforward to verify that W̃n ⊆ W̃m if n > m,
for a fixed value of e. Therefore, we can use the initial conditions for (n − 1)-stability to generate
n-stable sets. This trick saves a huge amount of CPU time, since all the weakly (n − 1)-unstable
trajectories are excluded from the numerical calculations.

Starting with the stability number n = 2, we graphically produce a sequence of W̃n up to
n = 9. These stable sets are shown in Figures 7 and 8 for e = 0 and 0.95, respectively, associated



Weak Stability Boundaries in the Sun-Mars System 389

Fig. 7 The sequence of weakly n-stable sets W̃n(e) for the stability number n = 1, 2, 3, 4, 5, 6,
7, 8, 9 with e = 0.0 in the PBR4BP. The points with the initial Jacobi “constant” C < CL1 have
been plotted in red (color online).

with the 1-stable sets W̃1(0.0) and W̃1(0.95) from Figure 5. In order to highlight the weakly n-stable
points with C < CL1 , which have properties that the zero velocity curves are open at L1 and the
ballistic capture transfer of the spacecraft into the Mars orbit is allowed, they have been plotted in
red. However, for black stable points with C ≥ CL1 , there is no possibility for an orbital transfer
since they correspond to trajectories that will be permanently bounded in the Hill region of Mars as
t → ±∞.

It is worth remarking that the value of C is not conserved in the PBR4BP. From Equations (5)
and (7), we have

dC

dt
= 2

(
∂Ω
∂x

· ẋ +
∂Ω
∂y

· ẏ
)

= 2
(

dΩ
dt
− ∂Ω

∂t

)
. (32)

Then we integrate Equation (32) from 0 to t

∆C = 2 [Ω(0)− Ω(t)] + 2
∫ t

0

∂Ω
∂t

dt . (33)



390 J. Li & Y.-S. Sun

Fig. 8 Same as in Fig. 7, but for e = 0.95.

Since the integral in Equation (33) is defined relative to the evolution of the trajectory, we cannot
analytically estimate this time variation of C. Nevertheless, a careful examination of all the stable
trajectories over n revolutions reveals that ∆C turns out to be within ∼ 10−5 and is negligible. This
suggests that the topology of the region of possible motion of m3, related to the WSB transfer, may
be well constrained by studying the Jacobi “constant” in the PBR4BP.

In Figure 7, one can find that the (black) core of W̃1(0.0) is preserved as the stability number n
increases, while all the (red) arms become more and more sparse. It is also seen that these arms exist
in the form of a continuous structure for a certain range of n, and they end up in only a few discrete
points when n ≥ 8. As for the case of e = 0.95 with increasing n shown in Figure 8, the evolution
of the geometry of the weakly stable regions is equivalent. The information about the n-stable sets
may allow us to determine the initial conditions of a spacecraft leading to ballistic capture within its
required lifetime around Mars.

5 CONCLUSIONS AND DISCUSSION

The WSB transfers require substantially less fuel for a spacecraft to be automatically captured by a
target, such as the Moon or other planets and satellites in our Solar System, as compared to traditional
Hohmann transfers. They are designed to eliminate the hyperbolic excess velocity at arrival, and are
thus called ballistic capture. In this paper, we investigated the geometry of the WSBs around the
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planet Mars, which is not only a new case but may also be very advantageous for future space
missions.

First, we computed the WSB region in the Sun-Mars-spacecraft configuration by adopting the
PCR3BP. It is seen that the relative size of the weakly stable sets is much larger than that of the Earth-
Moon and the Sun-Jupiter systems, as the mass ratio of the Sun-Mars system is four to five orders of
magnitude smaller. We propose that this difference could be characterized by the Hill radius of the
second primary. Accordingly, an enlarged view of the domain close to Mars is presented. We find
that the main structure of the stable sets, a core with four arms extending from its four corners, is
approximately the same as in the cases of the Earth-Moon and Sun-Jupiter (Garcı́a & Gómez 2007;
Topputo & Belbruno 2009). Nevertheless, a new stable regime in the sectorial area θ ∈ (0, 60◦)
appears; it is identified as Sector-D. For increasing values of the initial eccentricity e relative to
Mars, the core of stable sets reduces in size, but the four arms and Sector-D would barely change
even when e goes to 1.

Next, we take into account the influence of Jupiter on the Martian WSB, by means of the
PBR4BP. On comparing with the PCR3BP case, we find that there are two apparent discrepancies:
(1) Sector-D becomes totally unstable, since it is the very region that suffers the strongest gravita-
tional perturbation from Jupiter; (2) there is a new continuous WSB branch derived from the lower
left arm of the Sun-Mars stable sets, starting at a particular polar angle θ∗ = 210◦. Moreover, our
numerical simulations show that these results are independent of the initial eccentricity e and the
initial phase angle of Jupiter.

It should be noted that the above computations have been done for the weakly 1-stable sets,
where the spacecraft is required to make only one complete circle around Mars. Finally, we further
examined the structure of the n-stable (n ≥ 2) sets in the framework of the PBR4BP. This study
demonstrated that, for increasing values of the stability number n, the stable core could be very well
preserved, but all the arms become more and more sparse, and they end up in only a few discrete
points when n ≥ 8. However, the appearance of these isolated stable points may not be intrinsic but
due to the discontinuity in initial values of r and θ.

Aside from the Sun-Mars system considered in this paper, actually, another set of primaries
with extremely small mass ratio has been pursued for the intriguing case of the Sun-Mercury (Makó
et al. 2010). However, unlike any other planets in the Solar System, Mercury has a substantial orbital
eccentricity of > 0.2. Thus Makó et al. computed the WSB around Mars in the framework of the
elliptic restricted 3-body problem, where the two primaries are moving on elliptic orbits. Such an
eccentric celestial system may be further extended in some restricted 4-body model by including the
perturbation of the planet Venus, to better construct Mercury’s WSB and especially the low-energy
transfer trajectories.
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