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Abstract Attitude stabilization of a charged rigid spacecraft in Low Earth Orbit us-
ing torques due to Lorentz force in pitch and roll directions is considered. A space-
craft that generates an electrostatic charge on its surface in the Earth’s magnetic field
will be subject to perturbations from the Lorentz force. The Lorentz force acting on
an electrostatically charged spacecraft may provide a useful thrust for controlling a
spacecraft’s orientation. We assume that the spacecraft is moving in the Earth’s mag-
netic field in an elliptical orbit under the effects of gravitational, geomagnetic and
Lorentz torques. The magnetic field of the Earth is modeled as a non-tilted dipole.
A model incorporating all Lorentz torques as a function of orbital elements has been
developed on the basis of electric and magnetic fields. The stability of the spacecraft
orientation is investigated both analytically and numerically. The existence and stabil-
ity of equilibrium positions is investigated for different values of the charge to mass
ratio (a™). Stable orbits are identified for various values of o*. The main parameters
for stabilization of the spacecraft are a* and the difference between the components
of the moment of inertia for the spacecraft.

Key words: space vehicles — atmospheric effects — celestial mechanics — kine-
matics and dynamics

1 INTRODUCTION

The attitude stabilization of a spacecraft is subject to the perturbation torques which produce turn-
ing moments about the center of mass of an orbiting spacecraft. How significant the effect of these
torque disturbances is on the spacecraft depends on the configuration of the spacecraft. The pertur-
bation torques may be used to produce a persistent turning moment about the center of mass of the
spacecraft.

The present work analyzes the attitude stabilization of a charged spacecraft by taking into ac-
count the effects of gravitational torque, geomagnetic torque and Lorentz torque. In the case of an
electrostatically charged spacecraft, due to the interaction with space plasma, the Lorentz force must
be taken into account as a perturbation on the orbital and attitude motions of the spacecraft.

The nascent concept of a Lorentz spacecraft, which is an electrostatically charged space ve-
hicle, may provide a new approach to the solution of attitude stabilization of a spacecraft moving
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around the Earth in low Earth orbit (LEO). Recently, a novel attitude orientation and formation fly-
ing concept using electrostatic propulsion has been proposed by Pollock et al. (2011), and Peng &
Gao (2012). The charge of the spacecraft is controlled to generate inter-spacecraft Coulomb forces
in geostationary orbit. The Lorentz force is a possible means for charging and thus controlling the
orbits of the spacecraft without consuming propellant (Hiroshi et al. 2009). Peck (2005) was the first
to introduce a control scheme using Lorentz augmented orbits. Orbits of a spacecraft accelerated by
the Lorentz force are termed Lorentz-augmented orbits, because the Lorentz force cannot completely
replace traditional rocket propulsion. Many authors introduced using the Lorentz force to generate
perturbations on the orbital motion and formation flying such as in Vokrouhlicky (1989), Abdel-Aziz
(2007a), Streetman & Peck (2007), Hiroshi et al. (2009), Gangestad et al. (2010) and Abdel-Aziz &
Khalil (2014).

Abdel-Aziz (2007b) studied the attitude stabilization of a rigid spacecraft moving in a circular
orbit due to Lorentz torque in the case of a uniform magnetic field and a spacecraft having a cylindri-
cal shape. Yamakawa et al. (2012) investigated the attitude motion of a charged pendulum spacecraft
moving in a circular orbit, having the shape of a dumbbell pendulum due to Lorentz torque. Their
analysis of the stability of the equilibrium points only focused on the pitch direction within the
equatorial plane. In a recent study, Abdel-Aziz & Shoaib (2014) studied the relation between the
magnitude of Lorentz torque and inclination of the orbits for certain equilibrium positions where the
spacecraft was considered to be in a circular orbit.

In this paper, we analyze the attitude stabilization of a charged spacecraft moving in the geomag-
netic field in LEO. We develop a new model for torque due to the Lorentz force for the general shape
of the spacecraft using the Earth’s magnetic field, which is modeled as a non-tilted dipole. The total
Lorentz force and its torque are developed as a function of orbital elements of the spacecraft. A dy-
namical model is built to describe the attitude dynamics of the Lorentz spacecraft. Therefore, based
on the dynamical model, the required control torque due to Lorentz force for different configurations
is developed. The Lorentz acceleration cannot totally replace propellant but can be used to reduce
the consumption of propellant. Thus, this paper analyzes the attitude stability of the spacecraft with
the Lorentz acceleration and gives the corresponding required specific charge to mass ratio for such
attitude orientation. This paper also analyzes the effects of charge to mass ratio on the position and
stability of equilibrium positions. We also numerically analyze the behavior of orbits close to the
equilibrium positions.

Section 1.1 gives the formulation of a coordinate system to describe the spacecraft. In Section 2,
an expression of the Lorentz force and the total torque due to Lorentz force are derived. In Section 3,
all possible equilibrium positions are identified, and their stability are analyzed in the pitch and roll
directions. Moreover Section 3 gives numerical results to explain the effect of charge to mass ratio
on the stability and existence of equilibrium solutions. Conclusions are given in Section 4.

1.1 Formulation of a Coordinate System to Describe the Spacecraft

We assume that the spacecraft is equipped with an electrostatically charged protective shield that has
an intrinsic magnetic moment. The attitude orientation of the spacecraft about its center of mass is
analyzed under the influence of gravity gradient torque 7z, magnetic torque 73 and torque 71, due
to Lorentz force. The torque Ti, results from the interaction between the geomagnetic field and the
charged screen of the electrostatic shield.

We consider the orbital coordinate system C.,_,, ., with C, tangent to the orbit in the direction
of motion, C,, lies along the normal to the orbital plane and C’, lies along the radius vector 7 of
the point O relative to the center of the Earth. The investigation is carried out assuming there is
rotation of the orbital coordinate system relative to the inertial system described by angular velocity
Q. As an inertial coordinate system, the system O xy 7 is taken, whose axis O Z (k) is directed along
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X

Fig.1 Spherical coordinates used in the derivation of the equations of motion.

the axis of the Earth’s rotation, the axis OX (¢) is directed toward the ascending node of the orbit,
and the plane coincides with the equatorial plane. Also, we assume that the spacecraft’s principal
axes of inertia Cy, ,, -, are rigidly fixed to a spacecraft (i, ji, ks ). The spacecraft’s attitude may be
described in several ways; in this paper the attitude will be described by the angle of yaw 1, the
angle of pitch 6 and the angle of roll ¢, between the spacecraft’s Cy, ,, ., and the set of reference
axes Oxyz. The three angles are obtained by rotating spacecraft axes from an attitude coinciding
with the reference axes to describe attitude in the following way:
— The angle of precession 1 is taken in a plane orthogonal to the Z-axis.
— 6 is the rotation angle between the axes Z and zj.
— ¢ is angle of self-rotation around the Z-axis.
We write the relationship between the reference frames Cy, , ., and C,_,. ., as below (Wertz
1978):
Q1 Q2 ag
A= | b1 B2 B3 |, )]
7172 78

where
(a1, g, ai3) = (cos 1) cos ¢ — sin ) sin ¢ cos B, — cos 1 sin ¢ — cos 0 sin 1 cos ¢, sin 6 sin 1)),
(81,02, 83) = (sinthcosp + cos b cos ) sinp, — sin ) sin ¢ + cos 6 cos ¥ cos ¢, — sin 6 cos 1),

(71, 72,7v3) = (sin 6 sin ¢, sin 6 cos ¢, cos §),
2

and

o = aiiy + aofy + asky, B = Biiy + PBojy + Baks, Y = v1ip + Y2 jp + 13k 3

2 TOTAL TORQUE DUE TO LORENTZ FORCE

We use spherical coordinates to describe the magnetic and gravitational fields, and the spacecraft
trajectory, as shown in Figure 1. The X, Y and Z axes form a set of inertial Cartesian coordinates.
The Earth is assumed to rotate about the Z-axis. The magnetic dipole is not tilted and therefore is
axisymmetric. The spherical coordinates consist of radius 7, colatitude angle ® and azimuth from
the X direction © (see Fig. 1). The magnetic field is expressed as

B L
B="2[2cos ® i+ sin® ¢+0@] , %)
T
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where By is the strength of the magnetic field in Wb m. The acceleration in inertial coordinates is
given by
F
a=—=-Lri L(E+ V., xB), )
m r m
where -L is the charge-to-mass ratio of the spacecraft and V', is the velocity of the spacecraft

relative to the magnetic field of the Earth. The total Lorentz force (per unit mass) can be written as

Fy,

LE+V,axB =LE+ L (V. xB)
m m m

= Felec + Fmaga (6)

where F'y,, is the Lorentz force experienced by a point in the magnetic field and Fgjc. is the Lorentz
force experienced by an electric dipole moment in the presence of an electric field,

q

Felec = EE . (7)

Now starting with F',,s using Maxwell (1861), we can write
Fmag:g(vrele), Vrele—wexr, (8)
m

where V is the inertial velocity of the spacecraft and w, is the angular velocity vector of the Earth.
According to Gangestad et al. (2010), we use

V=7 i+rdd+r Osin®d O,

and

T =TT, We =WeZz, 2=cos<1>f—|—sin<l><13. 9)
Therefore the acceleration in inertial coordinates is given by

qBo | — (@ - we) (sin2 O 7+ Sin(2<I>)<i>)
mr? +<§sin<b—2¢> cos@)é

Fmag = (10)

In the case of torque we need the perturbing force F'1, decomposed into the radial, transverse and
normal directions. The unit vector 7 normal to the orbit is collinear with the angular momentum unit
vector h.

iv=h=(rxV)/J/up=r?//up(—Osin &d + $0O), (11)

where p = a(1 — €2), p is the Earth’s gravitational parameter, a is the semimajor axis, e is the
eccentricity of the spacecraft’s orbit, and the transverse unit vector ¢ can be calculated from the
right-hand rule, { = 7 x 7. Decomposition of the Lorentz force experienced by the geomagnetic
field into the radial, transverse and normal components (Rmag, Tmag, Nmag) respectively yields,

B .
Ruag = Frnag -7 = %7‘; [we - @} sin? @, (12)
R q By LOsin” @
T'm = me == 13
o8 . m \/1p { 2we<I>cos<I>sm<I>] (13)
A q )sin? ® cos @

Nmag = Frpg -1 = — 14
a8 a8 m [—F @bln@—Q@Q cos@} (14
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The relationship between the spherical coordinates and the orbital elements is required to derive
the components of Lorentz force experienced by the magnetic component as a function of orbital
elements.

r=p/(l+ecosf), 7 =e\/p/psin f, (15)
cos ® = sinisin (w* + f) , sin® = \/17811122'sin2 (w*+ f), (16)
b= PSS ) 1y cosp)?, (17)
\/1 —sin? 4 cos? (w* + f)
Y et cos i 9
© b 1 —sin?isin? (w* + f) (e cosf)7, (18

where 4, w* and f are the inclination of the orbit with respect to the equator, argument of the perigee
and the true anomaly in the spacecraft’s orbit respectively. Therefore, rewriting the components of
the magnetic part of the Lorentz force as a function of orbital elements, we obtain

q Bo [ we(1 —sin?isin? (w* + f)) }

Riag = —/1/pPcosi (1+ e cos 7)?

19)

m r2

oo _4 By ;Wcosi (I1+e cosf)2+2we Vu/p3sin? isin (w* + f) (20)
" me /ap x cos (w* + f) (1 + e cos f)? ’
Nonag Bo @1

. ) . ,
Vi/pPcosi (14e cos f)” + 2y/u/p? \/1fsin2C7?Zian(w*+f)

% (1 +e COSf)2 _ 2p%sin31lcosz(w*+f)sin(w*+f) (1 +e cos f)4

1—sin? i cos?(w*+f)

a
m /up
{ 2 {we(l —sin?isin? (w* + f)) — \/u/p3cosi (1+e cosf)ﬂ

Now we develop the Lorentz force experienced by electric field Fge.. According to Ulaby
(2005) and Heilmann et al. (2012) we can write the electric force as follows.

7] Vvelec N 10 V:elec 2 1 0 V:slec A
Foee = —VViee = - o . (C] 5 22
! VVa ( or r+r 0P +rsm@ 00 (22)
where V e is the electric potential,
P-r
Viee = ——— . 23
elec An 607‘2 ( )

P = qd is called the electric dipole moment, d is the distance vector from charge —g to charge +¢
and €, = 8.85 x 10712 C? /(N — m?) = V-'m~! is the permittivity of free space. Then the final
form of the Lorentz force experienced by an electric dipole moment in the presence of an electric
field is

d N .
Foee = qi (2 cos ® 7+sin® &+0 @) . 24)

AT egrd

Similarly as we did for the magnetic force, we can write the radial, transverse and normal compo-
nents (Relec, Telec, Nelec) Of the electric force,

qg d

m 4 e,r3

Relec = -

(we — @) sin? ®. (25)
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A q d 3 . .
Tolec = Felec -t = — 3 (we — 9) & sin ® cos . (26)
m AT €or wa(l—e?)
Nelec = Felec - (27)
qg d r2

= — 3 (we — @) O sin®>® cos .
m 4w eor ua<1—62>

Similarly, we can write the components of the Lorentz force experienced by an electric field as a
function of orbital elements as follows.

Pl d we (1 —sin®isin® (w* + f)) — 8)
elec m4m eor3 p/ad (1 —e2)® cosi (1+e cosf)® |’
d
Tuee = =1 29)
Ccos 1t 1+6COSf2 . 9. « . "
[we —\/p/a® (1 — 62)31 — sinz(isinz o _: 7 sin? i cos (w* + f)sin (w* + f).
q d
Nelee = EW (30)

. cosi (1+e cos f)* o .
We — A/ /a3 (1 —e2)? sin? cosisin (w* + f) .
l u/a*( ) 1 —sin?dsin? (w* + f) ( /)
Here, we assume that the spacecraft is equipped with a charged surface (screen) of area S with
electric charge ¢ = |, 5 0 dS distributed over the surface with density o. Therefore, as in Tikhonov

et al. (2011), we can write the torque of these forces relative to the spacecraft’s center of mass as
follows.

TL, = Toag + Telee = / opx (E+V x B)dS, 31)
S

where p is the radius vector of the screen’s element dS relative to the spacecraft’s center of mass
and V is the velocity of the element dS relative to the geomagnetic field. Finally, the torque due to
Lorentz force can be written as follows:

Tmag = po X AT (Rmag7 Tmaga Nmag)T ) Telec = po X AT (Releca Telem Nelec)T ) (32)

Po = Toiv+yolstzoks = ¢! / opds, (33)
S

where pg is the radius vector of the center of a charged spacecraft relative to its center of mass and
AT is the transpose of the matrix A.

2.1 Geomagnetic Field Model and Its Torque

In this paper, we are using a non-tilted dipole for the geomagnetic field. Let a dipole magnetic field be
B = (By, B, B3), and the magnetic moment of the spacecraft be M = (mq, ms, m3). Therefore
the torque due to the geomagnetic field is

Tvy=Mx B. (34)
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As in Wertz (1978) we can write geomagnetic field and the total magnetic moment of the orbital
system directed to the tangent of the orbital plane, normal to the orbit and in the direction of the
radius respectively as below:

B B
By = —2sinf, [3cos(2f — am) + cos ], By = —— cosb!

35

23 23 m ( )
B

B; = 2—?3 sin @), [3sin(2f — ) + sin ). (36)

my = m sin6,, cos ay, 31, mo =m sinf,, sina,, B2, mz =m cosb,, (s, (37)

where By = —8 x 10715, 9/ = 168.6° is the co-elevation of the dipole, cv,,, = 109.3° is the

east longitude of the dipole, f is the true anomaly measured from the ascending node and m is the
magnitude of the total magnetic moment.

3 EQUATIONS DESCRIBING THE ATTITUDE MOTION

The nonlinear differential equation that comes from the Euler and Poisson equations is used to
describe the attitude orientation of the spacecraft.

wlt+wxwl=Tg+T\y+ Ty, (38)

&+ a X w= -0, B+B><w:0, Y49 Xxw=0a, 39)

where T'q = 3Q2%~ x ~I is the well known formula for the gravity gradient torque,

I = diag(A, B, C) is the inertia matrix of the spacecraft, () is the orbital angular velocity and
w is the angular velocity vector of the spacecraft. According to Wertz (1978) the angular velocity of
the spacecraft in the inertial reference frame is w = (p, ¢, 7), where

p=1sinfsing+ 0 cosp, q=1sinfcosp—0sing, r=1cosd+¢. (40)

3.1 Equations of Motion in the Pitch Direction

In this section, the attitude motion of the spacecraft in the pitch direction is considered, i.e. ¢y =
¢ =0, 0 # 0. Applying this condition in Equation (38), we can derive the second order differential
equation of the motion in the pitch direction.

2
Az—tf = (C - B)(3Q% — 1)sinf cos 0 + 208in 0( Niag — kT mag) (41)

+20€08 0(kNmag — Tmag) +205i0 0( Netec — kT b1ec)
+20008 0(kNejee — Tolec) + moBssin @ + msBycos b .

Let yo = k zo, where k is an arbitrary number.

Ab = (392 — 1) (C — B)sinfcos b + 2z sin 0(Nmag — kT mag)
+20 €08 0(kNmag — Tmag) + 20 8in 0(Netec — kT b1ec)
+20 €08 0(kNgloc — Telec) + Bams sin 6 + Byma cos 0
= g(k,z0,0" = q/m,0), (42)

where Tag, Nimag,> Telec and Nejec are defined in Equations (20), (21), (29) and (30) respectively.

A comparison showing the oscillations of 0 is given in Figures 2 and 3. It is obvious from the
first two figures that the most significant amount of torque is coming from the magnetic part of the
Lorentz torque which is of the order 10~3. The effect from the electric part of the Lorentz torque is
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Fig.2 Oscillation in % due to the (left) magnetic part of the Lorentz torque and (right) due to the
electric part of the Lorentz torque. The dashed line corresponds to o™ = —0.1 and the continuous
line corresponds to a* = 0.1.
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Fig.3 Oscillation in % due to (leff) geomagnetic torque and (right) torque due to total Lorentz
force and the geomagnetic field. The dashed line corresponds to a* = —0.1 and the continuous line
corresponds to «® = 0.1. On the left, both the lines for o™ = +0.1 overlap.

of the order 10! which is very small. The contribution from geomagnetic torque is of the order

106, The oscillation in 6 due to total torque is of the order 10~3, as shown in Figure 3 (right). As
the contribution from the electric part of Lorentz force and geomagnetic field is very small compared

to the magnetic part of Lorentz force, it does not show up in Figure 3 (left). These figures are drawn
for fixed values of B = 0.7, C' = 0.1 and o* = %1.

3.2 Derivation of Equilibrium Solutions in the Pitch Direction and Their Linear Stability
Analysis

In this section, the existence and stability of the equilibrium position in the pitch direction of a
spacecraft with a general shape under the influence of gravitational torque, Lorentz torque and ge-
omagnetic torque will be discussed. The stability of the equilibrium solutions derived will be dis-
cussed both analytically and numerically. To find the equilibrium solutions, set the right hand side
of Equation (42) equal to zero which reduces to the following equation for B = 0.7, C' = 0.1, a =
6900 km, i = 51°, e = 0.001 and f = 60°.

g(k,z0,a",0) = (2.34 x 1077 4+ (0.015 4 0.008k)zp™) cos 8 (43)
F(1.56 x 107 + (0.008 + 0.015k) 200 ) sin @ + 0.3sin 20 = 0.
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o = N

9(6)
9(6)

—2F

Fig.4 Progression of equlhbrlum solutions when (left) gl: (o, k) = (0.1,1), g2: (o™, k) = (2,2),
g3: (a", k) = (5, 7) g4 (a* k) = (7,7), g5: (&, k) = (7,10), gb: (o™, k) = (10,15) and
(right) when ngl: (a*, k) = (—0.1,1), ng2: (a*, k’) (—2,2), ng3: (o, k) = (—5,7), ngd
(", k) = (~7,7).ng5: (a", k) = (~7,10), ngé: (a°, k) = (~10,15).

It is not possible to solve Equation (43) in a closed form as 8 = f(k, 2, a*), therefore numeri-
cal techniques are used to identify all the roots of Equation (43). As Equation (42) is derived by
taking y = kzg, without loss of generality we take zp = 1. For0 < a* < 1and 0 < k < 1, we
have five equilibrium solutions at § ~ %, n = 0,1,2,3,4 when 6 € [0,27]. As g(k,a*,0) is a
periodic function with period 2, it is sufficient to investigate the equilibrium solutions from 0 to
2m. For 0 < o* < 1 and k < 100 there are five equilibrium solutions which reduce to three or
two when k£ > 100. For sufficiently high values of a*, the number of equilibrium solutions can be
reduced to three for even smaller values of *. To see the progression of roots from five to three, see
Figure 4 where g(k, a*, 0) is plotted for various fixed values of k and o*. To completely describe
the progression of the number of equilibrium positions in [0, 2] from five to two, a 3D implicit
plot of g(k,a*,0) = 0 is given in Figure 5. It can easily be seen that for high enough values of a*
and k, the number of equilibrium points reduces to two. It is also obvious from these figures that
the equilibrium positions do not always remain at 0 ~ =F,n = 0,1, 2.... By comparing Figure 4
left and Figure 4 right it is evident that the equilibrium positions are not the same for positively and
negatively charged spacecrafts. It remains to be seen if this or the other parameters such as a* or k
affect the stability of the equilibrium points.

To discuss the linear stability of the equilibrium points identified above, we use the standard
procedure of linearization and convert Equation (42) to a system of two first order equations. We
then find the eigenvalues of the Jacobian matrix from the equation given below.

9g(k, zo,a*, 6)

2_
A 00

=0, (44)

where

W = A (cosA(1.56 x 107° 4 1073 (8+15k) zp*) (45)

+(B — C) cos(20)—sin 0(2.34 x 1077 + 1073(15+8k)zp™)) .

It is clear from Equation (44) that there are only two types of eigenvalues possible. If
go(k, z0, @, 0) > 0 there will be two eigenvalues, one of which is negative and one positive. A posi-
tive eigenvalue will always imply instability. If gg (k, 29, @™, 0) < O the eigenvalues obtained will be
imaginary with a zero real part which means the equilibrium point in question will be spectrally sta-
ble. Initially, we will investigate the equilibrium points obtained above for A =1, B = 0.7,C = 0.1
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Fig. 6 Trajectory in the 6 — ‘fi—f phase plane when (leff) o = 0.01,k =1,20 =1,A=1,B=0.7
and C = 0.1, (right) * = —1,k = 100,20 =1,A=1,B =0.7and C = 0.1.

and zg = 1.

W = gp = cos0(1.56 x 107 + 1073(8 + 15k)a’*)+0.6 cos(26)
—sin6(2.34 x 107 7)+10"3sin (15 + 8k)a*. (46)

The values of gglg—o and gp|o—2~ remain positive for all positive values of k and o* which
implies that the equilibrium positions at § = 0 and 6 = 2 are unstable. The value of gg |y /2 is
negative for all positive values of k& and «* which implies that the equilibrium position at § = 7/2
will be stable. By similar argument, the equilibrium position at § = 7 will be stable if o* satisfies
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0.5

do
dt
°

-0.5

Fig.7 A set of orbits with initial positions close to (6,6) — (0+,0+) in the § — 4% phase plane
when a* =0.01,k=1,20=1,A=1,B=0.Tand C = 0.1.

Fig.8 Same orbits as in Fig. 7 but integrated for a much longer time.

the following inequality.
0.6 N

~ 0.008 +0015k 1

This also means that # = 7 will always be unstable if the spacecraft is negatively charged as the
right hand side of the above inequality is always positive. To check the stability of the remaining
four equilibrium positions when o* < 0, let «* = —a, such that oy, > 0. It can easily be shown
that the equilibrium position at § = 0 and § = 27 will be stable if a, < «j. For example, when
k = 1, a;, must be smaller than 26.09. Similarly, for the equilibrium position at § = /2 to be stable
for a negatively charged spacecraft, c, must satisfy the following inequality.

o < 0.6
P 0.008k +0.015

It can be safely concluded from this discussion that the sign and amount of charge on the spacecraft
play a significant role in the stability of the equilibrium positions. A typical trajectory in the 6 — ‘é—f
phase plane around 6 = 0 is given in Figure 6 for o* = 0.01,—1, k = 1,100, zg = 1, A = 1,
B = 0.7and C = 0.1. It can be seen that all the trajectories are moving away from # = 0 when
o = 0.01, which indicates instability. In the second case it is stable.

To understand the long term behavior of orbits around the equilibrium positions, a set of orbits
with initial positions close to (¢,0) — (0+4,0+) and (6,6) — (7,0) is given in Figures 7 and 8 in
the 0 — % phase plane when o* = 0.01,k =1,z =1,A =1, B = 0.7 and C = 0.1. These orbits
are allowed to evolve for a short period of time and their trajectories are traced in Figure 7. It can

a*
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Fig.9 A set of orbits with initial positions close to (6,0) — (0—,0—) in the § — 4% phase plane
whena* =0.01,k=1,20=1,A=1,B=0.Tand C = 0.1.

Fig. 10 Same orbits as in Fig. 9 but integrated for a much longer time.

be seen that the orbits starting close to 0+ (close to 0 and positive) are immediately captured by the

nearby stable equilibrium at 7. The orbits which start near (6,6) — (7,0) remain in an elliptical
orbit around (7, 0). When these orbits are allowed to evolve for a longer period of time, some of the

orbits near (0+, 0+) are captured by the nearby stable equilibrium at 37” and escape after a couple
of orbits. The orbits close to (5, 0) remain in a nearly circular orbit about the center which is strong
evidence for the existence of periodic orbits around (7, 0). A similar analysis is performed for orbits

with initial positions close to (6,60) — (0—,0—) and (0,6) — (—7%,0). It can be seen in Figures 9
and 10 that the orbits starting close to 0— (close to 0 and negative) are immediately captured by the
nearby center at — 7. Some of them, when integrated for a much longer period of time, are captured
by the center at ’TS’T The orbits that start around (—7,0) remain in nearly circular orbits around
(—=%,0). Similar behavior is observed around all the spectrally stable equilibriums. Therefore, we
can safely conjecture that around each stable equilibrium position there is a family of periodic orbits.

As mentioned earlier and shown in Figures 4 and 5, the number of equilibrium points, when
0 < 0 < 2m, reduces from five to three and in some cases two for higher values of a* and k. For
example, when B = 0.7,C = 0.1,k = 10,29 = 1 and o™ = 7 there are two equilibrium points,
6 = 2.32 (stable) and 5.89 (unstable). If o* = —7, i.e. the spacecraft is negatively charged, the
positions of the two equilibriums are changed and the stability is reversed. When |B — C| < 1, the
positions of the equilibrium points are almost identical to what we have shown above. Its effect on

stability is explained below.

(1) 8 =0,27: When B > C and o* > 0, the equilibrium positions at # = 0, 27 will be stable. But
when a* < 0, these two equilibrium positions are unstable.

(2) 0 = 5: For B > C the equilibrium position at = 7 is always stable. However, when B < C
the value of o has to be relatively high in which case § = 5 will no longer be an equilibrium

position.
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Fig. 11 Trajectory in the 6 — % phase plane when @ = 0.01,k = 1,20 = 1 and (Left): B =
0.5,C = 0.9. (Right): B = 0.9,C" = 0.5. Black dots correspond to stable equilibrium points and
red dots correspond to unstable equilibrium points.

(3) 8 = m: When B < C and o* > 0, § = 7 is stable. For a negatively charged spacecraft, B < C'
is a necessary condition for the stability of the equilibrium position at § = 7. Therefore when
B > C, the value of o* has to be relatively high in which case § = 7 will no longer be an
equilibrium position.

4 6 = 37“: B > (' is a necessary and sufficient condition for the stability of the equilibrium
position at = 37“ unless * is very large and negative in which case § = 37” will no longer be
an equilibrium position.

In summary, when 0 < o* < 1 and B < C), the equilibrium positions at § = 0, 7, 27 are stable
and those at § = 7, 37“ are unstable, and when B > C' the nature of the five equilibrium positions is
reversed. To demonstrate this behavior, a typical example is given in Figure 11.

3.3 Equations of Motion in the Roll Direction

In this section, we study the attitude motion of the spacecraft in the roll direction, i.e. » = 0 =
0, ¢ # 0. Applying this condition in the Euler equation for the attitude motion of the spacecraft, we
obtain the second order differential equation of the motion in the roll direction.

2
C’% = Q%*(A — B)sin ¢ cos ¢ + zpsin O(kTmag — Rmag) + 008 @(Tnag — kRmag)

+x0sin ¢(kTelec — Relec) + 2008 ¢(Telec— kRelec) + M1 Bycos ¢ — mo By sin ¢.
Let yo = kxg then,

d2
Cﬁf = Q? (A — B)sin ¢ cos ¢ + zosin ¢(kTmag — Rmag) + 20€0S @(Tmag — kRmag)
+$OSin¢(kTelec - Relec) + zpcos ¢(Telec7 kRelec) cos ¢ + m1 B,cos ¢ —maoBqsing

= h(a*, k,¢,1y, A, B). (47)
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3.4 Derivation of Equilibrium Solutions in the Roll Direction and Their Linear Stability
Analysis

In this section, the existence and stability of equilibrium positions in the roll direction of a spacecraft
with a general shape under the influence of gravitational torque, Lorentz torque, and geomagnetic
torque are discussed. The stability of the equilibrium positions derived is discussed both analytically
and numerically. To find the equilibrium positions, set the right hand side of Equation (47) equal
to zero which reduces to the following equation for A = 0.1, B = 0.7, C =1, 2 = 1, a =
6900 km, 7 = 51°, e = 0.001 and f = 60°.

hyi(k, o, ¢) = [1.036 x 107" + (—0.012 + 9.41k)a*] x cos¢ + (—1.13 x 1077
+9.41 x 10~ %" — 0.012ka*) sin ¢ — 3.63 x 10 " sin(2¢) = 0.  (48)

It is not possible to solve equation hy (k, @*, ¢) = 0 in a closed form as ¢ = f(k, a*); therefore
numerical techniques are used to identify all the roots of equation h; (k, a*, ») = 0 which are the
desired equilibrium solutions. Let k& = 1. For a* € (—2.15 x 107°,2.15 x 107°), i.e for a very
small amount of charge, there are four equilibrium solutions and for higher values of a* there are
two equilibrium solutions.

(1) ¢1 € (0,0.4) when a* € (—2.15 x 1075,2.15 x 107°).

(2) ¢2 € (1.47,1.89) when o* € (—2.15 x 1075,2.15 x 1079).
(3) ¢3 € (2.80,3.18) when a* € (—2.15 x 1075,2.15 x 1079).
(4) ¢4 € (4.37,4.73) when o* € (—2.15 x 107°,2.15 x 107°).
(5) ¢5 = 2.36 when |a*| > 2.15 x 107°.

(6) ¢ = 5.5 when |a*| > 2.15 x 1075,

In the above example B > A. Now we switch the values of A and B to have B < A and find
the location of the equilibrium positions. In this case, we still have four equilibrium solutions when
a* € (—2.15x1075,2.15 x 107°) and two when |a*| > 2.15 x 10~°. All the equilibrium positions
when A =0.7,B=0.1, k=1, C=1, zg =1,a =6900 km, i = 51°, e =0.001 and f = 60°
are listed below.

(1) ¢7 € (1.23,1.58) when a* € (—2.15 x 107°,2.15 x 107°).
(2) ¢s € (3.12,3.47) when * € (—2.15 x 107°,2.15 x 107°).
(3) ¢9 € (4.69,5.04) when * € (—2.15 x 107°,2.15 x 107°).
(4) ¢10 € (5.97,6.32) when a* € (—2.15 x 107°,2.15 x 107°).
(5) ¢11 = 2.36 when |a*| > 2.15 x 107°.

(6) ¢12 = 5.5 when |a*| > 2.15 x 1075.

As yo = kxo we can take ¢y = 1. To reduce the dimensions, without loss of generality, we
define ab = A — B and rewrite h; (k, a*, ¢, ab) as below.

hyi(k, o, ¢,ab) = [—1.13 x 107" 4+ 1073(6k — 15)a*|cos¢ + (1.03 x 1077
+1073(6 — 15k)a*)sing + 6.05 x 10~ absin(2¢).

It can be seen from Figure 12 that there are four equilibrium solutions for small values of a* and all
values of ab when k = 1. For higher values of a* there are only two equilibrium solutions at ¢ = 2.3
and ¢ = 5.5 for all values of ab. We have seen above that for £ = 1, the changing values of ab and
a* have a significant effect on the existence of equilibrium solutions in the roll direction. To see this
for k # 1, we plot hi(k, a*, ¢, ab) = 0 for fixed values of ab = 0.3, and ab = —0.3 in Figure 13.
It is clear from Figure 13 that with the changing value of k, the position of equilibrium changes
significantly but the number of equilibrium positions remains four as before both for negative and
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Fig. 13 Implicit plots of h(a, ¢, k, ab) = 0 when (left) ab = —0.3 and (right) ab = 0.3.

positive values of ab when o is small. The effect of ab is significant when £ < 1. For higher values
of a*, the number of equilibrium positions remains two but their positions change with the changing
values of ab and k, see Figures 12 and 13.

To study the stability of the derived equilibrium position, we use the same method that was used
for the pitch direction. We write Equation (47) as a system of two first order equations, linearize
them and find the eigenvalues of the Jacobian matrix from the equation given below.

A — hy(a*, k,¢,ab) = 0. (49)

It can be seen from Equation (49) that there are only two types of eigenvalues possible. If
hg(a*, k, ¢, ab) > 0 there exist two eigenvalues: one of which is negative and the other is positive.

141
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Fig. 14 Trajectory in the ¢ — % phase plane when (leff) o = 0.1,k = 1,2zp = 1 and ab = —0.6,
(right) a* = —0.1,k = 1,20 = 1 and ab = —0.6.
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Fig. 15 A set of orbits with initial positions close to the equilibrium positions when e = 0.1, ab =
0.6 and (left) o™ = —0.1, (right) o™ = 0.1.

Therefore, hy(a*, k, ¢, ab) > 0 becomes a sufficient condition for instability. If hy(a*, k, ¢, ab) <
0 the equilibrium point in question will be spectrally stable or a stable center. We will investigate the
equilibrium points obtained above for ab = 0.6, ab = —0.6, k = 1, 2o = 1, a = 6900 km, ¢ =
51°, e = 0.001 and f = 60°, and write hy(a*, ¢, ab) as below.

he(a®, ®)|ab=—06 = (—1.13 x 1077 — 0.01a™) cos ¢ — 7.26 x 10~ (cos ¢)*
+(—1.04 x 1077 +0.01a* 4 7.26 x 1077 sin ¢) sin .

The equilibrium positions at ¢, and ¢3 are stable, as in these cases hy (™, @) |ap=—0.6 < 0. Similarly,
¢2 and ¢, are unstable, as in these cases hy(a*, ¢)|ap=—0.6 > 0. By similar arguments, ¢5 will be an
unstable equilibrium if the spacecraft is positively charged and ¢¢ will be unstable if the spacecraft
is negatively charged. Likewise, when ab = 0.6, ¢7 and ¢g are stable, ¢g and ¢ are unstable, ¢
is stable when a* < —1.11 x 107 and ¢, is stable when a* > 3.25 x 10~7. A typical example
is given in Figure 14 when ab = +0.6. The equilibrium at ¢ = 2.36 is stable when o* = —0.1 and
unstable when a* = 0.1. Similarly, the equilibrium at ¢ = 5.5 is unstable when a* = —0.1 and
stable when o* = 0.1.

To understand the long term behavior of orbits around the equilibrium positions, a set of orbits
with initial positions close to the equilibrium are given in Figures 15 and 16 in the ¢ — % phase
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|5 o

Fig.16 A set of orbits with initial positions close to the equilibrium positions when e = 0.1, ab =
0.6 and (left) o™ = —1, (right) o = 1.

plane when o = +£0.1,+1, and k = 1,29 = 1,ab = 0.6,e = 0.1. These orbits are allowed to
evolve for a long period of time and their trajectories are traced in Figures 15 and 16. The orbits
in Figure 15 (left) are given for «* = —0.1 and it can be seen that all the orbits are captured by
the equilibrium position at ¢ = 2.36, which is a stable equilibrium. The orbits that are closer to the
stable equilibrium position remain in a perfect periodic orbit while the orbits that are not so close
have an elliptical orbit in the vicinity of the equilibrium position but are not necessarily periodic. For
o = 0.1 in Figure 15 (right), the equilibrium position at ¢ = 2.36 is unstable. Hence the same orbits
are captured by another nearby stable equilibrium at ¢ = —0.723 which is a mirror image of the
stable equilibrium at ¢ = 5.56. When the same orbits are integrated for a* = %1, similar behavior
is observed. Also, similar behavior is observed around all the stable equilibriums. Therefore, we can
safely conjecture that around each stable equilibrium position there is a family of periodic orbits.

4 CONCLUSIONS

This paper discussed the attitude stabilization of a charged spacecraft moving in an elliptical orbit
using Lorentz torque. The Lorentz torque is developed in two parts, Tryae and Tijec. Trmag iS the
Lorentz torque that is experienced by a magnetic field and Ty is the Lorentz torque experienced by
an electric dipole moment in the presence of an electric field. The model we developed incorporates
all Lorentz torques as a function of orbital elements and the radius vector of the charged center of
the spacecraft relative to its center of mass. We investigated, both analytically and numerically, the
existence and stability of equilibrium positions in both pitch and roll directions. In the pitch direction,
there are a total of five equilibrium points at § = nw/2,n = 0,1,2,3,4when —1 < o* = ¢q¢/m < 1,
0 < k < 1and @ € [0,2n]. Their stability is analyzed for changing values of the charge to mass
ratio, ™, and it is shown that o* affects the stability and existence of equilibrium positions. The
equilibrium positions at = 0, 27 are unstable for «* > 0 when B = 0.7 and C' = 0.1. These two
equilibrium positions are stable when B = 0.1 and C' = 0.7. These equilibrium positions are also
stable for o < 0.

We have shown that the sign and amount of charge play a significant role in determining the
equilibrium positions and their stability. In the case of the roll direction, we have four equilibrium
points when o* € (—2.15 x 107°,2.15 x 10~°) and only two equilibrium positions when o* ¢
(—2.15 x 1075,2.15 x 1079). It is demonstrated both analytically and numerically that almost all
the equilibrium positions depend on the values and sign of charge to mass ratio both in terms of
existence and stability. In the same way as in the pitch direction, the equilibrium positions that are
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stable for A < B become unstable when A > B and vice versa. This is not true in general but this
happens in most of the cases. Here A, B and C refer to the components of moment of inertia of the
spacecraft.
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