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Abstract In the present work, we reconstruct differentf(T )-gravity models corre-
sponding to the original and entropy-corrected versions ofthe holographic and new
agegraphic dark energy models. We also obtain the equation of state parameters of the
correspondingf(T )-gravity models. We conclude that the original holographicand
new agegraphicf(T )-gravity models behave like the phantom or quintessence model,
whereas in the entropy-corrected models, the equation of state parameter can justify
the transition from the quintessence state to the phantom regime as indicated by the
recent observations.
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1 INTRODUCTION

Recent observational data coming from type Ia supernovae surveys, large scale structure, and the
cosmic microwave background anisotropy spectrum point toward the picture of a spatially-flat uni-
verse undergoing an accelerated expansion driven by a dominant negative pressure fluid, typically
referred to as dark energy (DE) (Riess et al. 1998; Perlmutter et al. 1999). From cosmic observations,
it has been shown that DE takes up about two-thirds of the total energy density. Although the nature
and cosmological origin of DE are at present still enigmatic, a great variety of models have been
proposed to describe the DE (for a review see Padmanabhan 2003; Peebles & Ratra 2003; Copeland
et al. 2006).

One of the interesting alternative proposals for DE is modified gravity. It can naturally explain
the unification of earlier and later cosmological epochs (Capozziello & Fang 2002). Moreover, mod-
ified gravity may serve in the role of dark matter (Sobouti 2007). There are some classes of modified
gravities containingf(R), f(G) andf(R,G) which are considered to be gravitational alternatives
for DE (Starobinsky 1980; Capozziello et al. 2006; Sadjadi 2006; Hu & Sawicki 2007; Nojiri &
Odintsov 2007; Nojiri & Odintsov 2011; Nozari & Azizi 2009; Karami & Khaledian 2011). The
Lagrangian density of modified gravity theoriesf is an arbitrary function ofR, G or bothR andG.
Here,R andG = RµνρσRµνρσ − 4RµνRµν + R2 are the Ricci scalar and Gauss-Bonnet invariant
term, respectively. AlsoRµνρσ andRµν are the Riemann and Ricci tensors, respectively. The field
equations of these modified gravity theories are fourth order, which makes it difficult to obtain both
exact and numerical solutions. Recently, a new modified gravity model was proposed by Bengochea
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& Ferraro (2009) to describe the present accelerating expansion of the universe without resorting to
DE. Instead of using the curvature defined via the Levi-Civita connection in general relativity (GR),
the Weitzenböck connection is used in teleparallel gravity (TG) (Einstein 1930; Hayashi & Shirafuji
1981). As a result, the spacetime has no curvature but contains torsion. Similar to GR where the ac-
tion is a curvature scalarR, the action of TG is a torsion scalarT . Following this line and in analogy
with thef(R) theory, Bengochea & Ferraro (2009) suggested a new model, namedf(T ) theory, by
generalizing the action of TG as a function of the torsion scalar T , and found that it can explain
the observed acceleration of the universe. Indeed, there are some terms in the modified Friedmann
equation inf(T )-gravity that can be identified as the effective DE that produces the accelerated
expansion of the late-time universe (Bamba et al. 2011; Myrzakulov 2011; Zheng & Huang 2011;
Karami & Abdolmaleki 2012). Models based on modified TG may also provide an alternative to
inflation (Ferraro & Fiorini 2007). Another advantage off(T ) theory is that its field equations are
second order which are remarkably simpler than the fourth order equations off(R) theory (Wu &
Yu 2010). Recently,f(T )-gravity has been extensively studied in the literature (Linder 2010; Wu &
Yu 2010; Bamba et al. 2011; Chen et al. 2011; Myrzakulov 2011;Zheng & Huang 2011; Karami &
Abdolmaleki 2012).

Viewing the f(T )-gravity model as an effective description of the underlying theory of DE
motivates us to establish different models off(T )-gravity according to some viable DE scenarios
such as holographic DE (HDE), new agegraphic DE (NADE), entropy-corrected HDE (ECHDE) and
entropy-corrected NADE (ECNADE). To do so, in Section 2 we review the theory off(T )-gravity.
In Sections 3, 4, 5 and 6 we reconstruct differentf(T )-gravity models corresponding to the HDE,
ECHDE, NADE and ECNADE models, respectively. Section 7 is devoted to conclusions.

2 f(T )-GRAVITY

In the framework off(T ) theory, the action of modified TG is given by Bengochea & Ferraro (2009)

I =
1

2k2

∫

d4x e
[

f(T ) + Lm

]

, (1)

wherek2 = M−2
P = 8πG ande = det(ei

µ) =
√−g. Also T andLm are the torsion scalar and the

Lagrangian density of the matter inside the universe, respectively. Note thatei
µ is the vierbein field

which is used as a dynamical object in TG and has the followingorthonormal property

ei · ej = ηij , (2)

whereηij = diag(−1, 1, 1, 1). Each vectorei can be described by its componentseµ
i , wherei =

0, 1, 2, 3 refers to the tangent space of the manifold andµ = 0, 1, 2, 3 labels coordinates on the
manifold. The metric tensor is obtained from the dual vierbein as

gµν(x) = ηije
i
µ(x)ej

ν(x) . (3)

The torsion scalarT is defined as
T = S µν

ρ T ρ
µν , (4)

where the non-null torsion tensorT ρ
µν is

T ρ
µν = eρ

i (∂µei
ν − ∂νei

µ) , (5)

and

S µν
ρ =

1

2
(Kµν

ρ + δµ
ρ T αν

α − δν
ρT αµ

α) . (6)
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Also Kµν
ρ is the contorsion tensor defined as

Kµν
ρ = −1

2
(T µν

ρ − T νµ
ρ − T µν

ρ ) . (7)

Taking the variation of the action (1) with respect to the vierbeinei
µ, one can obtain the field equa-

tions inf(T )-gravity as (Bengochea & Ferraro 2009)

S µν
i ∂µ(T )fTT (T ) +

1

4
eν

i f(T ) +
[

e−1∂µ(eS µν
i ) − eλ

i T ρ
µλS νµ

ρ

]

fT (T ) =
k2

2
e ρ

i T ν
ρ , (8)

where subscriptT denotes a derivative with respect toT , S µν
i = e ρ

i S µν
ρ andTµν is the energy-

momentum tensor of matter. The field Equation (8) are second order which makes them simpler than
the corresponding field equations in the other modified gravity theories likef(R), f(G) andf(R,G)
(Myrzakulov 2011).

Now if we consider the spatially-flat Friedmann-Robertson-Walker (FRW) metric for the uni-
verse as

gµν = diag
(

− 1, a2(t), a2(t), a2(t)
)

, (9)

wherea is the scale factor, then from Equation (3) one can obtain

ei
µ = diag

(

1, a(t), a(t), a(t)
)

. (10)

Substituting the vierbein (10) into (4) yields

T = −6H2 , (11)

whereH = ȧ/a is the Hubble parameter.
TakingT µ

ν = diag(−ρm, pm, pm, pm) for the matter energy-momentum tensor in the prefect
fluid form and using the vierbein (10), the set of field equations (8) for i = 0 = ν reduces to
(Bengochea & Ferraro 2009)

12H2fT (T ) + f(T ) = 2k2ρm , (12)

and fori = 1 = ν yields

48H2ḢfTT (T ) − (12H2 + 4Ḣ)fT (T ) − f(T ) = 2k2pm . (13)

Hereρm andpm are the energy density and pressure of the matter inside the universe, respectively,
and they satisfy the conservation equation

ρ̇m + 3H(ρm + pm) = 0 . (14)

Note that Equations (12) and (13) are the modified Friedmann equations in the framework off(T )-
gravity in the spatially-flat FRW universe. One can rewrite Equations (12) and (13) as (Myrzakulov
2011)

3

k2
H2 = ρm + ρT , (15)

1

k2
(2Ḣ + 3H2) = −(pm + pT ) , (16)

where

ρT =
1

2k2
(2TfT − f − T ) , (17)
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pT = − 1

2k2
[−8ḢT fTT + (2T − 4Ḣ)fT − f + 4Ḣ − T ] , (18)

are the torsion contribution to the energy density and pressure which satisfy the energy conservation
law

ρ̇T + 3H(ρT + pT ) = 0 . (19)

In the case off(T ) = T , from Equations (17) and (18) we haveρT = 0 andpT = 0. Therefore,
Equations (15) and (16) are transformed to the usual Friedmann equations in GR.

The equation of state (EoS) parameter due to the torsion contribution is defined as

ωT =
pT

ρT
= −1 +

4Ḣ(2TfTT + fT − 1)

2TfT − f − T
. (20)

Note that for the de Sitter universe, i.e.Ḣ = 0, we haveωT = −1 which behaves like the cosmo-
logical constant.

In the subsequent sections, we reconstruct differentf(T )-gravities according to the HDE,
ECHDE, NADE and ECNADE models.

3 HOLOGRAPHIC f(T )-GRAVITY MODEL

Here we reconstruct thef(T )-gravity from the HDE model. The HDE proposal is motivated from
the holographic principle, according to which, the number of degrees of freedom of a physical sys-
tem should scale with the corresponding bounding area rather than with the volume (’t Hooft 1993;
Susskind 1995; Cohen et al. 1999). By applying the holographic principle to cosmology, one can ob-
tain the upper bound of the entropy contained in the universe(Fischler & Susskind 1998). Following
this strategy, Li (2004) proposed the HDE density as

ρΛ =
3c2

k2R2
h

, (21)

wherec is a numerical constant and the future event horizonRh is defined as

Rh = a

∫

∞

t

dt

a
= a

∫

∞

a

da

Ha2
. (22)

Li (2004) showed that the HDE model can drive the universe to accelerated expansion. Also the
cosmic coincidence problem can be resolved by inflation in the HDE model, providing the minimal
number of e-foldings.

Here, we assume two ansatzs for the scale factor which is usually considered for describing
the accelerating universe in different modified gravities like f(R), f(G) andf(R,G) (Starobinsky
1980; Capozziello et al. 2006; Sadjadi 2006; Hu & Sawicki 2007; Nojiri & Odintsov 2007; Nojiri &
Odintsov 2011; Nozari & Azizi 2009; Karami & Khaledian 2011). The first ansatz is given by

a(t) = a0(ts − t)−h, t ≤ ts, h > 0 . (23)

Using Equations (11) and (23) one can obtain

H =
h

ts − t
, T = − 6h2

(ts − t)2
, Ḣ = − T

6h
. (24)

For the second ansatz of
a(t) = a0t

h, h > 0 , (25)
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one can get

H =
h

t
, T = −6h2

t2
, Ḣ =

T

6h
. (26)

For the first class of scale factors (23) and using Equation (24), the future event horizonRh yields

Rh = a

∫ ts

t

dt

a
=

ts − t

h + 1
=

h

h + 1

(

−6

T

)1/2

. (27)

Inserting Equation (27) into (21) one can obtain

ρΛ = − γ

2k2
T , (28)

where

γ = c2

(

h + 1

h

)2

. (29)

Equating (17) with (28), i.e.ρT = ρΛ, we obtain the following differential equation

2TfT − f + (γ − 1)T = 0 . (30)

Solving Equation (30) yields the holographicf(T )-gravity model as

f(T ) = ǫ
√
−T + (1 − γ)T , (31)

whereǫ is an integration constant. Note thatT = −6H2 < 0.
Substituting Equation (31) into (20) one can obtain the EoS parameter of the torsion contribution

as

ωT = −1 − 2

3h
, h > 0 , (32)

which is always smaller than−1 and corresponds to a phantom accelerating universe. Recentobser-
vational data indicate that the EoS parameterωT at present lies in a narrow strip aroundωT = −1
and is quite consistent with being below this value (Copeland et al. 2006).

For the second class of scale factors (25) and using Equation(26), the future event horizonRh

reduces to

Rh = a

∫

∞

t

dt

a
=

h

h − 1

(

−6

T

)1/2

, h > 1 , (33)

where the conditionh > 1 is obtained due to having a finite positive future event horizon. If we
repeat the above calculations then we can obtain both thef(T ) andωT corresponding to the HDE
for the second class of scale factors (25). The result forf(T ) is the same as Equation (31) where

γ = c2

(

h − 1

h

)2

. (34)

Also the EoS parameter is obtained as

ωT = −1 +
2

3h
, h > 1 , (35)

which describes an accelerating universe with the quintessence EoS parameter, i.e.ωT > −1. It
should be mentioned that forh > 1, the EoS parameter (35) also takes place in the range of−1 <
ωT < −1/3.
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4 ENTROPY-CORRECTED HOLOGRAPHIC f(T )-GRAVITY MODEL

The ECHDE is the entropy-corrected version of the HDE model.The corrections arise in the black
hole entropy in the loop quantum gravity (LQG) due to thermalequilibrium fluctuations and quantum
fluctuations (Rovelli 1996; Ashtekar et al. 1998; Banerjee &Modak 2009). On this basis, Wei (2009)
proposed the ECHDE density in the form

ρΛ =
3c2

k2R2
h

+
α

R4
h

ln

(

R2
h

k2

)

+
β

R4
h

, (36)

whereα andβ are dimensionless constants. In the special caseα = β = 0, the above equation yields
the well-known HDE density (21).

For the first class of scale factors (23), substituting Equation (27) into (36) one can get

ρΛ = − γ

2k2
T +

1

2k2

[

σ + δ ln

(

− λ

T

)]

T 2 , (37)

where

γ = c2

(

h + 1

h

)2

, δ =
k2α

18

(

h + 1

h

)4

, λ =
6

k2

(

h

h + 1

)2

, σ =
k2β

18

(

h + 1

h

)4

. (38)

Equating (17) with (37) one can get

2TfT − f + (γ − 1)T −
[

σ + δ ln

(

− λ

T

)]

T 2 = 0 . (39)

Solving the differential Equation (39) yields the entropy-corrected holographicf(T )-gravity model
as

f(T ) = ǫ
√
−T + (1 − γ)T +

1

3

{

σ + δ

[

2

3
+ ln

(

− λ

T

)]}

T 2 , (40)

whereǫ is an integration constant.
Substituting Equation (40) into (20) one can get

ωT = −1 − 2

3h
×
[

1 +

(

δ − [σ + δ ln (− λ
T )]

γ − [σ + δ ln (− λ
T )]T

)

T

]

, h > 0 . (41)

If we set δ = 0 = α and σ = 0 = β then Equations (40) and (41) reduce to (31) and (32),
respectively.

Note that the time-dependent EoS parameter (41) in contrastwith constant EoS parameter (32)
can justify the transition from the quintessence state,ωT > −1, to the phantom regime,ωT < −1,
as indicated by recent observations (Larson et al. 2011; Komatsu et al. 2011). To illustrate this
transition in ample detail, the EoS parameter of the entropy-corrected holographicf(T )-gravity
model, Equation (41), versus redshiftz = a0

a − 1 for the first class of scale factors, Equation (23),
is plotted in Figure 1. Note that the torsion scalarT can be expressed in terms of redshiftz. For the
first class of scale factors (28) one can obtain

T = − 6h2

(ts − t)2
= − 6h2

(1 + z)2/h
.

Figure 1 demonstrates that for a set of free parametersc = 0.818 (Li et al. 2009),α = −5,
β = 0.1 andh = 0.55, ωT crosses the−1 line twice. At the transition redshiftzT ≃ 0.75, we have
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Fig. 1 The EoS parameter of the entropy-corrected holographicf(T )-gravity model, Eq. (41), versus
redshift for the first class of scale factors, Eq. (23). Auxiliary parameters are:c = 0.818 (Li et al.
2009),α = −5, β = 0.1 andh = 0.55.
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Fig. 2 The ECHDE density, Eq. (36), versus redshift for the first class of scale factors, Eq. (23).
Auxiliary parameters are the same as in Fig. 1.

a direct transition fromωT > −1 (quintessence phase) toωT < −1 (phantom phase). Whereas at
zT ≃ 1.20, the crossing direction is opposite, i.e.ωT < −1 → ωT > −1. Crossing the−1 line
twice in the direct and opposite transitions is in agreementwith what was obtained recently for some
f(T )-gravity models (see Wu & Yu 2011).

Considering Equations (41) and (37) it seems that atT = γ
σ+δ ln(−λ/T ) , a singularity inωT

and a change of sign inρΛ appear. RegardingωT , Figure 1 shows that the EoS parameter of the
entropy-corrected holographicf(T )-gravity model, Equation (41), does not show any singularity.

To check the change of sign inρΛ given by Equation (37), we plot it in Figure 2. Figure 2
illustrates that for the first class of scale factors, although a future Big Rip singularity in the ECHDE
density (ρΛ → ∞) occurs atz → −1 (or t → ts), the sign ofρΛ does not change. Also the EoS
parameter remains finite at the future Big Rip singularity whenz → −1 (see again Fig. 1). It is also
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-1 0 1 2 3 4 5 6
-2

-1

0

1

2

z

Ω
T

Fig. 3 The EoS parameter of the entropy-corrected holographicf(T )-gravity model, Eq. (43), versus
redshift for the second class of scale factors, Eq. (25). Auxiliary parameters are:c = 0.818 (Li et al.
2009),α = −13, β = 12 andh = 1.31.

interesting to note that Figure 2 demonstrates that the local minimum and maximum points ofρΛ

occur at the transition redshifts whenωT = −1 (see Fig. 1). This can also be shown analytically.
From Equation (17),dρT /dT = 0 yields

2TfTT + fT − 1 = 0.

Inserting the above relation into Equation (20) givesωT = −1.
For the second class of scale factors (25), the resultingf(T ) is the same as Equation (40) where

γ = c2

(

h − 1

h

)2

, δ =
k2α

18

(

h − 1

h

)4

, λ =
6

k2

(

h

h − 1

)2

, σ =
k2β

18

(

h − 1

h

)4

. (42)

Also the EoS parameter is obtained as

ωT = −1 +
2

3h
×
[

1 +

(

δ − [σ + δ ln (− λ
T )]

γ − [σ + δ ln (− λ
T )]T

)

T

]

, h > 1 . (43)

Here also in order to makeRh be finite positive, the parameterh should be in the range ofh > 1.
One notes that the dynamical EoS parameter (43) in contrast with the constant EoS parameter (35)
can accommodate the transition fromωT > −1 to ωT < −1 at the recent stage.

Figure 3 displays the evolution of the EoS parameter of the entropy-corrected holographicf(T )-
gravity model, Equation (43), versus redshiftz for the second class of scale factors, Equation (25).
In this case, the torsion scalarT can be expressed in terms of redshiftz as

T = −6h2

t2
= −6h2(1 + z)2/h.

Figure 3 like Figure 1 shows that the−1 line is crossed twice for another set of free parameters
c = 0.818 (Li et al. 2009),α = −13, β = 12 andh = 1.31. At zT ≃ 0.26 we have a direct transition
(i.e. ωT > −1 → ωT < −1). Also an opposite transition occurs in the future atzT ≃ −0.37.
Furthermore, Figure 3 indicates that there is no singularity in the dynamical EoS parameter (43).
Note that also the sign of the ECHDE density (36) for the second class of scale factors (25) remains
unchanged (see Fig. 4).



f(T ) Modified Teleparallel Gravity 765

-1 0 1 2 3 4 5 6
10-5

0.001

0.1

10

1000

z

Ρ
L

Fig. 4 The ECHDE density, Eq. (36), versus redshift for the second class of scale factors, Eq. (25).
Auxiliary parameters are the same as in Fig. 3.

5 NEW AGEGRAPHIC f(T )-GRAVITY MODEL

The NADE model is another approach for explaining DE. This model assumes that the DE density
arises from the spacetime and matter field fluctuations in theuniverse (Karolyhazy 1966; Maziashvili
2007). Cai (2007) defined the ADE density asρΛ = 3n2k−2T−2, wheren is a numerical constant
andT is the age of the universe. However, the original ADE model had some difficulties. For example
it suffers from difficulty in describing the matter-dominated epoch. Therefore, the NADE density was
proposed by Wei & Cai (2008a) as

ρΛ =
3n2

k2η2
, (44)

in which the old cut-offT was replaced with conformal timeη defined as

η =

∫

dt

a
=

∫

da

Ha2
. (45)

It was found that the coincidence problem could be solved naturally in the NADE model (Wei &
Cai 2008b). Note that although evolution behavior of the NADE is similar to that of the HDE, some
essential differences exist between them. In particular, the NADE model is free from the drawback
concerning the causality problem which exists in the HDE model (Wei & Cai 2008a).

For the first class of scale factors (23), the conformal timeη by the help of Equation (24) yields

η =

∫ ts

t

dt

a
=

hh+1

a0(h + 1)

(

−6

T

)

h+1

2

. (46)

Substituting Equation (46) into (44) gives

ρΛ =
γ

2k2
T h+1 , (47)

where

γ =
6n2a2

0(h + 1)
2

(−6h2)
h+1

. (48)
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Equating (17) with (47) yields

2TfT − f − T − γT h+1 = 0 . (49)

Solving Equation (49) gives the new agegraphicf(T )-gravity model as

f(T ) = ǫ
√
−T + T +

γ

1 + 2h
T h+1 , (50)

whereǫ is an integration constant. Inserting Equation (50) into (20) gives

ωT = −1 − 2(h + 1)

3h
, h > 0 , (51)

which is always smaller than−1 like the EoS parameter of the holographicf(T )-gravity model (32),
and it behaves as a phantom type DE.

For the second class of scale factors (25) and using (26), theconformal timeη is obtained as

η =

∫ t

0

dt

a
=

h1−h

a0(1 − h)

(

−6

T

)

1−h

2

, 0 < h < 1 , (52)

where the conditionh < 1 is necessary due to having a finite positive conformal time. The resulting
f(T ) is

f(T ) = ǫ
√
−T + T +

γ

1 − 2h
T 1−h , (53)

where

γ =
6n2a2

0(1 − h)
2

(−6h2)
1−h

. (54)

Also the EoS parameter of the new agegraphicf(T )-gravity model is obtained as

ωT = −1 +
2(1 − h)

3h
, 0 < h < 1 , (55)

which shows a quintessence-like EoS parameterωT > −1. Here in order to have−1 < ωT < −1/3,
the parameterh should be in the range of1/2 < h < 1.

6 ENTROPY-CORRECTED NEW AGEGRAPHIC f(T )-GRAVITY MODEL

More recently, very similar to the ECHDE model, the ECNADE density was proposed by Wei
(2009) as

ρΛ =
3n2

k2η2
+

α

η4
ln

(

η2

k2

)

+
β

η4
, (56)

which closely mimics that of the ECHDE density (36) andRh is replaced with the conformal time
η. In the special caseα = β = 0, Equation (56) yields the NADE density (44). The motivationfor
taking the energy density of the modified NADE in the form (56)comes from the fact that both the
NADE and HDE models have the same origin. Indeed, it was argued that the NADE models are the
HDE model with different infrared length scales (Myung & Seo2009).

For the first class of scale factors (23), substituting Equation (46) into (56) yields

ρΛ =
γ

2k2
T h+1 +

1

2k2

[

σ + δ ln

(

λ

T h+1

)]

T 2(h+1) , (57)
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where

γ =
6n2a0

2(h + 1)
2

(−6h2)h+1
, δ =

2k2αa0
4(h + 1)

4

(−6h2)
2(h+1)

,

λ =
(−6h2)

h+1

k2a0
2(h + 1)

2 , σ =
2k2βa0

4(h + 1)
4

(−6h2)2(h+1)
. (58)

Equating (17) with (57) gives

2TfT − f − T − γT h+1 −
[

σ + δ ln

(

λ

T h+1

)]

T 2(h+1) = 0 . (59)

Solving the differential Equation (59) one can obtain the entropy-corrected new agegraphicf(T )-
gravity model as

f(T ) = ǫ
√
−T + T +

γ

1 + 2h
T h+1 +

1

3 + 4h

×
{

σ + δ

[

2(1 + h)

3 + 4h
+ ln

(

λ

T h+1

)]}

T 2(h+1) , (60)

whereǫ is an integration constant. Inserting Equation (60) into (20) gives

ωT = −1 − 2

3

(

h + 1

h

)

×
[

1 +

(

−δ + [σ + δ ln ( λ
T h+1 )]

γ + [σ + δ ln ( λ
T h+1 )]T h+1

)

T h+1

]

, h > 0 . (61)

If we setδ = 0 = α andσ = 0 = β then Equations (60) and (61) reduce to (50) and (51), respec-
tively. Note that the time-dependent EoS parameter (61) in contrast with constant EoS parameter
(51) can justify the transition fromωT > −1 to ωT < −1.

Figure 5 illustrates the EoS parameter of the entropy-corrected new agegraphicf(T )-gravity
model, Equation (61), for the first class of scale factors, Equation (23). Here for a set of free param-
etersn = 2.716 (Wei & Cai 2008b),α = −7.5, β = −14.8 andh = 2.5, the direct and opposite
transitions occur atzT ≃ 0.82 and1.44, respectively. Besides, Figure 5 reveals that there is no
any singularity in the dynamical EoS parameter (61). Note that here also the sign of the ECNADE
density (57) for the first class of scale factors (23) does notchange (see Fig. 6).

For the second class of scale factors (25), the resultingf(T ) is

f(T ) = ǫ
√
−T + T +

γ

1 − 2h
T 1−h +

1

3 − 4h

×
{

σ + δ

[

2(1 − h)

3 − 4h
+ ln

(

λ

T 1−h

)]}

T 2(1−h) , (62)

where

γ =
6n2a0

2(1 − h)
2

(−6h2)
1−h

, δ =
2k2αa0

4(1 − h)
4

(−6h2)
2(1−h)

,

λ =
(−6h2)

1−h

k2a0
2(1 − h)2

, σ =
2k2βa0

4(1 − h)4

(−6h2)
2(1−h)

. (63)
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Fig. 5 The EoS parameter of the entropy-corrected new agegraphicf(T )-gravity model, Eq. (61),
versus redshift for the first class of scale factors, Eq. (23). Auxiliary parameters are:n = 2.716 (Wei
& Cai 2008b),α = −7.5, β = −14.8 andh = 2.5.
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Fig. 6 The ECNADE density, Eq. (56), versus redshift for the first class of scale factors, Eq. (23).
Auxiliary parameters are the same as in Fig. 5.

Also the EoS parameter can be obtained as

ωT = −1 +
2

3

(

1 − h

h

)

×
[

1 +

(

−δ + [σ + δ ln ( λ
T 1−h )]

γ + [σ + δ ln ( λ
T 1−h )]T 1−h

)

T 1−h

]

, 0 < h < 1 . (64)

Here also in order to have a finite positive conformal timeη, the parameterh should be in the range
of 0 < h < 1. Contrary to the constant EoS parameter (55), the dynamicalEoS parameter (64) can
accommodate the transition fromωT > −1 to ωT < −1 at the recent stage.

Figure 7 presents the evolution of the EoS parameter of the entropy-corrected new agegraphic
f(T )-gravity model, Equation (64), for the second class of scalefactors, Equation (25). Here also
like Figure 5, for another set of free parametersn = 2.716 (Wei & Cai 2008b),α = −44, β = −10
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Fig. 7 The EoS parameter of the entropy-corrected new agegraphicf(T )-gravity model, Eq. (64),
versus redshift for the second class of scale factors, Eq. (25). Auxiliary parameters are:n = 2.716
(Wei & Cai 2008b),α = −44, β = −10 andh = 0.5.
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Fig. 8 The ECNADE density, Eq. (56), versus redshift for the secondclass of scale factors, Eq. (25).
Auxiliary parameters are the same as in Fig. 7.

andh = 0.5, ωT crosses the−1 line twice atzT ≃ 0.29 and−0.19 corresponding to the direct
and opposite transitions, respectively. Besides, Figure 7demonstrates that there is no singularity in
the dynamical EoS parameter (64). Note that here also the sign of the ECNADE density (56) for the
second class of scale factors (25) does not change (see Fig. 8).

7 CONCLUSIONS

Here, we considered the original and entropy-corrected versions of the HDE and NADE models.
Among various candidates explaining cosmic accelerated expansion, only the HDE and NADE mod-
els are based on the entropy-area relation. However, this definition can be modified by the inclusion
of quantum effects, motivated from the LQG. Hence the ECHDE and ECNADE were introduced by
addition of correction terms to the energy densities of the HDE and NADE, respectively.
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We investigated the HDE, ECHDE, NADE and ECNADE in the framework of f(T )-gravity.
Among other approaches related with a variety of DE models, avery promising approach to DE is
related with the modified TG known asf(T )-gravity, in which DE emerges from the modification
of torsion. The class off(T )-gravity theories is an intriguing generalization of Einstein’s new GR,
taking a curvature-free approach and using a connection with torsion. It is analogous to thef(R)
extension of the Einstein-Hilbert action of standard GR, but has the advantage of the second order
field equations. We reconstructed different theories of modified gravity based on thef(T ) action in
the spatially-flat FRW universe for two classes of scale factors containing i)a = a0(ts − t)−h and
ii) a = a0t

h which were consistent with the original and entropy-corrected versions of the HDE and
NADE scenarios. Furthermore, we obtained the EoS parameterof the correspondingf(T )-gravity
models. Our calculations show that for the first class of scale factors, the EoS parameter, of both
the holographic and new agegraphicf(T )-gravity models, always behaves like that of phantom DE,
whereas for the second class, the EoS parameter behaves likequintessence DE. Interestingly, the
EoS parameter of both the entropy-corrected holographic and new agegraphicf(T )-gravity models
can cross the phantom-divide line twice. For the first class of scale factorsa = a0(ts− t)−h, the EoS
parameter of both the entropy-corrected holographic and new agegraphicf(T )-gravity models has
an opposite transition (ωT < −1 → ωT > −1) in the far past and a direct transition (ωT > −1 →
ωT < −1) in the near past. For the second classa = a0t

h, the EoS parameter of the aforementioned
models has a direct transition in the near past and an opposite transition in the future. It is interesting
to note that the direct transition from the non-phantom (quintessence) phase to the phantom one in
the near past is consistent with the recent cosmological observational data.
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