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Abstract In the present work, we reconstruct differef(fI")-gravity models corre-
sponding to the original and entropy-corrected versionthefholographic and new
agegraphic dark energy models. We also obtain the equétiiate parameters of the
correspondingf (T')-gravity models. We conclude that the original holograpdnid
new agegraphi¢ (T')-gravity models behave like the phantom or quintessencesimod
whereas in the entropy-corrected models, the equatioratd garameter can justify
the transition from the quintessence state to the phantgmmeeas indicated by the
recent observations.
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1 INTRODUCTION

Recent observational data coming from type la supernovaeys, large scale structure, and the
cosmic microwave background anisotropy spectrum poinatdwhe picture of a spatially-flat uni-
verse undergoing an accelerated expansion driven by a dotiregative pressure fluid, typically
referred to as dark energy (DE) (Riess et al. 1998; Perlmeiti. 1999). From cosmic observations,
it has been shown that DE takes up about two-thirds of thédotrgy density. Although the nature
and cosmological origin of DE are at present still enigmadigreat variety of models have been
proposed to describe the DE (for a review see Padmanabh&nR66bles & Ratra 2003; Copeland
et al. 2006).

One of the interesting alternative proposals for DE is medifjravity. It can naturally explain
the unification of earlier and later cosmological epochg@2aiello & Fang 2002). Moreover, mod-
ified gravity may serve in the role of dark matter (SoboutiZ200here are some classes of modified
gravities containing/ (R), f(G) and f(R,G) which are considered to be gravitational alternatives
for DE (Starobinsky 1980; Capozziello et al. 2006; Sadja@b& Hu & Sawicki 2007; Nojiri &
Odintsov 2007; Nojiri & Odintsov 2011; Nozari & Azizi 2009;afami & Khaledian 2011). The
Lagrangian density of modified gravity theorigss an arbitrary function of?, G or both R andg.
Here,R andG = R, ,c R*"P7 — 4R, R" + R? are the Ricci scalar and Gauss-Bonnet invariant
term, respectively. Als®,,. ., andR,,,, are the Riemann and Ricci tensors, respectively. The field
equations of these modified gravity theories are fourthmrdieich makes it difficult to obtain both
exact and numerical solutions. Recently, a new modifiedityravodel was proposed by Bengochea
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& Ferraro (2009) to describe the present accelerating estpamf the universe without resorting to
DE. Instead of using the curvature defined via the Levi-@igtbnnection in general relativity (GR),
the Weitzenbdck connection is used in teleparallel ggaiG) (Einstein 1930; Hayashi & Shirafuji
1981). As a result, the spacetime has no curvature but e@ti@ision. Similar to GR where the ac-
tion is a curvature scaldk, the action of TG is a torsion scal&r Following this line and in analogy
with the f(R) theory, Bengochea & Ferraro (2009) suggested a new modeeaA(T') theory, by
generalizing the action of TG as a function of the torsiorlesc&, and found that it can explain
the observed acceleration of the universe. Indeed, thersame terms in the modified Friedmann
equation inf(7")-gravity that can be identified as the effective DE that prmduthe accelerated
expansion of the late-time universe (Bamba et al. 2011; Ekulov 2011; Zheng & Huang 2011,
Karami & Abdolmaleki 2012). Models based on modified TG magogbrovide an alternative to
inflation (Ferraro & Fiorini 2007). Another advantage (fT") theory is that its field equations are
second order which are remarkably simpler than the fourdleroequations of (R) theory (Wu &
Yu 2010). Recentlyf (T')-gravity has been extensively studied in the literaturadier 2010; Wu &
Yu 2010; Bamba et al. 2011; Chen et al. 2011; Myrzakulov 2@htng & Huang 2011; Karami &
Abdolmaleki 2012).

Viewing the f(7T')-gravity model as an effective description of the undegdytheory of DE
motivates us to establish different modelsfdf")-gravity according to some viable DE scenarios
such as holographic DE (HDE), new agegraphic DE (NADE) apyrcorrected HDE (ECHDE) and
entropy-corrected NADE (ECNADE). To do so, in Section 2 wéew the theory off (T')-gravity.

In Sections 3, 4, 5 and 6 we reconstruct differé(if’)-gravity models corresponding to the HDE,
ECHDE, NADE and ECNADE models, respectively. Section 7 igodked to conclusions.

2 f(T)-GRAVITY
In the framework off (") theory, the action of modified TG is given by Bengochea & Fer(2009)

1

I=52

d'z e [£(1)+Ln. (1)
wherek? = M;? = 87G ande = det(eL) = /—g. Also T andL,, are the torsion scalar and the

Lagrangian density of the matter inside the universe, iEsmdy. Note thateft is the vierbein field
which is used as a dynamical object in TG and has the followitlgonormal property

€€ =1ij, (2

wheren;; = diag(—1,1,1,1). Each vectok, can be described by its componenfs where; =
0,1,2,3 refers to the tangent space of the manifold andg- 0, 1,2, 3 labels coordinates on the
manifold. The metric tensor is obtained from the dual viarlzes

(@) = mijey, ()€l (x) . ©)

The torsion scalaf’ is defined as
T=5/"T,, , 4)
where the non-null torsion tens@y, , is
0, =€ (D€l — 81,62) , (5)

n% i

and

v 1 v av vmo
S = 5K, 05T, — 5,T°%). (6)
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Also K“”p is the contorsion tensor defined as

v 1 v v 17
KW, = = (T, = T, = T,"). @)

Taking the variation of the action (1) with respect to therlvan eL, one can obtain the field equa-
tions in f(T')-gravity as (Bengochea & Ferraro 2009)

2

Siwau(T)fTT(T) + ie;’ (T) + [eilau(esilw) - e;\TiASpW fr(T) = %ez‘prV J (8)
where subscripf” denotes a derivative with respect®) S, = ¢,”S /¥ andT,,, is the energy-
momentum tensor of matter. The field Equation (8) are secaoatet avhich makes them simpler than
the corresponding field equations in the other modified tyaheories likef (R), f(G) andf (R, )
(Myrzakulov 2011).

Now if we consider the spatially-flat Friedmann-Roberts@alker (FRW) metric for the uni-
verse as

g = diag (= 1,0%(t), a(1), a*(1)) )

whereq is the scale factor, then from Equation (3) one can obtain

¢, = diag(l, a(t), a(t), a(t)) . (10)
Substituting the vierbein (10) into (4) yields
T=—-6H?, (11)

whereH = a/a is the Hubble parameter.

Taking T+ = diag(—pm, Pm, Pm, Pm) fOr the matter energy-momentum tensor in the prefect
fluid form and using the vierbein (10), the set of field equadi@8) fori = 0 = v reduces to
(Bengochea & Ferraro 2009)

12H? f(T) + f(T) = 2k pm (12)
and fori = 1 = v yields
ASH?H frr(T) — (12H? + 4H) fr(T) — f(T) = 2k*pp, - (13)

Herep,, andp,, are the energy density and pressure of the matter insidenitierse, respectively,
and they satisfy the conservation equation

Pm + 3H(pm +pm) =0. (14)

Note that Equations (12) and (13) are the modified Friedmanations in the framework of(7')-
gravity in the spatially-flat FRW universe. One can rewritpigtions (12) and (13) as (Myrzakulov

2011)
3

1 )
73 (2H +3H%) = ~(pm + 1) (16)
where )
pr = 52T fr— f-=T), (17)

= k2
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1 . . .
PTZ—@[—SHTfTT‘F(?T—‘lH)fT—f—|—4H—T]a (18)
are the torsion contribution to the energy density and piresshich satisfy the energy conservation
law

pr + 3H(pr +pr) = 0. (19)

In the case off (T") = T, from Equations (17) and (18) we haye = 0 andpr = 0. Therefore,
Equations (15) and (16) are transformed to the usual Friadreguations in GR.
The equation of state (E0S) parameter due to the torsiomibotibn is defined as

AH 2T frr + fr —1)

pr
wp=—=-1 20
T or Tfr—f-T (20)
Note that for the de Sitter universe, i#. = 0, we havew; = —1 which behaves like the cosmo-

logical constant.
In the subsequent sections, we reconstruct diffeféfit)-gravities according to the HDE,
ECHDE, NADE and ECNADE models.

3 HOLOGRAPHIC f(T)-GRAVITY MODEL

Here we reconstruct thg(T')-gravity from the HDE model. The HDE proposal is motivateohfr
the holographic principle, according to which, the numifetegrees of freedom of a physical sys-
tem should scale with the corresponding bounding areanttitaa with the volume ('t Hooft 1993;
Susskind 1995; Cohen et al. 1999). By applying the hologcgminciple to cosmology, one can ob-
tain the upper bound of the entropy contained in the univ@tisehler & Susskind 1998). Following
this strategy, Li (2004) proposed the HDE density as

3¢?
PA = T35 5 (21)
k2R?
wherec is a numerical constant and the future event horiggns defined as
> dt > da
Ry, = — = —_—. 22
h=a / T/ 4 (22)

Li (2004) showed that the HDE model can drive the universectekerated expansion. Also the
cosmic coincidence problem can be resolved by inflationénHBE model, providing the minimal
number of e-foldings.

Here, we assume two ansatzs for the scale factor which idlysimmsidered for describing
the accelerating universe in different modified gravitigs If (R), f(G) and f (R, G) (Starobinsky
1980; Capozziello et al. 2006; Sadjadi 2006; Hu & Sawicki200ojiri & Odintsov 2007; Nojiri &
Odintsov 2011; Nozari & Azizi 2009; Karami & Khaledian 201The first ansatz is given by

a(t) =ao(ts —t)™",  t<t, h>0. (23)
Using Equations (11) and (23) one can obtain

h 6h2 : T
— TG - (24)

For the second ansatz of
a(t) = apt", h>0, (25)
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one can get
h 6h? . T
H=- T=—— H=_—. 26
e 2 h (26)
For the first class of scale factors (23) and using Equatidj (Be future event horizoR,, yields
At ty—t  h [(—6\Y?
B al a h+l h+1(T> 27)
Inserting Equation (27) into (21) one can obtain
__0
pA - 2k2 T ’ (28)
where )
h+1
_ 2
y=c (—h ) . (29)
Equating (17) with (28), i.eo = pa, we obtain the following differential equation
2T fr — f+(y—1)T =0. (30)
Solving Equation (30) yields the holograptfi€l’)-gravity model as
f(T)=ev=T+ (1 —=7)T, (31)

wheree is an integration constant. Note that= —6H?2 < 0.
Substituting Equation (31) into (20) one can obtain the Em@meter of the torsion contribution
as

2
=-1- =, h>0, 32
wr an (32)
which is always smaller than1 and corresponds to a phantom accelerating universe. Relosert-
vational data indicate that the EoS parametgrat present lies in a narrow strip arouiag = —1

and is quite consistent with being below this value (Copetketral. 2006).
For the second class of scale factors (25) and using Equ@&nthe future event horizoR;,

reduces to ,
> qt ho(—6\"?
Ry = i (. h>1 33

" “/t a h—l(T) : -0 (33)

where the conditiorh > 1 is obtained due to having a finite positive future event trariaf we
repeat the above calculations then we can obtain botlf {fi¢ andw;, corresponding to the HDE
for the second class of scale factors (25). The resulf (@) is the same as Equation (31) where

h—1\?
= —) . 34
y=c ( W > (34)
Also the EoS parameter is obtained as
=1+ 2z h>1 (35)
wr = 3h 3 )

which describes an accelerating universe with the quiatess EoS parameter, ieqr > —1. It
should be mentioned that far > 1, the EoS parameter (35) also takes place in the range of
wr < —1/3.
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4 ENTROPY-CORRECTED HOLOGRAPHIC f(T)-GRAVITY MODEL

The ECHDE is the entropy-corrected version of the HDE motilleé corrections arise in the black
hole entropy in the loop quantum gravity (LQG) due to therewplilibrium fluctuations and quantum
fluctuations (Rovelli 1996; Ashtekar et al. 1998; Banerjell8dak 2009). On this basis, Wei (2009)
proposed the ECHDE density in the form

3c? a R? 6]
pA———i-—ln(—)—i-—, (36)

k*R? R} k2 R}
wherea andg are dimensionless constants. In the special aases = 0, the above equation yields

the well-known HDE density (21).
For the first class of scale factors (23), substituting Eguna7) into (36) one can get

1 A
pA:—#T—F@ [U—i—(ﬂn <—T>}T2, (37)

where
h+1\° k2o (h+1\" 6/ h \° k28 (h+1\*
_ 2 _ e - 2 _xF
7_C< h )’5 18( h )’A kQ(h+1)’0 18( h ) (38)
Equating (17) with (37) one can get
2TfT—f+('y—1)T—[cr—l—dln(—%)}TQ_ . (39)

Solving the differential Equation (39) yields the entragyrrected holographi¢(7')-gravity model
as

f(T)—e\/—_T+(1—'y)T+%{o+5[§+1n<—%)]}T2, (40)

wheree is an integration constant.
Substituting Equation (40) into (20) one can get

§—[o+6In(=2)]
bt (7— [U+5ln(—%T)]T> T

wp = —1— — x . h>0. (41)

3h

If we seto = 0 = e« ando = 0 = [ then Equations (40) and (41) reduce to (31) and (32),
respectively.

Note that the time-dependent EoS parameter (41) in comiistonstant EoS parameter (32)
can justify the transition from the quintessence state,> —1, to the phantom regime;;r < —1,
as indicated by recent observations (Larson et al. 2011;&fsumet al. 2011). To illustrate this
transition in ample detail, the EoS parameter of the ent@pyected holographig (7)-gravity
model, Equation (41), versus redshift= %2 — 1 for the first class of scale factors, Equation (23),
is plotted in Figure 1. Note that the torsion scdlacan be expressed in terms of redshiffor the
first class of scale factors (28) one can obtain

T_ 6h* 6h?
(=12 (L4 2R
Figure 1 demonstrates that for a set of free parameters0.818 (Li et al. 2009),a = —5,

6 = 0.1 andh = 0.55, wr crosses the-1 line twice. At the transition redshift; ~ 0.75, we have
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Fig. 1 The EoS parameter of the entropy-corrected holograptiig-gravity model, Eq. (41), versus
redshift for the first class of scale factors, Eq. (23). Aiaxil parameters are: = 0.818 (Li et al.
2009),a = —5, 8 = 0.1 andh = 0.55.

Fig.2 The ECHDE density, Eq. (36), versus redshift for the firstslaf scale factors, Eq. (23).
Auxiliary parameters are the same as in Fig. 1.

a direct transition fronwr > —1 (quintessence phase)da- < —1 (phantom phase). Whereas at
zr ~ 1.20, the crossing direction is opposite, iker < —1 — wp > —1. Crossing the-1 line
twice in the direct and opposite transitions is in agreemathtwhat was obtained recently for some
f(T)-gravity models (see Wu & Yu 2011).

Considering Equations (41) and (37) it seems thdf at W a singularity inwp
and a change of sign iny appear. Regardingr, Figure 1 shows that the EoS parameter of the
entropy-corrected holographjgT)-gravity model, Equation (41), does not show any singufarit

To check the change of sign i, given by Equation (37), we plot it in Figure 2. Figure 2
illustrates that for the first class of scale factors, altitoa future Big Rip singularity in the ECHDE
density po — o0) occurs atz: — —1 (ort — t), the sign ofp, does not change. Also the EoS
parameter remains finite at the future Big Rip singularityewh — —1 (see again Fig. 1). Itis also
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Fig. 3 The EoS parameter of the entropy-corrected holograptiig-gravity model, Eq. (43), versus
redshift for the second class of scale factors, Eq. (25)ilkuy parameters are: = 0.818 (Li et al.
2009),ac = —13, 8 = 12 andh = 1.31.

interesting to note that Figure 2 demonstrates that thd lng@amum and maximum points gf
occur at the transition redshifts when- = —1 (see Fig. 1). This can also be shown analytically.
From Equation (17)lpr/dT = 0 yields

2T frr+ fr—1=0.

Inserting the above relation into Equation (20) givgs= —1.
For the second class of scale factors (25), the resultiffg is the same as Equation (40) where

h—1)\2 k2a (h—1\" 6/ h \° k28 (h—1\*
_ 2 _ o -2 _re
7_C<h)’5 18<h)’/\k2<h—1)’0 18(h)‘ (42)

Also the EoS parameter is obtained as

§—[o+dn(=2))
bt <'y —Jo+dln (—%T)]T> T

2
CUT:_1+3—h><

, h>1. (43)

Here also in order to makg), be finite positive, the parametgrshould be in the range @f > 1.
One notes that the dynamical EoS parameter (43) in contittstie constant E0S parameter (35)
can accommodate the transition framp > —1 towy < —1 at the recent stage.

Figure 3 displays the evolution of the EoS parameter of thpwp-corrected holographj(T')-
gravity model, Equation (43), versus redshiftor the second class of scale factors, Equation (25).
In this case, the torsion scal@rcan be expressed in terms of redshits

6h?
T=——=—6h*1+2)*"

t2
Figure 3 like Figure 1 shows that thel line is crossed twice for another set of free parameters
¢ =0.818 (Lietal. 2009)n = —13, 6 = 12 andh = 1.31. At z7 ~ 0.26 we have a direct transition
(i,e.wr > —1 — wr < —1). Also an opposite transition occurs in the futurezat ~ —0.37.
Furthermore, Figure 3 indicates that there is no singylamitthe dynamical EoS parameter (43).
Note that also the sign of the ECHDE density (36) for the sdaiass of scale factors (25) remains
unchanged (see Fig. 4).
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Fig. 4 The ECHDE density, Eq. (36), versus redshift for the secdassmf scale factors, Eq. (25).
Auxiliary parameters are the same as in Fig. 3.

5 NEW AGEGRAPHIC f(T)-GRAVITY MODEL

The NADE model is another approach for explaining DE. Thiglei@assumes that the DE density
arises from the spacetime and matter field fluctuations intieerse (Karolyhazy 1966; Maziashvili
2007). Cai (2007) defined the ADE densityas = 3n2k—27~2, wheren is a numerical constant
andT is the age of the universe. However, the original ADE moddldwame difficulties. For example
it suffers from difficulty in describing the matter-domiedtepoch. Therefore, the NADE density was
proposed by Wei & Cai (2008a) as

3n?

PA = k2—772 ’ (44)

in which the old cut-offl” was replaced with conformal timgdefined as

dt da
- [<o e 45
. / - (45)

It was found that the coincidence problem could be solvedra#ly in the NADE model (Wei &
Cai 2008b). Note that although evolution behavior of the NAB similar to that of the HDE, some
essential differences exist between them. In particuierNADE model is free from the drawback
concerning the causality problem which exists in the HDE el@d/ei & Cai 2008a).

For the first class of scale factors (23), the conformal tinig the help of Equation (24) yields

ts dt hh+1 —6 %
=[S F) (46)
, a  ah+ 1)\ T

Substituting Equation (46) into (44) gives
_ 7 phtt
=_——T 47
PA= 513 ; (47)
where
_ 6n%ad(h+ 1)?

(_th)h+l (48)
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Equating (17) with (47) yields
2T fr — f—T — T =0. (49)

Solving Equation (49) gives the new agegraph(Z’)-gravity model as

_ v h+1
T)=ev-T+T T 50
J(T) = /=T + T —p T, (50)
wheree is an integration constant. Inserting Equation (50) int®) @ves
B 2(h+1)
wr=—-1-— T h>0, (51)

which is always smaller than1 like the EoS parameter of the holograplfii@)-gravity model (32),
and it behaves as a phantom type DE.
For the second class of scale factors (25) and using (263a@rmal timen is obtained as

tat R -6\ T
n_/o?_M(T) L 0<h<l, (52)

where the conditioih < 1 is necessary due to having a finite positive conformal tinte fesulting

f(T)is

fT)=eV=T+T+< _72hT1*h, (53)
where )
2.2(1 _
_6n ag(1 1_? (54)
(~6h2)
Also the EoS parameter of the new agegraphiE)-gravity model is obtained as
2(1—nh
wr =—-1+ ( ) 0<h<1, (55)

3h

which shows a quintessence-like EoS paramefer- —1. Here in order to have 1 < wy < —1/3,
the parametel should be in the range df/2 < h < 1.

6 ENTROPY-CORRECTED NEW AGEGRAPHIC f(T)-GRAVITY MODEL

More recently, very similar to the ECHDE model, the ECNADEnsi¢y was proposed by Wei
(2009) as

3n? «@ 2
pA—k2—772+Eln<%)+n—ﬁ4, (56)
which closely mimics that of the ECHDE density (36) aRg is replaced with the conformal time
7n. In the special case = § = 0, Equation (56) yields the NADE density (44). The motivation
taking the energy density of the modified NADE in the form (66jnes from the fact that both the
NADE and HDE models have the same origin. Indeed, it was arthet the NADE models are the
HDE model with different infrared length scales (Myung & S2i09).
For the first class of scale factors (23), substituting Eigna#6) into (56) yields

_ Y g, L A 2(h+1
pn= 55T +@{a+6ln(Th+l>}T( ), (57)
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where
_ 6n?ag*(h + 1)? _ 2k?aag*(h + n*
= —(_6h2)h+1 ’ - (—6h2)2(h+1) 5
o (—6n)"! __ 2K*Bag(h + 1)* (58)
k2ap2(h +1)% (—6h2)*+D
Equating (17) with (57) gives
2T fr — f —T — T — [0 +4dIn (Thﬂ)] T2+ — (59)

Solving the differential Equation (59) one can obtain theay-corrected new agegraphf¢T)-
gravity model as

_ g h+1
TY= e/—T+T+—_T
HT)= e R Y MEEwT

2(1+h) A 2(h+1
x{a+5[3+4h +1n<Th+1>]}T( ), (60)
wheree is an integration constant. Inserting Equation (60) int®) @ves
= 12 (ht1
T 3\ &

—6+ [0+ 6In (727))] s
) [1+<7+[0+51D(T3+1)]Th+1>T ) h>0. (61)

If we setd = 0 = awando = 0 = 3 then Equations (60) and (61) reduce to (50) and (51), respec-
tively. Note that the time-dependent EoS parameter (61pirtrast with constant EoS parameter
(51) can justify the transition from; > —1 towpy < —1.

Figure 5 illustrates the EoS parameter of the entropy-ctetenew agegraphif(T)-gravity
model, Equation (61), for the first class of scale factorsydipn (23). Here for a set of free param-
etersn = 2.716 (Wei & Cai 2008b),a« = —7.5, 8 = —14.8 andh = 2.5, the direct and opposite
transitions occur atr ~ 0.82 and1.44, respectively. Besides, Figure 5 reveals that there is no
any singularity in the dynamical EoS parameter (61). Note kiere also the sign of the ECNADE
density (57) for the first class of scale factors (23) doeshange (see Fig. 6).

For the second class of scale factors (25), the resultifiy) is

i 1—h 1
T)= ev-T+T+—-T
fI) = ev=T+T+ 17 Y3
2(1—h) A 2(1—h
x{0+5{3_4h +ln<T1_h)]}T( ), (62)
where

~ 6n%ap®(1 — h)? 5= 2k2aagt(1 — h)*

- (—6/?,2)17}1 ? - (_6h2)2(1—h) ’
_pp2y1-h 2 41 _ p\4
(—6h?) 7 G:2k Bag*(1 — h) 63)

= —k2a02(1 o h)2 (_6h2)2(1—h)
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Fig.5 The EoS parameter of the entropy-corrected new agegrgitiig-gravity model, Eq. (61),
versus redshift for the first class of scale factors, Eq..(28xiliary parameters are: = 2.716 (Wei
& Cai 2008b),ae = —7.5, 3 = —14.8 andh = 2.5.

10'

00 S S B S S

Fig.6 The ECNADE density, Eq. (56), versus redshift for the firsiss| of scale factors, Eq. (23).
Auxiliary parameters are the same as in Fig. 5.

Also the EoS parameter can be obtained as

— -0 Sln (=2r
wT:—1+2 (_1 h> x [1+ +[0+ DA(T ’l)] T1-h
3 h v+ [0+ dIn (725)] TR

, 0<h<1.(64)

Here also in order to have a finite positive conformal timéhe parametel should be in the range
of 0 < h < 1. Contrary to the constant EoS parameter (55), the dynarm&lparameter (64) can
accommodate the transition framy > —1towp < —1 at the recent stage.

Figure 7 presents the evolution of the EoS parameter of the@ncorrected new agegraphic
f(T)-gravity model, Equation (64), for the second class of stadtéors, Equation (25). Here also
like Figure 5, for another set of free parameters 2.716 (Wei & Cai 2008b)« = —44, = —10
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Fig. 7 The EoS parameter of the entropy-corrected new agegrgitiig-gravity model, Eq. (64),
versus redshift for the second class of scale factors, Bj. f&ixiliary parameters are: = 2.716
(Wei & Cai 2008b),c = —44, 3 = —10 andh = 0.5.
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Fig. 8 The ECNADE density, Eq. (56), versus redshift for the seadass of scale factors, Eq. (25).
Auxiliary parameters are the same as in Fig. 7.

andh = 0.5, wp crosses the-1 line twice atzy ~ 0.29 and —0.19 corresponding to the direct
and opposite transitions, respectively. Besides, Figuteriionstrates that there is no singularity in
the dynamical EoS parameter (64). Note that here also theo$ithe ECNADE density (56) for the
second class of scale factors (25) does not change (se€)Fig. 8

7 CONCLUSIONS

Here, we considered the original and entropy-correctesimes of the HDE and NADE models.
Among various candidates explaining cosmic acceleratpdresion, only the HDE and NADE mod-
els are based on the entropy-area relation. However, tfiisititen can be modified by the inclusion
of quantum effects, motivated from the LQG. Hence the ECHB&EBCNADE were introduced by
addition of correction terms to the energy densities of tdEFand NADE, respectively.
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We investigated the HDE, ECHDE, NADE and ECNADE in the framewof f(7T)-gravity.
Among other approaches related with a variety of DE modelgra promising approach to DE is
related with the modified TG known g&7T')-gravity, in which DE emerges from the modification
of torsion. The class of (T')-gravity theories is an intriguing generalization of E@iats new GR,
taking a curvature-free approach and using a connectidntaision. It is analogous to th&(R)
extension of the Einstein-Hilbert action of standard GR,tas the advantage of the second order
field equations. We reconstructed different theories of iffextigravity based on thé¢(T") action in
the spatially-flat FRW universe for two classes of scalediectontaining iys = ao(t; —t)~" and
ii) @ = aopt" which were consistent with the original and entropy-caedwersions of the HDE and
NADE scenarios. Furthermore, we obtained the EoS pararaéthe corresponding (T')-gravity
models. Our calculations show that for the first class ofes€attors, the EoS parameter, of both
the holographic and new agegraplfii@’)-gravity models, always behaves like that of phantom DE,
whereas for the second class, the EoS parameter behavepilitessence DE. Interestingly, the
EoS parameter of both the entropy-corrected holograplimaw agegraphi¢(T')-gravity models
can cross the phantom-divide line twice. For the first cldssale factors, = ag(t, —t)~", the EoS
parameter of both the entropy-corrected holographic amdagegraphid (7')-gravity models has
an opposite transitionfr < —1 — wy > —1) in the far past and a direct transitiang{ > —1 —
wr < —1)in the near past. For the second class a,t", the EoS parameter of the aforementioned
models has a direct transition in the near past and an opgoaitsition in the future. It is interesting
to note that the direct transition from the non-phantomrftpgsence) phase to the phantom one in
the near past is consistent with the recent cosmologic&reatonal data.
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