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Abstract We present the model of an anisotropic universe with strinigl fhs the
source of matter within the framework of the scalar-tenkenty of gravitation. An
exact solution of field equations is obtained by applyingrBamn’s law of variation to
Hubble’s parameter which yields a constant value of the ldeatton parameter. The
nature of classical potential is examined for the model undasideration. It has also
been found that the massive strings dominate in the earlyets® and finally disap-
pear from the universe. This is in agreement with currembasimical observations.
The physical and dynamical properties of the model are atsmudsed.
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1 INTRODUCTION

On the basis of coupling between an adequate tensor fieldcatat $ieldp, Brans & Dicke (1961)
formulated the scalar-tensor theories of gravitation. $talar fieldy has the dimension off !,
and thereforey—! plays the role of a time varying gravitational constahtThis theory is more
consistent with Mach’s principle and is less reliant on thedute properties of space. A detailed
survey of Brans-Dicke (BD) theory has been done by Singh & (BR883). In fact, the notion of
time-dependent was first conceived by Dirac (1938), though Dirac’s argureemtre based on
cosmological considerations not directly concerned witachls principle. Recently Jamil et al.
(2009), Jamil & Debnath (2011) and Chakraborty et al. (20d2zave investigated the cosmological
model of the universe with variab(@ in a different physical context.

In BD theory, which is a generalization of general relayiva scalar fieldp, in addition to the
metric tensoy;; and a dimensionless coupling constantvas introduced. For a large value of cou-
pling constantv (i.e.w > 500), BD theory follows the result of general relativity. Thelbgraphic
dark energy in the framework of BD theory with a chameleordasdéld has been investigated by
Setare & Jamil (2010). In this connection, Sheykhi et al1@d)b), Sheykhi & Jamil (2011), Karami
et al. (2011) and Jamil et al. (2011) explored BD theory talgioower law entropy corrected dark
energy and chameleon cosmology. In 1985, Saez and Balbtistetoped a scalar-tensor theory in
which a dimensionless scalar field is coupled with a metrids Toupling used to give a satisfac-
tory description of the weak fields. This scalar-tensor thedays an important role in solving the
missing matter problem and removing the graceful exit probin non flat Friedmann-Robertson-
Walker cosmologies and the inflation era (1997) respegti®&hgh & Agrawal (1991, 1992), Reddy
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et al. (2006, 2008), Socorro et al. (2010) and recently Jatail. (2012) have studied the cosmolog-
ical model within the framework of a Saez-Ballester sc&asor theory of gravitation in different
physical contexts.

Among the different cosmological structures of the unieetBe cosmic string models have en-
joyed wide acceptance because they give rise to densityrpations which lead to the formation of
galaxies (1985). Firstly, Letelier (1979) described thavgational effect of massive strings which
are formed by geometric strings with particles attached@lieir extension. The cosmic strings
play a significant role in the early stage of evolution of timévarse before the creation of particles
because cosmic strings have one-dimensional topologéfatts associated with spontaneous sym-
metry breaking whose plausible production site is only areaegical phase transition in the early
universe. At the observational front, Pogosian et al. (20@®e shown that the cosmic strings are
not responsible for either the cosmic microwave backgrdi@dB) fluctuations or the observed
clustering of galaxies. This means that strings disapp®en the present universe, leaving only
particles, but they were driving the early universe.

In recent years, Bianchi universes have been gaining aeasaorg interest and tremendous
impetus in observational cosmology. In connection withadlkbm the Wilkinson Microwave
Anisotropy Probe (Hinshaw et al. 2009; Jaffe et al. 2005p& heen discovered that the standard
cosmological model requires positive and dynamic cosnicibgarameters, a case which resem-
bles Bianchi morphology (2006, 2007). According to thisuteshe universe should achieve the
following features: i) a slightly anisotropic spatial geetny in spite of inflation, and ii) a non triv-
ial isotropization history of the universe due to the preseof an anisotropic energy source. The
anomalies found in the CMB and large scale structure ob8engastimulated a growing interest
in the anisotropic cosmological model of the universe. Heeeconfine ourselves to the case of a
Bianchi V model whose spatial section is flat but the expansate is direction dependent. Recently
Yadav et al. (2011) and Yadav (2012) studied Bianchi V stdagmological models in general rel-
ativity. In this paper, we discuss Einstein’s field equagionthe scalar-tensor theory of gravitation
for Bianchi V space-time, filled with string fluid as the soai@f matter. An exact solution of the
field equations is obtained by applying the law of variatiéidabble’s parameter, firstly proposed
by Berman (1983). This law yields the constant value of theetigation parameter (DP).

The paper is organized as follows: In Section 2, we have geal/the basic equations in con-
nection to the proposed model. Sections 3 and 4 deal witheotisely, the field equations and the
solution of field equations. Finally the conclusion is prase in Section 5.

2 METRIC AND BASIC EQUATIONS
A spatially homogeneous and anisotropic Bianchi V spate-ts described by the line element
ds® = —dt* + A%da® + e**" (B%dy® + C*d2?) | (1)

whereA(t), B(t) andC(t) are the scale factors in different spatial directions arigla constant.
We define the average scale factey of a Bianchi-type V model as

a=(ABC)5 . )

The spatial volume is given by
V =a®= ABC. (3)

Therefore, the mean Hubble’s parametén reads as
1 1
H:Z:E(H1+H2+H3), (4)

whereH, = %, Hy; = g andHs = % are the directional Hubble’s parameters towarg andz
respectively. An overdot denotes differentiation withpest to cosmic time.
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We define the kinematical quantities such as expansionrs¢éja shear scalafo) and
anisotropy parametérd,,,) as follows:

2 1 ij

o = ioijo- , (6)

3 2

1 H,— H
A, == ! , 7
2 (%) "
whereu® = (1,0,0,0) is a matter four velocity vector and

1 o o 1

0ij = 5 (Ui P + uja BY) = 50P;; . (8)

Here, the projection vectd?,;; has the form
Pij = gij — uiu; . 9)
The expansion scaléf) and shear scaldv ), in Bianchi V space-time, have the form
A B C

0: H=— — —
SH=3+5+5

AN B\ (| e

Here,(; ) stands for a covariant derivative with respect to cosmietim

(10)

3 FIELD EQUATIONS

We consider a homogeneous and anisotropic Bianchi V metupled with scalar fielg. Our model
is based on the Saez-Ballester theory of gravitation whigiléments a coupling of a dimensionless
scalar field with the metric.
We assume the Lagrangian
L=R-wé"¢:6", (12)

where R, w andr represent the scalar curvature, coupling constant andrdiimaless arbitrary
constant respectively.

For the scalar field having the dimensiong®f?, the Lagrangian (12) is not physically admis-
sible because two terms on the right hand side of Equatiorh@z different dimensions. However,
it is a suitable Lagrangian in the case of the dimensionlesisisfield.

From the above Lagrangian, we can establish the action

I= / (L 4 87 Lp)(—g)? do' da?dada* (13)
3

whereL,, is the matter Lagrangiamg, is the determinant of the matrix;, z* are the coordinates
andX: is an arbitrary region of integration.
The variational principlé = 0 leads to the field equations

1
Gij —wg" (Qb,i(b,j — §gij¢,e¢’¢) = —8xTy;,
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20" ¢ +1¢"  p gt =0. (14)
Equation (14) is obtained by considering arbitrary indejeg variations of the metric and scalar
field vanishing at the boundary &f.
Since the actior is a scalar, it can be easily proved that the equation of motio

T7 =0 (15)
is a consequence of the field equations.
The energy momentum tensor for a cloud of massive stringspaniéct fluid distribution is
taken as
Tij = (p + p)uiuj + pgi; — Awizj (16)
wherep is isotropic pressure; is the proper energy density for the cloud of strings withtipkes
attached to them is the string tension density;’ is a unit space-like vector representing the
direction of the string. The vectors andz® satisfy the conditions,;u’ = —z;2° = —1 and
vix; = 0.
Choosingz? parallel toa%, we have

' =(A71,0,0,0). (17)

Here, the cosmic string has been directed alongthgis.

It is important to note that the string is one-dimensional arinitely long, hence it has only
one non zero pressure component. Thus it brings anisotndpyhie system, which is not favored by
observational results.

If the particle density of the configuration is denoteddyythen
p=pp+A. (18)

Einstein’s field equations (in gravitational units= 1, 87G = 1) are

Rij — 3 Rgiy = ~Ty. (19)

Einstein’s field Equations (19) for the line-element (1)d¢a the following system of equations
%+%+%—%:p—%w¢’”é2, (23)
é+<§.+g+g>+;—¢é2—o. (25)

The energy conservation equatiﬁ’j;f = 0O yields

A
p+3(p+p)H — A5 =0. (26)
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4 SOLUTION OF THE FIELD EQUATIONS

We have a system of six Equations (2@25) involving seven unknown variables, namélyB, C,

p, p, A andg. Therefore, in order to completely solve the field equatiaesneed at least one suitable
physical assumption among the unknown variables. So, wsti@n the system of equations with
the law of variation for Hubble’s parameter proposed by Bemi1983), which yields a constant
value of DP. This law reads

H=Da™", (27)

whereD andn are positive constants. In this paper, we show how the cotisfa models with metric
(1) behave in the presence of a string fluid and dimensiosleslar fieldy. DP (¢), an important
observational quantity, is defined as

¢=—=- (28)

From Equations (4) and (27), we get
a = Da ", (29)

Integration of Equation (29) leads to
a=(nDt+c))w, (n#0). (30)

It is important to note here that far = 0, the model has a non singular origin and it evolves with
exponential expansion which seems reasonable to predidytiiamics of the future universe. Since
we are looking for a model of the universe, which describesdynamics of the universe from the
Big Bang to the present epoch, in this paper the ease0 has been omitted.

Integrating Equation (24) and absorbing the constant efiration inB or C', without loss of
generality, we obtain

A% = BC. (31)
Subtracting Equation (21) from Equation (22) and takinggéeond integral, we get the following
relation B p
t
ol dy exp [scl / V} , (32)

whered; andx; are constants of integration.
From Equations (3), (30), (31) and (32), the metric functian be explicitly written as

A= (nDt+c)7w, (33)
. % xl 7153
B = \/a(nDt +c1)™ exp [72D(n — 3)(nDt +c1) } , (34)
C = (Dt + 1)t exp |[——1 (Dt + 1) (35)
—\/In c1 Xp 2D(n—3)n c1 ,

provided that, # 3.
Inserting Equation (4) into Equation (25) and then intdgatwe obtain

#*¢" = dra=C. (36)

Here,d, is a constant of integration.
The average Hubble’s parametéf), isotropic pressurép), proper energy densityp), string
tension density\) and particle energy densify,,) are found to be

D

T nDt+ e’ 37
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2 -2 2wdy — 77 & 2 -2
p=a(nDt+c) " — — (nDt+c¢1)"» —=3(1 —=n)D*(nDt +¢1)” %, (38)
2+ 2wd
p=3D*(nDt +¢1)"? — (xl%M(nDt + cl)_% — 3a%(nDt + cl)_% , (39)
2 —wd 6
Ao Fizwds) 4“’ 2)(nDt+cl)*%, (40)
3 2
pp = 3D (nDt + c1)"2 — %(nDt ) m —3a2(nDt+ )% (41)

The above solutions identically satisfy the energy coret@a Equation (26), as expected.
The spatial volumé¢V'), expansion scalg®) and DP §) are given by

V = (nDt+cy)* , (42)

0 =3D(nDt +¢;)" !, (43)

g=n-—1. (44)

We observe that at = — 755, the spatial volume vanishes while all other parametersrde.
Therefore, the model has a Big Bang singularity at —-". This singularity is point type because

the directional scale factor&(t), B(t) andC'(t) vanish at the initial moment. From Equation (43),
itis clear that fom = 1, the universe expands with a constant rate. However, tlemtebservations
of type la supernovae (Perlmutter et al. 1997, 1998, 1998s$:et al. 1998, 2004 and Tonry et al.
2003) reveal that the present universe is acceleratingenebiue of DP lies somewhere in the range
—1 < ¢ < 0. It follows that one can choose the valueroih the range) < n < 1 to ensure that the
derived model is consistent with observations.

In the derived model, the scale factors increase with tinu¢ the contribution of exponential
terms to the scale factor$ andC' becomes negligible for sufficiently large time, i.e. forfaiéntly
large time we havel(t) ~ B(t) =~ C(t). This may be observed from Equations (3835). Thus,
initially the growth of scale factors takes place at diffetreates due to effective contribution of
exponential terms irB andC', but later the scale factors grow at the same rate. Therefotbe
derived model, the early anisotropic universe becomeroigimt at later times.

The scalar functiofig) may be obtained as

2

6ol +2) AL

wheregy is the constant of integration.
The shear scaldr) and anisotropy parametgd,,, ) are read as

o= %(nDt—i—cl)_% , (46)
x? 2n—6

The behavior of scalar functiof@) is depicted in Figure 1. From Equation (47), it is clear that
for n < 1, the anisotropy parametéd,,,) vanishes at late time. The behavior4f, versus time is
shown in Figure 2.

The behaviors op, p, and\ are depicted in Figure 3. From Equations (40) and (41), ildarc
that forn < 1 and for a large value of time”f > 1. This means that the particles dominate the
strings at later times which confirms the disappearanceiofistin the present day observations.
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Fig.1 Plot of scalar functiorf¢) vs. time.
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Fig.2 Plot of anisotropy parametér,,) vs. time.

From Equation (42), we obtain

. 3—n

V =3D(nDt+¢;) n (48)

According to Saha & Boyadjiev (2004), the equation of motidra single particle with unit mass
under forceF' (V') can be described as

vV =/2[c UV, (49)
whereU (V') ande are the classical potential of ford@ and amount of energy respectively.
From Equations (48) and (49), we obtain

6—2n

U(V)=2¢€ -9D*(nDt +c¢;) = . (50)
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Fig.3 Plot of proper energy densityp), string tension density\) and particle energy
density(pp) vs. time.

10 : , ,
------- WEC

8 - — —-DEC |{
----- NEC
——SEC

6 =

Energy conditions
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In connection with Hubble’s parameter, the classical pide(l) is given by

U(V)=2€-9D"H 5" (51)
Figure 4 plots the left hand side of the energy conditionsugitime. We observe that the weak

energy condition and dominant energy condition are satigfi¢he derived model. The null energy
condition is violated in the early universe but it is eveffijuaatisfied in the present universe. It
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Fig.5 The classical potential vs. time for different values:of

can also be observed that the strong energy condition (SEGdlated in the derived model. The
violation of SEC gives a reversal in the gravitational efffebich may be a possible cause for late
time accelerated expansion of the universe. Thus due tbaknergy conditions, one fings> 0
andp, > 0. Together with the fact that the sign dfis unrestricted, it may also take values that are
positive, negative or zero. In the derived modektarts with a positive value and approaches zero
with the passage of time (Fig. 3).

Figure 5 plots the classical potential with respect to timéhie presence of a string fluid as the
source of matter. We observe tltat}’) shows positive and negative behaviors with respect to time.
For a physically viable model, the speed of sogng should be less than the speed of lighit
In gravitational units, we have taken= 1, therefore the conditioft < v, < 1 must be satisfied for

a physically acceptable model of the universe.
From Equations (38) and (39), the speed of sound is given by

1—n

o dp _ 6(2wds — 22)(nDt +¢1) n -+ 24(1 — n)nD? — 8a2(nDt + ¢1)

Vs = - —3—n 1—n . (52)
dp 24nD? 4 6(22 + 2wdo) (Dt + ¢1) "7 + 2402(nDt +¢1) =

Figure 6 shows that the velocity of soufid) lies between 0 and 1.
We can express Equations (2qR3) in terms ofH, ¢ ando as

Lo 2 s 3a®
Lo A 2 2, O
P 2w¢ 1) 3= (2¢g—1)H* —0” + VR (54)
From Equations (53) and (54), we obtain
a X 1 o 2 5 1
L = L — e = 2 ) 55
- =g tgwd'et — g0 — =(p+3p) (55)

This is Raychaudhuri’'s equation for a given distribution &ns identically satisfied by the solution
presented in this paper.
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5 CONCLUSIONS

In this paper, we have studied a Bianchi V string cosmoldgitadel in the scalar-tensor theory
of gravitation. The study reveals that the sting tensionsilgri)\) vanishes at the present epoch,
which is why strings disappear from the present universehayt were playing a significant role in

the expansion of the early universe. The derived model usam in nature and it has a Big Bang

singularity att = —-5. Thus the universe starts evolving from the infinite Big Bainggularity at
t = —-5 and expands with a power law expansion rate. The spatiamala zero at initial moment
t = — 5. At this instant, the physical parametersp, A, p,, H ando all assume infinite values.

These parameters are a decreasing function of time andatdtiyrtend to zero for a sufficiently large
value of time. The spatial volume tends to zere as co. Thus, the universe is essentially an empty
space-time for large
The age of the universe is given by
1 1 C1

(q+1)H (¢+1)D°

Thus the age of the universe increases with< ¢ < 0 which shows the derived model is consistent
with observations.

We have also discussed the classical potential with respdche and have observed that the
classical potential changes its nature with evolution efudhiverse. In the early universe, it is found
to be positive and grows at a constant rate, but at late tiiniesjominated by a negative value and
decreases rapidly with time.
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