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Abstract The magnetar Swift J1834.9−0846 is observed using the Nanshan 25 m
radio telescope. No pulsed radio emission is detected. The upper limit on the pulsed
radio emission from this source is0.5 mJy. According to the “fundamental plane”
for radio magnetars, this source should have radio emission. Therefore, our results
put constraints on the existence of a fundamental plane of magnetar radio emission.
We argue that a magnetar’s ability to emit radio emission mayhave little to do with
the spin down luminosity and is related to the magnetar’s X-ray luminosity. The only
necessary condition is a relatively low X-ray luminosity.

Key words: pulsars: individual (Swift J1834.9−0846) — stars: magnetars — stars:
neutron

1 INTRODUCTION

Magnetars are assumed to be neutron stars powered by strong magnetic field decay (Duncan &
Thompson 1992). They form a different pulsar population from that of pulsars powered by rotation.
Normal pulsars powered by rotation are usually radio emitters, and radio emitting rotation-powered
pulsars are commonly known as radio pulsars. However, magnetars manifest themselves mainly as
anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs) (Tong et al. 2010; Tong
& Xu 2011). Until recently, no radio pulsations had been observed from any of the magnetars.
The discovery of transient pulsed radio emission from one magnetar has bridged the gap between
radio pulsars and magnetars (Camilo et al. 2006). Up to now, more than 20 magnetars have been
discovered1, and three of them are radio-loud magnetars (Camilo et al. 2006, 2007; Levin et al.
2010).

Recently, Rea et al. (2012) tried to understand magnetar radio emission from an empirical point
of view. They proposed that magnetars are radio-loud if and only if their quiescent X-ray luminosities
are smaller than their rotational energy loss rates:Lqui < Ė. This is the key point in the “fundamental
plane” of magnetar radio emission. Since Rea et al. (2012) published their paper, there have been
two new sources: SGR Swift J1822.3−1606 and SGR Swift J1834.9−0846. For the young magnetar

∗ Supported by the National Natural Science Foundation of China.
1 McGill online catalog:http://www.physics.mcgill.ca/∼pulsar/magnetar/main.html
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Swift J1834.9−0846, the upper limit of its quiescent X-ray luminosity is lower than its rotational
energy loss rate (Kargaltsev et al. 2012). This source should be another radio-loud magnetar if the
fundamental plane of magnetar radio emission proposed by Rea et al. (2012) is correct.

1.1 X-ray Observations of Swift J1834.9−0846

According to Kargaltsev et al. (2012), Swift J1834.9−0846 has a rotation period of2.48 s and a
period derivative of

Ṗ = 0.796× 10−11 s s−1.

Its characteristic magnetic field is

B = 3.2 × 1019
√

PṖ = 1.4 × 1014 G .

It may also be associated with the supernova remnant W41 (Tian et al. 2007; Kargaltsev et al. 2012).
Therefore, Swift J1834.9−0846 is similar to the radio emitting magnetar AXP 1E 1547.0–5408
(Camilo et al. 2007) in that they have a similar rotation period and a similar characteristic magnetic
field, and both are young sources associated with supernova remnants. The rotational energy loss
rate of Swift J1834.9−0846 is

Ė = 3.95 × 1046ṖP−3 = 2.1 × 1034 erg s−1 .

According to figure 3 in Kargaltsev et al. (2012), the Swift/XTR observed a declining flux of Swift
J1834.9−0846. From their figure 3, the upper limit of the source’s quiescent flux is

fqui < 3 × 10−12 erg cm−2 s−1 .

The corresponding upper limit of the source’s quiescent luminosity is

Lqui = 4πd2fqui < 5.7 × 1033d2
4 erg s−1 .

Here, the source distance is chosen as4 kpc, considering its potential association with the super-
nova remnant W41 (Tian et al. 2007; Kargaltsev et al. 2012). Furthermore, pre-outburst XMM and
Chandra observations showed that the source flux was about 100 and 1000 times smaller, respec-
tively (Section 3.3.2 in Younes et al. 2012; Section 6.2.3 inKargaltsev et al. 2012). Therefore, the
quiescent luminosity of Swift J1834.9−0846 must be smaller than its rotational energy loss rate.

This source meets all the criteria of the fundamental plane of magnetar radio emission from Rea
et al. (2012).

(1) Quiescent X-ray luminosity is smaller than the rotational energy loss rate.
(2) There is a high acceleration potential along the pulsar’s open field line regions. For Swift

J1834.9−0846, the corresponding acceleration potential is

∆V = 4.2 × 1020

√

Ṗ /P 3 = 3.0 × 1014 V .

(3) A burst/outburst triggers radio emission. Swift J1834.9-0846showed an SGR-type burst on 2011
August 7 (D’Elia et al. 2011). Its declining flux points to a recent outburst being likely.

(4) It lies relatively nearby. A possible distance of4 kpc is obtained considering its potential asso-
ciation with supernova remnant W41.

If the fundamental plane proposed by Rea et al. (2012) was correct, Swift J1834.9−0846 should
have radio emission. From previous experience with magnetar radio emission, we should have de-
tected its radio emission in recent years. Therefore, SwiftJ1834.9−0846 provides us the first oppor-
tunity to test the “fundamental plane” of magnetar radio emission.

The radio observations, data analysis and results are presented in Section 2, and the discussions
and conclusions are given in Section 3.
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2 RADIO OBSERVATIONS, DATA ANALYSIS AND RESULTS

We observed this source for2 × 1 hours, with a one hour folding mode and the other a searching
mode. Here, we mainly discuss the searching observation anddata analysis. The searching data
were first checked for the presence of non-dispersed radio frequency interference (RFI). Interference
signals above the 5σ threshold level were removed from the raw data prior to our analysis.

2.1 Radio Observations of Swift J1834.9−0846

The observation of Swift J1834.9−0846 was made using the Nanshan 25 m radio telescope (Xinjiang
Astronomical Observatory) on 2012 June 24, for 1.0 hour. Data were taken with the cryogenic re-
ceiver at a center frequency of 1540 MHz. A bandwidth of 320 MHz was used in our observation,
split into 128 continuous channels of 2.5 MHz frequency (Wang et al. 2001). Dual linear polariza-
tions were summed, and the frequency channels were one-bit sampled every 1.0 ms. The data were
recorded on a computer disk and transferred from the observatory to a linux computing server for
processing. No pulsed radio emission was detected2.

2.2 The Folding Search

The data were analysed using the pulsar signal processing package SIGPROC3 (Lorimer et al.
2000). The maximum dispersion measure (DM) detected in the known pulsars is 1456 pc cm−3.
According to the NE 2001 model for the galactic distributionof free electrons (Cordes & Lazio
2002), Swift 1834.9−0846 has a DM of 197 pc cm−3 assuming a distance of 4 kpc. So the data
were de-dispersed using 750 trial DMs ranging from 0 to 1500 pc cm−3. For each DM trial, the full
320 MHz of the bandwidth was de-dispersed.

A barycentric folding period was determined using a measurement from previous X-ray ob-
servations of Swift J1834.9−0846. With the reported period and its associated uncertainties from
the RXTE observations, we extrapolated the period to the 2012 June 24epoch and determined the
barycentric folding period to be 2.48249785(10)s.

Periods±5 ms (∼0.2%) from the nominal period were searched with a step of 0.01 ms. Each of
these folding trials was conducted for DMs between 0 and 1500pc cm−3 with steps of 2 pc cm−3. A
total of 375 000 DM and period combinations were tried (750 DMtrials, and 500 folds per DM trial),
and for each trial theχ2 significance of the folded profile was recorded. We chose 5σ as a reasonable
threshold for the signal, and we found no convincing pulsar candidates at the 5σ significance level
or higher in the search. At the same time, we also searched forperiodic signals using FFT with the
SEEK program at each trial DM. No pulsar candidate was found in this observation.

2.3 Upper Limit on Pulsed Radio Emission

The minimum detectable flux density can be given by the function (Manchester et al. 1996)

Smin =
αβTsys

G
√

Np∆t∆ν

√

We

P − We

. (1)

It is affected by system noiseTsys, telescope gainG, number of polarizationsNp, integration time
∆t, receiver bandwidth∆ν, assumed signal to noise ratioα, digitization and other processing losses
β, pulsar periodP and effective pulse widthWe. The effective pulse width depends on the intrinsic
pulse widthW , the sampling timeδt, the dispersion smearing time across one sub-channelδtDM

2 We observed this source for 1.0 hour in May 2012 in folding mode, and there were also no detections then.
3 Seehttp://sigproc.sourceforge.net
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and the interstellar scatteringδtscatt

We =

√

W 2 + δt2 + δt2DM + δt2scatt , (2)

where
δt = 1 ms,

δtDM = 8.3 × 106 DM ν−3
MHz B ms = 1.136 ms ,

δtscatt =
( DM

1000

)3.5( 400

νMHz

)4

103 ms = 0.016 ms,

with central frequencyν = 1540 MHz, DM = 200 cm−3 pc, and bandwidthB = 2.5 MHz (Lyne &
Graham-Smith 2012). The intrinsic pulse width was assumed to be0.05 P (Lazarus et al. 2012). The
effective pulse width will be0.05 P when the sum of the three contributions is much less than the
intrinsic pulse width. For the Nanshan 25 m radio telescope pulsar observing system (Tsys = 40K,
G = 0.1 K Jy−1, Np = 2, ∆t = 3600 s, ∆ν = 320MHz, β = 1.5), we setα equal to 5. Then, we
obtain an upper limit on the pulsed radio emission from Swift1834.9−0846 of 0.5 mJy.

3 DISCUSSIONS AND CONCLUSIONS

According to Rea et al. (2012), a magnetar will emit radio pulsations if and only if its quiescent
X-ray luminosity is smaller than its rotational energy lossrateLqui < Ė. Swift J1834.9−0846
meets all the criteria of the fundamental plane of magnetar radio emission. If the proposal of Rea
et al. (2012) was correct, then it should have radio emission. However, we detect no pulsed radio
emission from this source. It may be that magnetars withLqui < Ė might have radio emission.
At the same time, they can also have no radio emission. Despite the original proposal of Rea et al.
(2012),Lqui < Ė may only be a necessary condition for a magnetar to emit radiopulsations. In
Rea et al. (2012), two of the five sources withLqui < Ė have no radio emission. With the addition
of Swift J1834.9−0846, a total of six sources haveLqui < Ė. Three of them have radio emissions
(AXP XTE J1810−4197, AXP 1E 1547.0−5408 and PSR J1622−4950), but the other three are not
detected in radio (PSR J1846−0258, SGR 1627−41 and Swift J1834.9−0846). It is possible that
the three latter magnetars are actually radio emitting sources. Their radio emissions could have been
missed because of beaming, absorption due to the environment or large distances, etc (Rea et al.
2012). However, we also want to highlight the possibility that they do not have any radio emission
at all.

The X-ray emissions of magnetars are powered by magnetism. They have nothing to do with
the rotational energy loss rate (Thompson & Duncan 1996; Thompson et al. 2002). However, the
fundamental plane of magnetar radio emission links the magnetar quiescent X-ray luminosity with
its rotational energy loss rate. Rea et al. (2012) proposed this relation since they believed that the ra-
dio emissions of magnetars are powered by rotation. However, the characteristics of magnetar radio
emission are very different from those of radio pulsars (Mereghetti 2008) in that there is a variable
flux and pulse profile, a flat spectrum, and most importantly, it is transient in nature. If the radio
emissions of magnetars are powered by rotation, the same as in radio pulsars, then we should see
similar radio emission properties in radio magnetars and radio pulsars. However, this is not what
has been observed (Camilo et al. 2006, 2007; Levin et al. 2010). We find it reasonable to think that
the magnetar radio emission comes from a different energy reservoir. In the case of magnetars, the
natural energy budget is the magnetic energy. Therefore, the radio emissions of magnetars may be
powered by magnetism instead of by rotation. The X-ray emissions of magnetars can vary signifi-
cantly. Then it is not surprising that their radio emissionsare also variable, since they are from the
same energy reservoir.
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Some magnetars can also have a relatively short period (e.g., AXP 1E 1547.0−5408 has a period
of 2.1 s, Camilo et al. 2007). The rotational energy is also very significant. Therefore, we may also
expect some activities to be powered by rotation in magnetars (Zhang 2003). For example, radio
emissions that are powered by rotation could exist in magnetars and there could be two types of radio
emissions in magnetars, those powered by magnetism and those powered by rotation. At present,
only transient pulsed radio emissions are observed in magnetars, and they are more likely to be
powered by magnetism. In the future, more radio-loud magnetars will be discovered (e.g., by the
Five-hundred-meter Aperture Spherical Telescope or the Square Kilometre Array). Among them,
we may also see pulsed non-transient radio emissions in somemagnetars with properties similar to
those of ordinary radio pulsars. These radio emissions may be powered by rotation.

At present, three of the six sources withLqui < Ė have radio emissions. One physical reason
is that low luminosity magnetars tend to have a similar magnetospheric structure as that of radio
pulsars (section 4.2 in Tong et al. 2013). The coherent radioemission condition is more likely to
be fulfilled in magnetars with low luminosity. Only a relatively low X-ray luminosity is required.
This property has little relation with the magnitude of rotational energy loss rate. Therefore, the
“fundamental plane” of magnetar radio emission (if it exists4) should be “low luminosity magnetars
are more likely to have radio emissions.” Nothing further can be said. Since the Nanshan telescope
is relatively small (25 m in diameter), only a crude upper limit is obtained. Continued monitoring at
other radio telescopes is highly recommended5.

In summary, Rea et al. (2012) previously suggested that the necessary and sufficient condition
for a magnetar to emit in radio isLqui < Ė (the quiescent X-ray luminosity is smaller than the
rotational energy loss rate), and that the radio emission ispowered by the star’s rotational energy.
Based on our observation of Swift J1834.9−0846, we want to point out an alternative possibility.

(1) Since Swift J1834.9−0846 is not detected in radio (in contradiction with the prediction of Rea
et al. 2012),Lqui < Ė may only be a necessary condition.

(2) Considering the differences between the radio emissions of magnetars and normal radio pulsars,
it is more reasonable to think that radio emissions of known magnetars are powered by their
magnetic energy (instead of rotational energy as proposed by Rea et al. 2012).

(3) If the radio emissions of magnetars are powered by their magnetic energy, and combining theo-
retical studies of the magnetar’s magnetosphere (Tong et al. 2013), then the necessary condition
for a magnetar to have radio emission may have little to do with its rotational energy loss rate.
Only a relatively low X-ray luminosity is required.
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