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Abstract We present a model of a universe that transitions from an early deceleration
phase to the current acceleration phase under the frameworkof general relativity, in the
presence of gravitational couplingG(t) and cosmological termsΛ(t). Einstein’s field
equations have been solved by considering the time dependent deceleration parameter
(DP) which renders the scale factora = (tnekt)

1
m wherem, n andk are positive con-

stants. The cosmological term(Λ(t)) is found to be positive and a decreasing function
of time, which supports the result obtained from observations of type Ia supernovae.
The geometrical and kinematical features of the model are examined in detail.
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1 INTRODUCTION

The most striking discovery of modern physics is that the current universe is not only expanding
but also accelerating. The late time accelerated expansionof the universe has been confirmed by
observations of type Ia supernovae (SNe Ia) (Riess et al. 1998; Perlmutter et al. 1997). Observations
also suggest that there has been a transition of the universefrom an earlier deceleration phase to the
current acceleration phase (Caldwell et al. 2006). The recent measurements of cosmic microwave
background (CMB) anisotropy and the observations from SNe Ia demand a significant, positive
cosmological constant (Perlmutter et al. 1997; Fujii 2000). In addition, observations of gravitational
lensing indicate the presence of a non-zeroΛ.

The cosmological termΛ and the gravitational couplingG are assumed to be constants in
Einstein’s theory of general relativity. However, alternative ideas about the variability of these pa-
rameters were started long ago. The idea of variableG was first introduced by Dirac (1937), though
Dirac’s arguments were based on cosmological considerations not directly related to Mach’s princi-
ple. Later, Brans & Dicke (1961) formulated the scalar-tensor theory of gravitation which is based
on the coupling between an adequate tensor field and a scalar fieldφ, having the dimension ofG−1.
Motivated by dimensional grounds with quantum cosmology, Chen & Wu (1990) considered the
variation of the cosmological term to beΛ ∝ R−2. However, a number of authors argued in favor
of the dependenceΛ ∝ t−2. Subsequently, Arbab (2003) investigated cosmic acceleration with a
positive cosmological constant. A positive cosmological constant helps overcome the age problem,
connected, on one hand, with high estimates of the Hubble parameter and, on the other hand, with
the age of globular clusters. Further, it seems that in orderto retain the cold dark matter theory in
a spatially flat universe, most of the critical density should be provided by a positive cosmological
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constant (Efstathiou et al. 1990; Kofman et al. 1993). Observational data indicate that the cosmolog-
ical constant, if nonzero, is smaller than10−55 cm−2. However, since everything that contributes to
the vacuum energy acts as a cosmological constant, it cannotjust be dropped without serious consid-
erations. Moreover, expectations forΛ from particle physics exceed its present value by a factor of
order10120, in sharp contrast to observations. To explain this apparent discrepancy, the point of view
has been adopted which allows theΛ-term to vary with time (Salim & Waga 1993; Matyjasek 1995).
The idea is that during the evolution of the universe, the energy density of the vacuum decays into
particles, thus leading to a decrease in the cosmological constant. As a result, particles are created,
although the typical rate of creation is very small.

An anisotropic Bianchi type V cosmological model plays a significant role in understanding phe-
nomena like the formation of galaxies during the early stageof evolution. The choice of anisotropic
cosmological models permits one to obtain a more general cosmological model, in comparison to
the Friedmann-Robertson-Walker (FRW) model. Theoreticalarguments and recent observations of
the CMB support the existence of an anisotropic phase that approaches an isotropic one. Therefore,
it makes sense to consider models of the universe with an anisotropic background in the presence
of gravitational couplingG and a cosmological termΛ. Among different anisotropic cosmological
models, a Bianchi type V universe is a natural generalization of the open FRW model. Lorenz (1981)
and Lorenz-Petzold (1985) investigated a tilted Bianchi type V cosmological model with matter and
an electromagnetic field in higher dimensions. A large number of authors have studied the Bianchi
type V cosmological model in different contexts (Beesham 1986; Banerjee & Sanyal 1988; Nayak
& Sahoo 1989, 1996; Coley 1990; Singh & Singh 1991; Coley & Dunn 1992; Pradhan & Rai 2004).
Singh & Chaubey (2006) initially considered a Bianchi type Vuniverse as being a self consistent
system with a gravitational field that is a binary mixture of perfect fluid and dark energy given by a
cosmological constant. Furthermore, they have studied theevolution of a homogeneous anisotropic
universe filled with viscous fluid, in the presence of the cosmological constantΛ (2007). Singh &
Kale (2009) and recently Yadav et al. (2012) discussed anisotropic bulk viscous cosmological mod-
els with variableG andΛ.

In this paper, we present a model of the transitioning universe withG(t) andΛ(t). To study the
transition behavior of the universe, we assume the scale factor to be an increasing function of time
which generates a time dependent deceleration parameter (DP). This paper is organized as follows.
In Section 2, the model and field equations are presented. Section 3 deals with the scale factors and
cosmological parameters. Finally the conclusions are presented in Section 4.

2 MODEL AND FIELD EQUATIONS

We consider space-time admitting a Bianchi type V group of motion to be in the form

ds2 = −dt2 + A2dx2 + e2αx
(

B2dy2 + C2dz2
)

, (1)

whereA(t), B(t) andC(t) are the scale factors in thex, y andz directions andα is a constant.
The average scale factor(a) and spatial volume of the Bianchi type V metric are given by

a = (ABC)
1
3 , (2)

V = a3 = ABC . (3)

The generalized mean Hubble’s parameter(H) is given by

H =
ȧ

a
=

1

3
(Hx + Hy + Hz) , (4)

whereHx = Ȧ
A

, Hy = Ḃ
B

andHz = Ċ
C

are the directional Hubble’s parameters. An overdot denotes
differentiation with respect to cosmic timet.
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Since metric (1) is completely characterized by the averagescale factor, let us consider that the
average scale factor is increasing as a function of time by the following

a = (tnekt)
1
m , (5)

wherek ≥ 0, m > 0 andn ≥ 0 are constant. It is important to note here that the ansatz forthe
scale factor generalized the one proposed by Yadav (2012a,b) and Pradhan & Amirhashchi (2011).
Yadav (2012a,b) considered string and bulk viscous fluid to be the source of matter that describes the
transition behavior of the universe, whereas Pradhan & Amirhashchi (2011) studied a dark energy
model with a variable equation of state parameter. In this paper, we consider cosmic fluid filled with
G(t) andΛ(t) to be the source of matter to describe the transition of the universe from the early
decelerating phase to the current accelerating phase.

The value of DP (q) for model (1) is found to be

q = − äa

ȧ2
= −1 +

mn

(n + kt)2
. (6)

Equation (6) clearly indicates the time varying nature of DP(q). Amendola (2003) and Riess et al.
(2001) found that the expansion of the universe is accelerating at the present epoch, but it was de-
celerating in the past. It is however possible to haven = 0 in Equation (5) for which we would have
an inflationary universe. The sign ofq indicates whether the model inflates or not. A positive sign of
q, i.e. t ≤ 1

k
[
√

mn − n], corresponds to the standard decelerating model whereas the negative sign
−1 ≤ q < 0 indicates inflation.

Einstein’s field equations read as

Ri
j −

1

2
gi

jR − Λgi
j = −8πGT i

j , (7)

whereT i
j is the energy momentum tensor, which is given by

T i
j = (ρ + p)vivj − pgi

j , (8)

whereρ is the energy density,p is the isotropic pressure of the cosmic fluid, andvi is the fluid four
velocity vector. In the co-moving system of co-ordinates, we havevi = (1, 0, 0, 0).

Einstein’s field Equation (7) for the line element (1) leads to the following system of equations

B̈

B
+

C̈

C
+

ḂĊ

BC
− α2

A2
= −8πGγρ + Λ , (9)

Ä

A
+

C̈

C
+

ȦĊ

AC
− α2

A2
= −8πGγρ + Λ , (10)

Ä

A
+

B̈

B
+

ȦḂ

AB
− α2

A2
= −8πGγρ + Λ , (11)

ȦḂ

AB
+

ȦĊ

AC
+

ḂĊ

BC
− 3α2

A2
= ρ + Λ , (12)

2Ȧ

A
− Ḃ

B
− Ċ

C
= 0 . (13)

Here, we have assumed, as usual, an equation of statep = γρ, where0 ≤ γ ≤ 1 is constant.
The shear scalar(σ) is obtained as

σ2 =
1

3

[

Ȧ2

A2
+

Ḃ2

B2

Ċ2

C
−
(

ȦḂ

AB
+

ḂĊ

BC
+

ȦĊ

AC

)]

. (14)
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Equations (4), (12) and (14) allow us to write the analog of the Friedmann equation as

3H2 = 8πGρ + σ2 + Λ +
3α2

A2
. (15)

Here, we obtain the same equations as in the case of constantG andΛ; therefore the variability ofG
andΛ does not affect the equations. Finally, the generalized conservation equation can be obtained
using Equations (9)–(11) in the differentiated form of Equation (12) and can be written as

8πG [ρ̇ + 3(1 + γ)ρH ] + 8πρĠ + Λ̇ = 0 . (16)

We assume that the conservation of energy momentum tensor ofmatter holds(T ij
; j = 0) leading to

ρ̇ + 3(1 + γ)ρH = 0 , (17)

leavingG andΛ as coupled fields
8πρĠ + Λ = 0 . (18)

3 THE SCALE FACTORS AND COSMOLOGICAL PARAMETERS

Integrating Equation (13) and absorbing the constant of integration intoB or C, we obtain

A2 = BC . (19)

From Equations (9)–(11) and taking the second integral of each, we obtain the following three rela-
tions, respectively,

A

B
= b1 exp

(

x1

∫

a−3dt

)

, (20)

A

C
= b2 exp

(

x2

∫

a−3dt

)

, (21)

B

C
= b3 exp

(

x3

∫

a−3dt

)

, (22)

whereb1, b2, b3, x1, x2 andx3 are constants of integration.
From Equations (19)–(22) and (5), the metric functions can be explicitly written as

A(t) = (tnekt)
1
m , (23)

B(t) = d (tnekt)
1
m exp

(

ℓ

∫

(tnekt)−
3
m dt

)

, (24)

C(t) = d−1 (tnekt)
1
m exp

(

−ℓ

∫

(tnekt)−
3
m dt

)

, (25)

whered = (b2b3)
1
3 andℓ = x2+x3

3
with b2 = b−1

1 andx2 = −x1.

Integrating Equation (17), we obtain

ρ = ρ0(t
nekt)−

3(1+γ)
m , (26)

whereρ0 is the positive constant of integration.
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Fig. 1 The plot of DP(q) versus time (t) with m = 1, n = 0.25 andk = 1.5.

The physical parameters such as the directional Hubble parameters(Hx, Hy, Hz), average
Hubble parameter (H), shear scalar(σ), expansion scalar(θ) and spatial volume(V ) are given by

Hx =
1

m

(n

t
+ k
)

, (27)

Hy =
1

m

(n

t
+ k
)

+ ℓ
(

tnekt
)−

3
m , (28)

Hy =
1

m

(n

t
+ k
)

− ℓ
(

tnekt
)−

3
m , (29)

H =
1

m

(n

t
+ k
)

, (30)

σ2 = ℓ(tnekt)−
6
m , (31)

θ =
3

m

(n

t
+ k
)

. (32)

Equations (31) and (32) lead to

σ

θ
=

√
ℓm

3
(tnekt)−

3
m

(n

t
+ k
)

−1

. (33)

From Equation (33), we observe thatlimt→∞

(

σ
θ

)

= 0. Thus the derived model approaches isotropy
at the present epoch.

Figure 1 shows the dynamics of the DP from the early deceleration phase to the recent acceler-
ation phase, whereas Figure 2 ensures thatHx, Hy andHz evolve at an equal rate for late times, so
the universe achieves isotropy at the present epoch.

It is observed that the scale factorsA(t), B(t) andC(t), along the spatial directionsx, y andz
respectively, vanish att = 0. Thus the model has a point type singularity att = 0. We obtainq = −1
and dH

dt
= 0 ast → ∞. The model under consideration has a time dependent DP and evolves to

isotropy ast → ∞, with Λ → 0. Thus for large time, the model approaches the flat FRW model,
which is very encouraging. It may be noted that, although current observations of SNe Ia and CMB
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Fig. 2 The plot of directional Hubble parameters versus time withm = 1, n = 0.25, k = 1.5 and
ℓ = 0.65.

favor the accelerating modelsq < 0, they do not altogether rule out the decelerating ones whichare
also consistent with these observations. It is possible to fit the model with zeroΛ, considering the
extinction of light by metallic dust ejected from supernovaexplosions (Vishwakarma 2003).

The cosmological constant(Λ) and gravitational constant(G) are found to be

Λ =
3

m2

(n

t
+ k
)2

− ℓ2
(

tnekt
)−

6
m − 3α2

(

tnekt
)−

2
m − ρ0(t

nekt)−
3(1+γ)

m , (34)

G =
m

24π(1 + γ)

(

tnekt
)

3(1+γ)
m

[

6n

m2t2
− 6(ℓ2 + α2)

m
tnekt

]

. (35)

From Equation (34), it is observed that the cosmological constant(Λ) is a decreasing function
of time. This behavior is clearly shown in Figure 3. Recent cosmological observations suggest the
existence of a positive cosmological constant(Λ) with magnitudeΛ

(

G~

c3

)

≈ 10−123. These ob-
servations on magnitude and redshift of SNe Ia suggest that our universe may be accelerating with
induced cosmological density described by the cosmological Λ-term. Thus the model presented in
this paper is consistent with the results of recent observations.

We can express Equations (9)−(12) in terms ofH , q andσ, as

8πGγρ − Λ = (2q − 1)H2 − σ2 +
α2

a2
, (36)

8πGγρ − Λ = 3H2 − σ2 − 3α2

a2
. (37)

Equations (36) and (37) lead to

ä

a
=

Λ

3
− 2σ2

3
− 1

6
8πG(ρ + 3p) . (38)
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Fig. 3 Cosmological constant(Λ) versus time (t) with m = 1, n = 0.25, k = 1.5, γ = 0.33,
α = 0.15 andρ0 = 1.

From Equation (38), it is shown that forρ + 3p = 0, only theΛ-term contributes to the acceleration,
which seems to show a relation betweenΛ and dark energy. The same is predicted by observations
from the supernova legacy survey.

4 RESULTS AND SUMMARY

In this paper, we have presented a model of the transitioninguniverse with gravitational coupling
G(t) and cosmological termΛ(t) in the framework of general relativity. The spatial scale factors
and volume scalar of the derived model vanish att = 0. The energy density and pressure are infinite
at this initial epoch. Ast → ∞, the scale factors diverge andρ tends to zero. The shear scalar(σ)
is very large at the initial moment but decreases with cosmictime and vanishes ast → ∞. The
model leads to an isotropic state during the later time of itsevolution. Forn 6= 0, all matter and
radiation are concentrated in the Big Bang and the model has apoint type singularity at the initial
moment. Forn = 0, the universe has a non singular origin which seems reasonable for predicting
the dynamics of the future universe. In the derived model,limt→0

ρ
θ2 turns out to be constant. Thus

matter is dynamically negligible near the origin and the model approaches homogeneity.
The cosmological constant(Λ) is found to be a decreasing function of time and it approaches

a small positive value at late time. A positive value ofΛ corresponds to the negative effective mass
density (repulsion). Hence we expect that in a universe witha positive value ofΛ, the expansion
tends to accelerate. Thus the derived model predicts an accelerating universe at the present epoch.

The age of the universe, in the derived model, is given by

T0 =
n

m
H−1

0 − k,

which differs from the present estimate, i.e.T0 = H−1
0 ≈ 14 Gyr. But if we taken = m andk = 0,

the model is in good agreement with the present age of the universe.
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