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Abstract There is sufficient amount of internal evidence in the napfigravitational
theories to indicate that gravity is an emergent phenomékepe.g, elasticity. Such
an emergent nature is most apparent in the structure oftgtiawvialdynamicsit is,
however, possible to go beyond the field equations and shelggace itself as emer-
gent in a well-defined manner in (and possibily in) the context of cosmology. In
the first part of this review, | describe various pieces oflemce which show that
gravitational field equations are emergent. In the seconi Ipdescribe a novel way
of studying cosmology in which | interpret the expansionha tiniverse as equivalent
to the emergence of space itself. In such an approach, tremga evolves towards a
state of holographic equipartition, characterized by améty in the number of bulk
and surface degrees of freedom in a region bounded by theléidotius. This prin-
ciple correctly reproduces the standard evolution of adfni@nn universe. Further, (a)
it demandghe existence of an early inflationary phase as well as late &iccelera-
tion for its successful implementation and (b) allows udn& the value of late time
cosmological constant to theefolding factor during inflation.

Key words: cosmology: theory — cosmology: cosmological parametersrergent
gravity — holographic principle

1 INTRODUCTION

There is strong evidence in the structure of classical taaehal theories to suggest that gravi-
tational field equations in a wide class of theories, inalgdbut not limited to Einstein’s general
relativity, have the same status as the equations of fluichargcs or elasticity, which are examples
of emergent phenomena (For a review, see Padmanabhan 2010&, for a small sample of work
in the same spirit, see Sakharov 1968; Jacobson 1995; Wa2&3; Hu 2011; Barcelb et al. 2005;
Verlinde 2011). Given the intimate connection between igyaand cosmology, such a change in
perspective has important implications for cosmology. &ntigular, ideas of emergence of space-
time find a natural home in the cosmological setting and pi®éd novel — but mathematically
rigorous and well-defined — way of interpreting cosmologi@gansion as emergence of space (as
cosmic time progresses). This, in turn, leads to a deeparlaetween the inflationary phase of the
early universe and the late time accelerated expansioreafritverse. In this review, | will describe
various facets of this approach, concentrating on the ctiggioal context.

The plan of the review is as follows. The next section dessrthe evidence which has led to the
interpretation that gravitational field equations are egast. In Section 3, | discuss how these ideas
allow us to obtain the gravitational field equations by méaxing the entropy density of spacetime
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instead of using the usual procedure of varying the metria dynamical variable in an action
functional. In Section 4, | describe the implications ofstlhipproach for cosmology and how the
cosmic evolution can be thought of in a completely new mar8estion 5 uses these ideas to connect
up the two phases of the universe in which exponential exparsok place, viz. the inflationary
phase in the early universe and the late time acceleratiagepht the present epoch. Among other
things, this approach allows us to link the current valuehef tosmological constati to thee-
folding factor N during inflation by

AL% ~ 3exp(—4N) ~ 107122 (1)

for N ~ 70 which is appropriatéAstronomers and those who are essentially interested imolmgy
can skip Sections 2 and 3, and go directly to Section 4.

2 THE EVIDENCE FOR GRAVITY BEING AN EMERGENT PHENOMENON
2.1 Spacetimes, Like Matter, can be Hot

| will begin by describing several pieces of internal evidein the structure of gravitational theories
which suggest that it is better to think of gravity as an eraetgphenomenon. To understand these
in proper perspective, let us begin by reviewing the notibaroemergent phenomenon.

Useful examples of emergent phenomena include gas dynamételasticity. The equations
governing the behavior of a gas or an elastic solid can béemrdlown entirely in terms of certain
macroscopic variables (like density, velocity, shape)etithout introducing notions from micro-
scopic physics like the existence of atoms or moleculesh 3udescription will involve certain
phenomenologically determined constants (like specifit,i¥ung’s modulus etc.) which can only
be calculated when we know the underlying microscopic thdarthe thermodynamic description
of such systems, we however work with suitably defined thelynamic potentials (like entropy,
free-energy, enthalpy etc. which can depend on these atgjitthe extremization of which will
lead to the equilibrium properties of the system.

As an example, consider an ideal gas kept in a container amvel’. The thermodynamic
description of such a system will lead to the phenomenolggsult tha{ P/T") « (1/V') whereP
is the pressure exerted by the gas on the walls of the contamt" is the temperature of the gas.
One can obtain this result by maximizing a suitably definedogy functionalS(FE, V') or the free-
energyF (T, V). Itis, however, impossible to understamtlysuch a relation holds within the context
of thermodynamics. As pointed out by Boltzmann, the notibheat and temperatudemandshe
existence of microscopic degrees of freedom in the systeiohndan store and exchange energy.
When we introduce the concept of atoms, we can re-interpegitmperature as the average kinetic
energy of randomly moving atoms and the pressure as the ntaméransfer due to collisions of the
atoms with the walls of the container. One can then obtaimabelt(P/T) = (Nkg/V) in a fairly
straightforward manner from the laws governing the micopsc degrees of freedom. As a bonus,
we also find that the proportionality constant in the pheneofegical relation(P/T) «x (1/V),
actually givesV kg which is a measure of the total number of microscopic degrefreedom.

We now proceed from the description of an ideal gas to therge®n of spacetime. Decades
of research have shown that one can associate notions ottatape and entropy with any null
surface in a spacetime which blocks information from a dertéass of observers. Well known
examples of such null surfaces are black hole horizons (Bske 1972; Hawking 1975) and the
cosmological event horizon (Gibbons & Hawking 1977; Lohiy@/8) in the de Sitter spacetime.
The result, however, is much more general and can be stafeticags: Any observer in a spacetime
who perceives a null surface as a horizon will attribute tteémperature

T = 5 2)

c2r’
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wherex is a suitably defined acceleration of the observer. The gstglontext in which this result
arises is in flat spacetime itself. An observer who is movirit\&n acceleratior in flat space-
time will think of the spacetime as endowed with a tempergiven by Equation (2). This re-
sult, originally obtained by Davies (1975) and Unruh (19f&8)a uniformly accelerated observer,
can be generalized to any observer whose acceleratiors\arféciently slowly, in the sense that
(k/K?) < 1.

This result shows that near any event in spacetime therésexislass of observers who sees
the spacetime as hot. Such observers, called Local Rindiee®ers, can be introduced along the
following lines: Around any evenP in the spacetime, one can introduce the coordinate system
appropriate for a freely falling observer who does not eiguere the effects of gravity in a local
region. The size. of such a region is limited by the conditidi? < (1/R) whereR is the typical
value of the spacetime curvature at the evi@ntVe can now introduce the local Rindler observer as
someone who is accelerating with respect to the freelynfalibserver with an acceleratian By
making the acceleration sufficiently large, (so that/x? < 1, x? > R) we can ensure that this
observer attributes the temperature in Equation (2) to plagetime in the local region. Thus, just
as one can introduce freely falling observers around angtévewe can also introduce accelerated
observers around any event and work with them.

Equation (2) is probably the most beautiful result to havememut of combining the principles
of relativity and quantum theory. One key consequence sfrigult is thatll notions of thermo-
dynamics are observer dependerten we introduce non-inertial observers; e.g., while tegtial
observer will consider the flat spacetime to have zero teatpe, an accelerated observer will at-
tribute to it a non-zero temperature. In fact, such an olesetependence of thermodynamic notions
exist even in other — more well known — examples like the blhole spacetime. While an ob-
server who remains stationary outside the black hole horizt attribute a temperature to the black
hole (in accordance with Equation (2) wheres the proper acceleration of the observer with respect
to local freely falling observers), another observer whivasly falling through the horizon will not
associate any temperature with the horizon. The relatipristween the observer at rest outside the
black hole horizon and the freely falling observer is exattle same as the relationship between
an accelerated observer and an inertial observer in flaesipse The temperature looth cases is
observer dependent and can be interpreted in terms of Bgu@). In fact, the result for Rindler
observers in flat spacetime can be obtained as a limitingafaselack hole with very large mass.

The notion that spacetimes appear to be hot, endowed witin-a&m temperature, as seen by
a certain class of observers, already suggests that thetest of spacetime dynamics could be
analogous to the dynamics of a hot gas described using tleedathermodynamics. If this is the
case, one should be able to describe the field equationswfygraterms of thermodynamic notions.
This is the first evidence that gravity is an emergent phemamgwhich | will now describe.

2.2 Gravitational Field Equations as a Thermodynamic Idenity

To see the relationship between gravitational field equatend thermodynamics in the simplest
context (Padmanabhan 2002), let us consider a static,isptgsymmetric spacetime with a hori-
zon, described by a metric

ds® = —f(r)cdt* + f = (r)dr® + r?dQ>. ©)

The location of the horizon is the radius= a at which the functiory () vanishes, so that(a) = 0.

Using the Taylor series expansion fifrr) near the horizon ag(r) ~ f’(a)(r — a) one can easily

show that the surface gravity at the horizomis= (c?/2)f'(a). Therefore, using Equation (2) we

can associate a temperature

hef'(a)
47

kpT = 4)
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with the horizon. This temperature knows nothing about treadhics of gravity or Einstein’s field
equations.

Let us next write down the Einstein equation for the metri€guation (3), which is given by
(1—f)—rf'(r) = —(87G/c*) Pr? whereP = T is the radial pressure of the matter source. When
evaluated on the horizan= « this equation becomes

¢ [lf’(a)a - ﬂ — 47Pa? . (5)

This textbook result does not appear to be very thermodyeidmisee its hidden structure, consider
two solutions to Einstein’s equations differing infinitesilly in the parameters such that horizons
occur at two different radik anda + da. If we multiply Equation (5) byla, we get

4

4
£ op ~° da= 2
2Gf (a)ada 2Gda P(4ma“da). (6)

The right hand side is justdV whereV = (47 /3)a® is what is called the areal volume, which is
the relevant quantity to use while considering the actiopreSsure on a surface area. In the first
term on the left sidef’ () is proportional to horizon temperature in Equation (4) ardcan rewrite
this term in terms of” by introducing am factor by hand into an otherwise classical equation) to
bring in the horizon temperature. We then find that Equatime€duces to

hef'(a) ¢ (1., 1ctda A
—— —
ksT ds —dE Pdv

Each of the terms has a natural — and unique — thermodynateipirtation as indicated by the
labels. Thus the gravitational field equation, evaluatetherhorizon, now becomes the thermody-
namic identity’'dS = dE + PdV, allowing us to read off the expressions for entropy andgner

167 (8)

1AH. _c4a_c4 (AH)1/2
AL% 413’ 267 G
Here Ay is the horizon area ank, = Gh/c? is the square of the Planck length.

We see that the entropy associated with the horizon is ongegaf its area in Planck units.
By taking the limit of a black hole with very large mass, welwéduce the problem to one of
accelerated observers in flat spacetime. So we find that Hveséerated observers around any event
will attribute not only a temperature but also an entropyhi® horizon; the latter being one quarter
per unit area of the horizon expressed in Planck units.

It is well-known that black holes satisfy a set of laws simitalaws of thermodynamics, includ-
ing the first law and the result derived above has a super§uilarity to it. However, the above
result isquite differenfrom the standard first law of black hole dynamics. One kefedéince is that
our result is local and does not use any property of the sipagehetric away from the horizon.
So, thesame result holds even for a cosmological horizon like a tterSiorizononce we take into
account the fact that we are sitting inside the de Sitterzoor{Padmanabhan 2002). In this case we
obtain the temperature and entropy of the de Sitter spaeeatrne

hH 2
/€BT = — S = e

—. 9
o’ L% H? )
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Just as the result in Equation (2), this result also germastio other Friedmann universes (whén
is not a constant) and gives sensible results; we will distlusse aspects in Sectioh 4

Unlike the temperature, the entrogid depend on the field equations of the theory. What hap-
pens if we consider a different theory compared to Einstajigneral relativity or even some cor-
rection terms to Einstein’s theory? Remarkably enough ath@ve result (viz. the field equations
becoméel'dS = dFE + PdV) continues to hold for a very wide class of theories! In theemgeneral
class of theories, one can define a natural entropy for thizdrocalled the Wald entropy (Wald
1993) and we again get the same result with the correct Watdmn(for a sample of results see
Kothawala et al. 2007; Paranjape et al. 2006; Cai et al. 2008b& Kim 2005; Cai et al. 2008a;
Akbar & Cai 2007; Cai & Cao 2007; Gong & Wang 2007; Cai et al. 200

For example, there exists a natural extension of Einstelre®ry into higher dimensions,
called Lanczos-Lovelock models (Lanczos 1932, 1938; Lankel1971). The field equations in
any Lanczos-Lovelock model, when evaluated on a statidisolwf the theory which has a hori-
zon, can be expressed (Kothawala & Padmanabhan 2009) ioimeof a thermodynamic identity
TdS = dE, + PdV whereS is the correct Wald entropyy, is a purely geometric expression pro-
portional to the integral of the scalar curvature of the bamiandPdV represents the work function
of the matter source. The differentialS, dE, etc. should be thought of as indicating the difference
in the physical quantitieS, E, etc. between two solutions of the theory in which the locatibthe
horizon is infinitesimally different.

The gravitational field equations, being classical, havé: o them while the Davies-Unruh
temperature does. But note that the Davies-Unruh temperatliEquation (2) scales dsand the
entropy scales as/h (due to thel /L% factor), makingl'dS independent ofi! Without such scal-
ing we could not have reduced classical field equations teartbdynamic identity involving a
temperature that depends bnThis fact strengthens the emergent perspective becaigsesult is
conceptually similar to the fact that, in normal thermodyies, T o< 1/kg while S « kp making
TdS independent o . The effects due to microstructure are indicatedily the case of gravity
and bykp in the case statistical mechanics. This dependence digepjethe case of continuum
limit thermodynamics describing the emergent phenomenon.

2.3 Einstein’s Equations are Navier-Stokes Equations

The discussion so far dealt wigitatic spacetimes analogous to states of a system in thermodynamic
equilibrium differing in the numerical values of some pasders. What happens when we consider
time dependent situations? One can again establish a pormésnce between gravity and the ther-
modynamic description, even in the most general case nstout that the Einstein’s field equations,
when projected on tany null surface inany spacetime, reduce to the form of Navier-Stokes equa-
tions in suitable variables (Padmanabhan 2011a; Kolekaadnanabhan 2012). This result was
originally known in the context of black hole spacetimesrfiar 1979; Price & Thorne 1986) and

is now generalized to any null surface perceived as a loa@ o by suitable observers. | will not
discuss the details of this result here due to lack of space.

2.4 Field equations as an Entropy Balance Condition

The most general — and possibly the most direct — evidencarfocemergent nature of the field
equations is that they can be reinterpreted as an entropydmlcondition on spacetime. We will

1 Incidentally, there are several other crucial differertmesveen our result and the first law of black hole mechanidstwh
will become, in the present contextdS = d€ while we have an extra teri?dV. The energ)¢ used in the conventional
first law is defined in terms of matter source while tfien our relation is purely geometrical; see, for a detailestdssion
(Kothawala 2011).
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illustrate this result for the Friedmann universe in GR drehtmention how it can be generalized to
arbitrary spacetime in more general theories (Padmanadiid).

Let us consider a Friedmann universe with expansion factor and let H(t) = a/a. We
will assume that the surface with radiéi&~! (in units withc = 1,k = 1) is endowed with the
entropyS = (A/4L%) = (v/H?L%) and temperaturd = hH/2w. During the time interval
dt, the change of gravitational entropyds/dt = (1/4L%)(dA/dt) and the corresponding heat
flux is T'(dS/dt) = (H/8wG)(dA/dt). On the other hand, the Gibbs-Duhem relation tells us that
for matterin the universe, the entropy densityss, = (1/7)(p + P) and the corresponding heat
flux is T's,,A = (p + P)A. Balancing the two gives us the entropy (or heat) balanceliton
TdS/dt = s,, AT which becomes

H dA
Using A = 47/ H?, this gives the result
H = —47G(p+ P), (11)

which is the correct Friedman equation. Combining with thergy conservation for mattgtla® =
—Pda?, we immediately find that

3H?
881G

wherep, is the energy density of the cosmological constant (Viith= —p,) which arises as an
integration constant. We thus see that the entropy balamditton correctly reproduces the field
equation — but with an arbitrary cosmological constantiagi®s an integration constant. This is
obvious from the fact that, treated as a fluid, the entropysitiefisy = (1/7)(pa + Pa) = 0]
vanishes for a cosmological constant. Thus one can alwaysua@rbitrary cosmological constant
without affecting the entropy balance.

This is a general feature of the emergent paradigm and hasriam consequences for the
cosmological constant problem. In the conventional apgrpgravity is treated as a field which
couples to thenergy densitpf matter. The addition of a cosmological constant — or egjently,
the shifting of the zero level of the energy — is not a symmefrthe theory and the field equations
(and their solutions) change under such a shift. In the eemerspective, it is thentropy density
rather than thenergy densityhich plays a crucial role. When the spacetime responds iaraner
maintaining entropy balance, it responds to the combinatie P [or, more generally, t@,,n*nb
wheren? is a null vector] which vanishes for the cosmological constin other words, shifting of
the zero level of the energy is the symmetry of the theory émaémergent perspective and gravity
does not couple to the cosmological constant. Alternatiwale can say that the restoration of this
symmetry allows us to gauge away any cosmological congtareby setting it to zero. From this
point of view, the vanishing of the bulk cosmological comsiia a direct consequence of symmetry
in the theory. We will see later in Section 4 that the presarfae small cosmological constant or
dark energy in the universe has to be thought of as a relic épgamtum gravity when this symmetry
is broken. The smallness of the cosmological constant theesaas a consequence of the smallness
of the symmetry breaking.

One can, in fact, reinterpret the field equationgiy gravitational theory, irany spacetime, as
an entropy balance equation by a slightly different procethvolving virtual displacements of local
Rindler horizons (Padmanabhan 2010d). To obtain thistigsansider an infinitesimal displacement
of a patch of the local Rindler horizdr in the direction of its normal,, by an infinitesimal proper
distance:. It can be shown that the virtual loss of matter entropy todihside observer, because the
horizon has engulfed some matter, is given by

6Sm = 0E/Toec = BlocT €ar;dVprop - (13)

= p -+ constant= p + py , (12)
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Here 8, = 27 N/k is the reciprocal of the redshifted local temperature, WiNth= /—goo being
the lapse function, ang’ is the approximate Killing vector corresponding to tratistain the local
Rindler time coordinate. We next need an appropriate natfdhe gravitational entropy which can
be extracted from the definition of the Wald entropy. It isgbke to show that the corresponding
change in the gravitational entropy is given by

(SSgraV = 5]0(:%1 Jadvprop ’ (14)

whereJ® is known as the Noether current corresponding to the lodahgivector(®. (Once again
the cosmological constant will not contribute d8,,.., or §.5,, when evaluated on the horizon.)
For a general gravitational theory with field equations giby 26 = T (where the left hand
side is a generalization of the Einstein tenggf in general relativity), this current is given by
Jo = 2Ge¢b + LE* wherelL is the gravitational Lagrangian. Using this result and eatihg it on
the horizon, we get the gravitational entropy to be

(SSgraV = ﬁgaJaderop = 2ﬁgaj§a§jdvpr0p . (15)

Comparing this with Equation (13), we find that the field e¢qureg2G; = T can be reinterpreted
as the entropy balance conditioSgray = dSmatt ON the null surface. This is possibly the most
direct result showing that gravitational field equatiors emergent.

2.5 The Avogadro Number of the Spacetime and Holographic Egpartition

The results described so far show that there is a deep caonéetween horizon thermodynamics
and gravitational dynamics. The spacetime seems to belsagehat fluid, with the microscopic
degrees of freedom of the spacetime playing a role analogotie atoms in a gas. In the long
wavelength limit, one obtains smooth spacetime with a mettrvature etc., which are analogous
to the variables like pressure, density etc. of a fluid or gas.

If we know the microscopic description (as in the case of tagstical mechanics of a gas), we
can use that knowledge to determine various relationshkesthe ideal gas law?/T" = Nkg/V)
between the macroscopic variables of the system. But indh&egt of spacetime we do not know
the nature of microscopic degrees of freedom or the lawswdawern their behavior. In the absence
of our knowledge of the relevant statistical mechanics, axeho take a “top-down” approach and
try to determine their properties from the known thermodwyitabehavior of the spacetime. Let us
see one important consequence of such an approach.

Given the fact that spacetime appears to be hot, just likedy lod gas, we can apply the
Boltzmann paradigm (“If you can heat it, it has microstruety and study the nature of the mi-
croscopic degrees of freedom of the spacetime — exactly #ne people studied gas dynamics
beforethe atomic structure of matter was understood. There is teneisting test of this paradigm
which, as we shall see, it passes with flying colors.

One key relation in such an approach is the equipartitiondaf = (1/2)kpTAN relating
the number densith N of microscopic degrees of freedom we need to store an enefgat tem-
peratureT’. (This number is closely related to the Avogadro number oas, gvhich was known
even before people figured out what it was counting!). If @yai¢ the thermodynamic limit of the
underlying statistical mechanics, describing the ‘atofrgpacetime,’ we should be able to reldie
andT of a given spacetime and determine the number density obstopic degrees of freedom of
the spacetime when everything is static. Remarkably enomgltan do this directly from the grav-
itational field equations (Padmanabhan 2004, 2010b,c¥t&ims equationsnply the equipartition
law between the energl in a volumeV bounded by an equipotential surfag®& and degrees of
freedom on the surface

1 d2 h Nat 1
E == \/52 r — @ Ty = —kB/ dnTloca (16)
2 Joy L% ¢ 2m 27 Jov
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wherekgTioc = (h/c) (Na*n,/2m) is the local acceleration temperature akd = /o d*z/L%
with dA = /o d?z being the proper surface area element. This allows us toaffdade number
density of microscopic degrees of freedom. We see thatkeimiormal matter — for which the
microscopic degrees of freedom scale in proportion to theme and one would have obtained an
integral over the volume of the forafi/ (dn/dV') — the degrees of freedom now scale in proportion
to areaof the boundary of the surface. In this sense, gravity is dn@lphic.

In Einstein’s theory, the number densityn/dA) = 1/L% is a constant with every Planck area
contributing a single degree of freedom. The true impoiafc¢hese results again rests on the fact
that they remain valid for all Lanczos-Lovelock models wéthrrect surface density of degrees of
freedom (Padmanabhan 2010c).

Considering the importance of this result for our later déssons, | will provide an elementary
derivation of this result in the Newtonian limit of generelativity, to leading order in?. Consider a
region of 3-dimensional spadé bounded by an equipotential surfag®’, containing mass density
p(t, ) and producing a Newtonian gravitational figjdthrough the Poisson equatienV - g =
V2¢ = 47Gp. Integratingoc? over the regior’/ and using Gauss’ law, we obtain

02 02
E=Md*=— [ dVV-g=— [ dA(-n-g). (17)
v AnG Jay
SincedV is an equipotential surfacen - g = ¢ is the magnitude of the acceleration at any given
point on the surface. Once again, introducingianto this classical Newtonian law to bring in the
Davies-Unruh temperatutes T = (i/c¢) (¢/27) we obtain the result

c? dA 1 (h g dA 1
B=0G 49~ /av @) 2 (‘%) - /av (Ch/ &) (5’“BT) - 18

which is exactly the Newtonian limit of the holographic eogiitition law in Equation (16).

In the still simpler context of spherical symmetry, the griion overd A becomes multipli-
cation by4r R? whereR is the radius of the equipotential surface under consieraind we can
write the equipartition law as

Npulk = Neur ; (19)

where

h GM
c2rR?’

E ATR?

———— Nagw=——:; E=M(<R{ kpT=
1/2)ksT" 2 (<R)e ko

Npuik = (20)
In this form, we can think oV, = [E/(1/2)kpT] as the degrees of freedom of the matter
residing in the bulk and Equation (20) can be thought of awigiog the equality between the
degrees of freedom in the bulk and the degrees of freedomedwathindary surface. We will call this
holographic equipartitionwhich among other things, implies a quantization conditia the bulk
energy contained inside any equipotential surface.

In the general relativistic case, the source of gravity épprtional topc? + 3P rather tharp. In
the non-relativistic limit,oc? will dominate overP and the equipartition lawe = (1/2) Ngu kT
relates the rest mass enetbfe? to the surface degrees of freeddvi,,. If we instead decide to use
the normal kinetic energ¥;, = (1/2)Mv? of the system (where = (GM/R)'/? is the typical
velocity determined through, say, the virial theorgh\, + Ugrav = 0), then we have the result

v? v?

1 1
Ekin - @E - ﬁ (§NsurkBT) = §NefkaTa (21)

where
2 MRe

Ncﬂ' = @Nsur =2m

(22)
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can be thought of as theffectivenumber of degrees of freedom which contributes to hologcaph
equipartition with the kinetic energy of the self-graviitgt system. In virial equilibrium, this ki-
netic energy is essentiallf.i, = (1/2)|U,| and hence the gravitational potential energy inside an
equipotential surface is also determinedMy; by

MRc
h

1
|Ugrav| = e / dV |V¢|? = 2Fn = NegkpT = 27 kpT. (23)
1%

We thus find that, for a non-relativistic Newtonian systehe test mass energy corresponds to
Naur x (R?/L%) of surface degrees of freedom in holographic equipartitibife the kinetic energy
and gravitational potential energy corresponds to the raurobdegrees of freedoiVer x M R,
which is smaller by a factar? /c2. In the case of a black hold/ x R, makingM R « R? leading

to the equality of all these expressions. We will see latat the differencé Ny, — Npuik) plays a
crucial role in cosmology and | will discuss its relevanceN@wtonian gravitational dynamics in a
future publication.

2.6 Gravitational Action as Free Energy of Spacetime

In obtaining the previous results we have used the equatiomstion of classical gravity and hence
we can think of these results as being “on-shell.” In the ddad approach one obtains the field
equations by extremizing a suitable action functional witbpect to the metric tensor. Because the
field equationsllow a thermodynamic interpretation, one would suspeat tireaction functional

of any gravitational theory must also encode this fact iistitacture.

This is indeed true. There are several peculiar featurekoiésth by the action functional in a
very wide class of gravitational theories, which make ingtapart from other field theories like
gauge theories. In the conventional approach, there ismplsiinterpretation for these features and
they have to be taken as some algebraic accidents. On thehathe, these features find a natural
explanation within the emergent paradigm and | will briefigatiss a couple of them.

One of the key features of the action functional describiigstgin’s general relativity is that
it contains a bulk term (which is integrated over a spacetimiame) and a surface term (which
is integrated over the boundary of the spacetime volumepbrain the field equations, one either
has to cancel out the variations in the surface term by adaisgjtable counter-term (Gibbons &
Hawking 1977; York 1988) or use special boundary conditidnither case, the field equations
arise essentially from the variation of the bulk term witle thoundary term of the action playing
absolutely no role.

What is remarkable is that, if we now evaluate the boundany tan the surface of the horizon
which occurs in any solution of the field equation, we obtameéntropy of the horizon! This raises
the question: How can the boundary term know anything aldeubulk term (and the properties
of the solution obtained by varying the bulk term), espégibécause we threw away the surface
term right at the beginning? The reason for this peculiaufeehas to do with a special relationship
between the bulk and the boundary terms leading to the djaitof information between the bulk
and the boundary. It can be shown that, not only in generativély but in all Lanczos-Lovelock
models, the bulk and surface terms in the Lagrangian artecelsy

_ 0yv/—gLbui
Ve = =00 (3, ) (24)

More importantly, it is possible to provide an interpretatiof gravitational action as the free-
energy of the spacetime for static metrics which possessizdmo The boundary term of the action
gives the entropy while the bulk term gives the energy withirthum representing the free-energy of
the spacetime. As an illustration of this result, let us adersthe metrics of the form in Equation (3)
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for which the scalar curvature is given by the expression

Rt 02 240 (25)

Since this is a total divergence, the integralfofover a region of space bounded by the radius
will receive contribution only from the boundary. Takingethoundary to be the horizon with radius
r = a (wheref(a) = 0) and temperatur@ = f’(a)/4m, one can easily show that the Lagrangian
becomes

_ 1 ¢ 2 _ _
L_167TG/ Arr2dr R = (TS — E), (26)

whereE = (a/2G) andS = (wa?/G) stand for the usual energy and entropy of such spacetimes,
but are now defined purely locally near the surface a. (Note that, in the integral in Eq. (26) we
have not specified the second limit of integration and therdmrtion is evaluated essentially from
the surface integral on the horizon. In this sense, it islgloeal.) This shows that the Lagrangianin
this case actually corresponds to the free-energy of theesipae, even at the level of action without
using the field equations. Remarkably enough, this ressit géneralizes to all Lanczos-Lovelock
models with correct expressions frand £ (Kolekar et al. 2012).

This result suggests that, in using the standard actioriptain gravitational theories, we are
actually extremizing the free-energy of the spacetimaté@ as a functional of the metric, and raises
the possibility that one could write a more direct expras$or a thermodynamic functional of the
spacetime (like the entropy density, free-energy densityassociated with local null surfaces) and
extremize it to obtain the field equations. This programalttuvorks and | will now briefly describe
how this can be achieved.

3 FIELD EQUATIONS FROM A THERMODYNAMIC EXTREMUM PRINCIPLE

In the previous sections, we examined some of the featurtbeafravitational theories and showed
that they naturally lead to an alternative thermodynantierpretation. For example, the results in
Section 2.5 were obtained by starting from the field equatwithe theory, establishing that they
can be expressed as a law of equipartition and thus detergntiné density of microscopic degrees
of freedom. But if these ideas are correct, it must be passibireat spacetime as a thermodynamic
system endowed with certain thermodynamic potentialsnEx¢remizing these potentials with re-
spect to suitable variables should lead to the field equatidgravity, rather than us starting from
the field equations and obtaining a thermodynamic inteagicat. We will now see how this can be
achieved.

Since any null surface can be thought of as a local Rindleizborto a suitable class of ob-
servers, any deformation in a local patch of a null surfadeakiange the amount of information
accessible to these observers. It follows that such an wlseill associate a certain amount of
entropy density with the deformation of the null patch witrmaln®. So extremizing the sum of
gravitational and matter entropy associated witmull vector fieldssimultaneouslycould lead to a
consistency condition on the background metric which werpimet as the gravitational field equation
(Padmanabhan & Paranjape 2007; Padmanabhan 2008).

This idea is a natural extension of the procedure we use trmete the influence of gravity
on matter in the spacetime. If we introduce freely fallingetvers around all events in a spacetime
and demand that laws of special relativity should hold foitlsése observersimultaneouslywe
can obtain the usual, generally covariant, versions of thmtons of motion obeyed by matter in a
background spacetime. That is, the existence of freeljnfptbservers around each event is space-
time can be exploited to determine the kinematics of grafftpw gravity makes matter move’).
To determine thelynamicsof gravity (‘how matter makes spacetime curve’), we use #raesstrat-
egy but now by filling the spacetime with local Rindler obsss Demanding that a local entropy
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functional associated with every null vector in the spametshould be an extremum, we will again
obtain a set of equations that will fix the gravitational dymes.

Thereis no a priori reason for such a program to succest hence it is yet another success of
the emergent perspective that one can actually achievel #tisis associate with every null vector
field n®(x) in the spacetime a thermodynamic poteriigéh®) (say, entropy) which is given by

3] = Sgrav[n?] + Smatt[n] = — (4P§gvcnavdnb - Tabnanb) . (27)

The quadratic form is suggested by analogy with elasticity 82 andT,,, are two tensors which
play the role analogous to elastic constants in the theogjastic deformations. If we extremize this
expression with respect td, we will normally get a differential equation far* involving its second
derivatives. In our case, we instead demand that the extrelnalds for alln®, thereby constraining
the backgroundgeometry. Further, a completely local description of rmuliface thermodynamics
demands that the Euler derivative of the functiohigl®) should only be a functional ef* and must
not contain any derivatives of®.

It is indeed possible to satisfy all these conditions by thiéofing choice: We takeP< to
be a tensor having the symmetries of curvature tensor amd) loidvergence-free in all its indices;
we takeT,; to be a divergence-free symmetric tensor. The condit}a[;]s?gj =0, V¢ =0
can be thought of as describing the notion of “constancy”lagtec constants of spacetime. (Once
we determine the field equations we can readigff as the matter energy-momentum tensor; the
notation anticipates this result.) It can be shown that B¢ with the assigned properties can
be expressed aB%! = OL/OR wherelL is the Lagrangian in the Lanczos-Lovelock models and
Rapeq is the curvature tensor (Padmanabhan 2010a). This ch@iceabures that the resulting field
equations do not contain any derivatives of the metric ofirgorder than second.

It is now straightforward to work out the extremum conditi®/on® = 0 for the null vectors
n® with the conditionn,n® = 0 imposed by adding a Lagrange multiplier functidf:)gq,nn® to
3[n”]. We obtain (on using the generalized Bianchi identity amodbinditionV,7;* = 0) the result
(Padmanabhan & Paranjape 2007; Padmanabhan 2008)

Gi = Ri — 50 L = 5Ti +Adfs  Ri = PU% Ry, (28)

whereA is an integration constant. These are precisely the gterita field equations for a theory
with Lanczos-Lovelock Lagrangiah with an undetermined cosmological constAntvhich arises
as an integration constant. The simplest of the Lanczo®loock models is, of course, Einstein’s
theory characterized by « R and P « 526 — §462. In this caseR¢ reduces to a Ricci tensor
andGy reducesto the Einstein’s tensor, and we recover Einstefuiations from the thermodynamic
perspective.

If we integrate the densitg[n“] over a region of space or a surface (depending on the context)
we will obtain the relevant thermodynamical potential. Toatribution from the matter sector is
proportional toT,;n%n® which will pick out the contributior(p + P) for an ideal fluid, viz. the
enthalpy density. On multiplication by = 1/T, this becomes the entropy density because of the
Gibbs-Duhem relation. When the multiplication Byarises due to integration ovér, 3) of the time
coordinate (in the Euclidean version of the local Rindlanie), the corresponding potential can be
interpreted as entropy and the integral over space codedirsdone can be interpreted as rate of
generation of entropy.

We again note that the procedure links gravitational dyearto 7,,nn” « (p + P), which
vanishes for the cosmological constant. Thus, in this aggteve again restore the symmetry of the
theory with respect to changing the zero level of the endrggther words, one can gauge away
the bulk cosmological constant and any residual cosmadganstant must be thought of as a relic
related to the weak breaking of this symmetry.
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4 EMERGENCE OF COSMIC SPACE

In the discussion of emergent paradigm so far, we arguedhbéield equations are emergewhile
assuming the existence of a spacetime manifold, metrizatuire etc. as given structures. In that
case, we interpret the field equations as certain consisomditions obeyed by the background
spacetime.

A more ambitious project will be to give meaning to the coridbpt the “spacetime itself is an
emergent structure.” The idea here is to build up the spaeditiom some underlying pre-geometric
variables, along the lines we obtain macroscopic varidiieslensity, temperature etc. from atomic
properties of matter. While this appears to be an attradtige, it is not easy to give it a rigorous
mathematical expression consistent with what we alreadwkabout space and time. In attempting
this, we run into (at least) two key difficulties that need &odatisfactorily addressed.

The first issue has to do with the role played by time, whichugegdifferent from the role
played by space in the description of physics. It is concaptwery difficult to treat time as being
emergent from some pre-geometric variable if it has to pleydtandard role of a parameter that
describes the evolution of the dynamical variables. It Bsns® necessary to treat time differently
from space, which runs counter to the spirit of general davae.

The second issue has to do with space ardurite gravitating systems, like the Earth, Sun,
Milky Way, etc. It seems quite incorrect to argue that spa@mergent around suthite gravitating
systems because direct experience tells us that spacedattoem is pre-existing. So any emergent
description of the gravitational fields fihite system&as to work with space as a given entity —
along the lines we described in the previous sections. Twhen we deal witHinite gravitating
systems, without assigning any special status to a timabfariit seems impossible to come up with
a conceptually consistent formulation for the idea thagtsiime itself is an emergent structure.”

What is remarkable is the fact that both these difficultisspgpear (Padmanabhan 2012) when
we consider spacetime in the cosmological context! Obsenashow that there is indeed a special
choice of time variable available in our universe, whichis proper time of the geodesic observers
who see the cosmic microwave background radiation as honeages and isotropic. This fact justi-
fies treating time differently from space in (aodlyin) the context of cosmology. Further, the spatial
expansion of the universe can certainly be thought of as/atguit to the emergence of space as the
cosmic time flows forward. All these suggest that we may be &bimake concrete the idea that
cosmic space is emergent as cosmic time prograesesvell defined manner in the context of cos-
mology. This is indeed the case and it turns out that thesesiden be developed in a self-consistent
manner.

4.1 What Makes Space Emerge?

Once we assume that the expansion of the universe is equiitalemergence of space, we need to
ask why this happens. In the more conservative approachibleddn earlier sections, the dynamics
of spacetime are governed by gravitational field equatiods/ge can obtain the expanding universe
as a special solution to these equations. But when we wan¢ab $pace itself as being emergent,
one cannot start with gravitational field equations; indte& need to work with something more
fundamental.

The degrees of freedom are the basic entities in physicsrenkddlographic principle suggests
a deep relationship between the number of degrees of freedsiging in a bulk region of space
and the number of degrees of freedom on the boundary of tgismeTo seewhy cosmic space
emerges — or, equivalently, why the universe is expanding e-will use a specific version of the
holographic principle. To motivate this use, let us consalpure de Sitter universe with a Hubble
constantt. Such a universe obeys the holographic principle in the form

Nsur - Nbulk- (29)
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Here Ny, is the number of degrees of freedom attributed to a sphesicéce of the Hubble radius
H~', and is given by
47

Nsur = 79 1719
[ENE

(30)

if we attribute one degree of freedom per Planck area of thfasel Ny = |E|/[(1/2)kpT] is
the effectivenumber of degrees of freedom which are in equipartition athtbrizon temperature
kpT = (H/2r) with |E| being the Komar energyp + 3P)|V contained inside the Hubble volume
V = (47 /3H?3). So

E 2(p+3P)V

(1/2)kpT T (31)

Npuik = —

For a pure de Sitter universe wifh = —p, our Equation (29) reduces 6> = 8wL%p/3 which is
the standard result. Note th@t + 3P) is the proper Komar energy density while= 47 /3H? is
thepropervolume of the Hubble sphere. The correspondiagnovingexpressions will differ by:3
factors in both, which will cancel out, leading to the sampression fork.

This result is consistent with the equipartition law ddsed earlier in Section 2.5 in which
we obtained the resu|| = (1/2)N...kpT [which is, of course, the same as Equation (28]

a consequence ofravitational field equations in static spacetimes. Here,do not assume any
field equations but will consider the relatidf|/(1/2)kgT = N4, as fundamental. Equation (29)
represents thkolographic equipartitiorand relates the effective degrees of freedom residing in the
bulk, determined by the equipartition condition, to the g of freedom on the boundary surface.
The dynamics of the pure de Sitter universe can thus be autairectly from the holographic
equipartition condition, taken as the starting point.

Our universe, of course, is not a pure de Sitter one, but iviegptowards an asymptotically de
Sitter phase. It is therefore natural to think of the curesrdelerated expansion of the universe as an
evolution towards holographic equipartition. Treating #xpansion of the universe as conceptually
equivalent to the emergence of space, we conclude that temgence of space itself is being driven
towards holographic equipartition. Then we expect the lawegning the emergence of space must
relate the availability of greater and greater volumes afcspto the departure from holographic
equipartition given by the differend&Vs,: — Nouik). The simplest (and the most natural) form of
such a law will be

AV = At(Ngur — Nbuik) (32)

whereV is the Hubble volume in Planck units afis the cosmic time in Planck units. Our arguments
suggest thatAV/At) will be some function of Ny, — Nuuic) Which vanishes when the latter does.
Then, Equation (32) represents the Taylor series expamdidinis function truncated at the first
order. We will now elevate this relation to the status of atplase which governs the emergence
of the space (or, equivalently, the expansion of the un@easd show that it is equivalent to the
standard Friedmann equation.

Reintroducing the Planck scale and settind’/At) = dV/dt, this equation becomes
Cil_‘t/ = L?D(Nsur - Nbulk) . (33)
SubstitutingV = (4n/3H3), Ngw = (4n/L%H?), kgT = H/27 and using Ny in
Equation (31), we find that the left hand side of Equation {8®yoportional talV/dt o (—H /H*)
while the first term on the right hand side giv&s,, « (1/H?). Combining these two terms and
usingH + H? = i/a, it is easy to show that this equation simplifies to the retati

4WL%

P 3 (p+3P), (34)
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Degrees of freedom which
have already emerged

AV = At(Ngur — €Npu)

Niuik

Cosmic space which
has already emerged

Degrees of freedom and space
which are yet to emerge

Surface degrees of freedom

Fig.1 This figure illustrates the ideas described in this sect@rematically. The shaded region
represents the cosmic space that has already emerged bgnéhe along with (a) the surface de-
grees of freedomNs.,) which reside on the surface of the Hubble sphere and (b)uhedegrees
of freedom (V1) that have reached equipartition with the Hubble tempeedig 7" = H/27. At
this moment in time, the universe has not yet achieved hafiigc equipartition. The holographic
discrepancy Nsur — € Nobuik) between these two drives the further emergence of cosrazesmea-
sured by the increase in the volume of the Hubble sphere e&thact to cosmic time, as indicated by
the equation in the figure. Remarkably enough, this equatorectly reproduces the entire cosmic
evolution.

which is the standard dynamical equation for the Friedmaodeh The conditionvV,7}* = 0

for matter gives the standard resdlipa®) = —Pda®. Using this, Equation (34) and the de Sitter
boundary condition at late times, one recovers the starataelerating universe scenario. Thus, we
can describe the evolution of the accelerating universesnin terms of the concept of holographic
equipartition.

Let us next consider the full evolution of the universe, dstirsy of both the decelerating and
accelerating phases. The definition/éf,;, in Equation (31) makes sense only in the accelerating
phase of the universe whefe + 3P) < 0 so as to ensurd/,,;; > 0. For normal matter, we would
like to use Equation (31) without the negative sign. Thisasiky taken care of by using appropriate
signs for the two different cases and writing

dv
d_ - L% (Nsur - erulk) ’ (35)
t
with the definition
_ 2(p+3P)V
Nbulk — _ET . (36)

Heree = +11if (p+3P) < 0ande = —1if (p 4+ 3P) > 0. [We use the sign convention such that
we maintain the form of Equation (32) for the acceleratinggehof the universe. One could have,
of course, used the opposite conventiondfand omitted the minus sign in Equation (36).] Because
only the combination-€?(p + 3P) = (p + 3P) occurs in(dV/dt), the derivation of Equation (34)
remains unaffected and we also maintaig,;. > 0 in all situations. (See Fig. 1.)
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Treating the Hubble radiug —!(¢) as the boundary of cosmic space should not be confused with
the causal limitation imposed by light propagation in th&varse. If the Hubble radius at tintg, say,
is H~1(t1), we assume that space of side ! (¢, ) can be thought of as having emerged for afl ¢;.
This is in spite of the fact that, at an earlier time ¢;, the Hubble radiugf ~!(¢) could have been
significantly smaller. This is necessary for consistergrmtetation of cosmological observations.
For example, CMBR observations allow us to probe, on:the z... ~ 10 surface, length scales
which are larger than the Hubble radids ! (t,..) atz = z.c. SO, as far as observations made today
are concerned, we should assume that the size of the spad@themerged is the present Hubble
radius,Ho‘l, rather than the instantaneous Hubble radius correspgmalitie redshift of the epoch
from which photons are received. In this sense, the emeegarspace from pre-geometric variables
may seem to be a causal, but it is completely consistent witt we know about the universe today.

4.2 Holographic Equipartition demandsa Cosmological Constant

We can understand Equation (35) better if we separate ountiteer component, which causes
deceleration, from the dark energy which causes acceaderdfor the sake of simplicity, we will
assume that the universe has just two components (presssirabtter and dark energy) with +

3P) > 0 for matter andp + 3P) < 0 for dark energy. In that case, Equation (35) can be expressed
in an equivalent form as

dv
E :L?D(Nsur‘FNm_Ndc)a (37)

where all the three degrees of freedaN,, V,,, and Ng., are positive (as they should be) with
(N, — Nae) = (2V/kT)(p + 3P)10t- We now see that the condition of holographic equipartition
with the emergence of space decreasitig/(dt — 0) asymptotically, can be satisfied only if we have
a component in the universe withh + 3P) < 0. In other wordsthe existence of a cosmological
constantin the universe is required for asymptotic holgdpia equipartitionWhile these arguments,
of course, cannot determine the value of the cosmologicastemt, the demand of holographic
equipartition makes a strong case for its existence. Thisdse than what any other model has
achieved.

Given a fundamental area scalg%, it makes sense to count the surface degrees of freedom
asA/L% whereA is the area of the surface because we do not expect bulk nattentribute to
surfacedegrees of freedoniy,,,. The really non-trivial task is to determine the approgiatasure
for the bulk degrees of freedom which must depend on the meditgables residing in the bulk.
(It is this necessary dependence on the matter variableshvgnevents us from counting the bulk
degrees of freedom as a trivial expressigfL,.) It is in this context that the idea of equipartition
comes to our aid. When the surface is endowed with a horizopeeaturel’, we can treat the bulk
degrees of freedom which haeéready emerged— along with the space — as though they are a
microwave oven with the temperature set to the surface v@aeausehesedegrees of freedom
account for an energ¥, it follows thatE/(1/2)kgT is indeed the correct count feffectiveNy, .
This temperatur&’ and Ny,,;x should not be confused with the normal kinetic temperattineaiter
in the bulk and the standard degrees of freedom we assodiidtenatter. It is more appropriate to
think of these degrees of freedom as those which have aleradyged, along with space, from some
pre-geometric variables. The emergence of cosmic spaa&vendy the holographic discrepancy
(Ngur + Ny — Nyo) between the surface and bulk degrees of freedom wiNgrés contributed by
normal matter with(p + 3P) > 0 and Ny, is contributed by the cosmological constant with all the
degrees of freedom being counted as positive. In the abs#n¥g,, this expression can never be
zero and holographic equipartition cannot be achieveddrmptesence of the cosmological constant,

2 We are reminded of the original motivation of Einstein fotralucing a cosmological constant so that the universe
will be static without expansion. Here we interpret theistabndition as the constancy of Hubble volume at late timi wi
holographic equipartition determining its asymptoticueal
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Fig. 2 The evolution of the three degrees of freedd¥., (blue unbroken line)}N,,, (red broken
line), andNg. (green broken line) in a universe with pressureless maitigh €2, = 0.3) and dark
energy (treated as a cosmological constant Rith= 0.7) plotted as a function of expansion factor
a. They-axis is normalized tdVo = Nsur[z = 0]; the asymptotic value oNgur is No/Qa. In
the early phase of the univers¥,, > Ng. but NV, < Ngu.: SO that the holographic discrepancy,
contributed byNg.. — Ny, drives the expansion. The matter contributigp, reaches a maximum
around(1 + 2) = (Q4/Qx)"/? and dies down later when the universe begins to accelerhte. T
Ng. then catches up witlVs,.. and, asa — oo, we haveNg../Na. — 1 leading to holographic
equipartition. Itis obvious that matter plays a rathergngicant role in the overall scheme of things!

0.1r

0.001+

| =)

5.0 10.C

Fig. 3 Same as Fig. 2 but plotted on a Log-Log scale for clarity. hiektblue curve represent$,.,,

the broken red curve denot@§,, and the broken green curvel&;.. Early on,N,,, dominates over
Ng. and the emergence of space is driven By.( — N,,). As seen clearly in the picture, whé.
starts dominating ovel,,, at late times, theV,,, rapidly decreases and holographic equipartition is
soon achieved betweeW,,,, and Nge.

the emergence of space will soon leadNg. dominating overVN,,, when the universe undergoes
accelerated expansion. AsymptoticalN,. will approachN,, and the rate of emergence of space,
dV/dt, will tend to zero allowing the cosmos to attain holograggeilibrium.

4.3 New Features of the Holographic Equipartition Approach

The study of the evolution of the universe using Equatior) {82onceptually quite different from
treating the expanding universe as a specific solution ofitgtaonal field equations. The key new
aspects are the following:
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— To begin with, the utter simplicity of Equation (32) is Kirig and it is remarkable that the
standard expansion of the universe can be reinterpreted asadution towards holographic
equipartition.If the underlying ideas are not correct, we need to explairy \Elguation (32)
holds in our universeThis will become yet another of the algebraic accidents avigy, which
has no explanation in the standard approach.

The simplicity of Equation (32) itself suggests proper clesifor various physical quantities.
For example, we have assumed that the relevant temperatuobtaining Ny,1x is given by
T = H/2m even whenH is time dependent. There is some amount of controversy ifitthe
erature regarding the correct choice for this temperatDne can obtain equations similar to
Equation (32) with other definitions of the temperature bomen of the other choices lead to
equations with the compelling naturalness of Equation.(BB¢ same is true regarding the vol-
ume elemen¥’, which we have taken as the Hubble volume; other choicesteaduations
which have no simple interpretation.

— Second, Equation (32) is parameter-free when expressBthirck units and can be given a
simple combinatorial interpretation. If we think of timeadurtion in steps of Planck time =
t,,n = 1,2,..) and the volume of the space which has emerged by:.thestep as/,,, then
Equation (32) tells us that

VnJrl = Vn + (Nsur - Evaulk)a (38)

which is just an algorithmic procedure in integers! Thisesiniscent of ideas in which one
thinks of cosmic expansion itself as an algorithmic compoita When we understand the pre-
geometric variables better, we may be able to interpret Emu#32) purely in combinatorial
terms. If the energy density measured by an observer withvelocity u® is p = T,,u%u®,
then the number of elementary computing operations in anwelAl” during a time interval
At is essentiallyEAt/h = pAV At/h. Relating this to the area of the bounding surfaces of
AV in Planck units will provide us with a combinatorial versiohthe approach described
here. In such an approach, curvature of spacetime will lz@e@lto7,;, essentially through the
geometric relation (see, e.g., Loveridge 2004) betweeratba of a bounding surface and the
Gaussian curvature of 2-dimensional slices around a givente

— An immediate consequence of the discretized version offimu (38) is that we expect signif-
icant departures from conventional evolution when thevesiedegrees of freedom are of the
order of unity. Well-motivated modifications of this equetiwill help us to study the evolution
of the universe close to the big bang in a quantum cosmolbgéatting when the degrees of
freedom are of order unity. However, we have now bypassedghal complications related to
the time coordinate. Postulating suitable correctionbéd'bit dynamics” in Equation (38) may
provide an alternate way of tackling the singularity problef classical cosmology.

— Notice that, as stated, our fundamental equation, Equésid), is first order in time and links
the direction of cosmic time with the expansion of the Huhldkime. Algebraically, of course,
we can achieve the same objective by writing the Friedmaatemuas an evolution equation
for H(t), in the form of, sayd = —4nL%(p + P). However the current idea — involving the
emergence of space and associated degrees of freedom — inakagal to have “an arrow
of time.” While technically the time reversal invariancetbe equations is maintained if we
postulateH (—t) = —H(t), this will requireV — —V under time reversal. Therefore, perhaps
one has greater hope of discussing the arrow of time in casygokith this approach rather
than with the conventional one.

— There is an alternative interpretation possible for Egua33) in which the contribution from
the surface degrees of freedom is treated as an effectikecoultribution. To motivate this,
consider a 3-dimensional region of sizavith a boundary having an area proportionalfo We
divide this region intaV microscopic cells of sizé p and associate with each cell a Poissonian
fluctuation in energy¥p ~ 1/Lp. Then the mean square fluctuation of energy in this region
will be (AE)? ~ NL;? leading to an energy density= AE/L?> = /N/LpL?. Normally
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one would have takelV = N, ~ (L/Lp)3, leading to

3/2
p= LV fzgl = Li4 <L—Lp> (bulk fluctuations) (39)
P

On the other hand, for holographic degrees of freedom wigisiale in the surface of the region,
N = Ngur ~ (L/Lp)? and the energy density now becomes

VNew 1 (Lp\® 1 :
= = — | —) = —=— (surface fluctuations 40
P= e T IS\ L e ) (40)

If we takeL ~ H~!, the surface fluctuations in Equation (40) give precisedygbometric mean
V/Puvprr between the UV energy density, ~ L134 and the IR energy densipy; r ~ L%,
which is indeed the energy density associated with the clggival constant. By contrast, the
bulk fluctuationslead to an energy density which is larger by a fagtby Lp)'/2. Also note
that if — instead of considering the fluctuations in energy -e-amherently add them, we will
getN/LpL? which is1/L% for the bulk and(1/Lp)*(Lp/L) for the surface. These different
possibilities lead to the hierarchy

3/2 2 4

()0 @) E) ] e

L L L L
in which the first term corresponds to coherently addinggiee(1/Lp) per cell with Ny, =
(L/Lp)? cells; the second is obtained by coherently adding enexgdiésr) per cell with
Naur = (L/Lp)? cells; the third fromfluctuationsin energy and usingv,.; cells; the fourth
arises from energy fluctuations witNy,, cells; and finally the last result corresponds to the
thermal energy of the de Sitter space if we tdke: H ~' making further terms irrelevant due to
this vacuum noise. We find that the viable possibility to diéscour universe is obtained only
if we assume that (a) the number of active degrees of freedoarégion of sizel, scales as
Ngur = (L/Lp)? and (b) Itis thefluctuationsin the energy that contribute to the cosmological
constant and the bulk energy does not gravitate.

1

= — X
P L‘}D

4.4 Holographic Equipartition Law in a More General Context

It is interesting to compare the holographic equipartitiistussed in this section with the equipar-
tition law discussed earlier in Section 2.5 for static spiaves. Both of them agree in the case of
a de Sitter universe since the dS line element can be exprbsse in static form and in the stan-
dard Friedmann form witla(¢) < exp Ht. But in a general spacetime, the motion of the observer
becomes mixed up with the intrinsic time dependence of tloengry.

One possible way of studying such a situation is as followmsier a spacetime in which we
have introduced the usug@l + 3) split with the normals t@ = constant surfaces being which we
can take to be the four-velocities of a congruence of obserieta’ = vV ;u’ be the acceleration
of the congruence anfl;; = —V,;u; — u;a; be the extrinsic curvature tensor. We then have the
identity

Rapu®u® = Vi(Ku' 4+ a') + K? — Ky K = uV,K + V;a' — K;; K. (42)

When the spacetime is static, we can choose a natural catedigstem with;; = 0 so that
the above equation reduces¥a’ = Rq,u®u’. Using the field equations to WritB,,uu’ =
8rTuu’ and integrating;a’ = 87T,,uu’ over a region of space, we can immediately obtain
the equipartition law discussed in Section 2.5.
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On the other hand, in the Friedmann universe, the naturaireess are the geodesic observers
for whoma® = 0. For the geodesic observers, the above relation reduces to

wWV,K=K = Kinij + 87T pulub . (43)

Further, in the Friedmann univers€y = —Hd§ giving K = —3H; K;; K'/ = 3H?. Using these
values and dividing Equation (43) throughoutHy, it is easy to reduce it to Equation (33). We see
that the surface degrees of freedom actually arises frommadéthe kindK;; K/ / K, when one
interpretsl /K as the relevant radius.

In a general spacetime, if we choose a local gauge Nijth= 0, u; = —N4?, then Equation (42)
can be reduced to the form

D, (Na") = 4mpromar + N(K§KE — K), (44)

where - .
PKomar = 2NTpuu®; K =dK/dr = u®V, K . (45)

Integrating this relation over a region of space, we canesgthe departure from equipartition, as
seen by observers following this congruence, as

1 1 .
E—-- / kpTiocdn = — / d*zVhN(K — K§KL). (46)
2 v 47T %

This is an exact equation which can be used to study the éwolaf the geometry in terms of the
departure from equipartition for both finite and cosmolagigystems. (I will discuss this in detail in
a future publication). It should, however, be stressed-thdbr reasons described in the beginning
of this section — the idea of emergence of space is untenaklleei context of finite gravitating
systems treated in isolation. Such systems are probabiylbssribed by the ideas presented in the
earlier sections of this review.

4.5 Holographic Evolution and Cosmic Structure Formation

One situation in which we need to handle both the dynamicsngéfgravitating systems as well

as emergence of space is when we study structure formatitimeiruniverse using these ideas.
It is quite straightforward to work out perturbation theanya specific gauge using a hybrid of
Newtonian gravity at small scales and general relativitydéscribe the background expansion.
Because Equation (37) is identical to Equation (34), wedadlgi reproduce the standard results,
except for the following feature.

The holographic evolution suggests that the degrees addraen the universe, which have al-
ready become emergent in the cosmos (from the pre-geornaatiables) at any given time, behave
as though there is an ambient temperatusd” = hH/27. (This temperature, of course, should
not be confused with the normal kinetic temperature of mat&o the dynamics of such degrees
of freedom should be studied in a canonical ensemble atahipérature and we will expect to see
thermal fluctuations at the temperatirg? = hH /27 to be imprinted on any sub-system which
has achieved equipartition. This effect will lead to someettions to the cosmological perturba-
tion theory in the late universe when we do a thermal avegagdme will be led to equations like
Equation (21) and Equation (23) withs T oc H so that we get, for exampl&/gay) occ M RH. All
this is similar in spirit to the thermal fluctuations at the $iger temperature leaving their imprint
on the density fluctuations generated during inflation.

The formation of structures in an expanding universe al$imele an arrow of time within con-
ventional cosmology. Given the fact that Einstein’s equradiare invariant under— —t, this arrow
also arises due to the specific choice of initial conditidhae succeed in understanding the struc-
ture formation from a thermodynamic perspective, therevsrg good chance that we can link the
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arrow of time in structure formation to the cosmologicabarrof time determined by background
expansion.

It should be stressed that these thermal effectgaaddition to (and not instead ofny imprint
of the current Hubble constarif, on the cosmic structures due to standard processes ofisguct
formation. Various aspects of structure formation (e grmfation of dark matter halos, cooling of
baryonic gas, formation of galaxies with flat rotation cure¢c.) in the standartdiCDM cosmology
depend o in different ways. One can take any such standard resultdmanstructure formation
theory which depends af, and rewrite it in terms of the horizon temperature udihg- 27 (kgT),
and present it in an emergent/thermodynamic language. Su&xercise, of course, does not add
anything to our understanding! One instructive exampleégareferred acceleration scale= cH)
which gets imprinted (see e.g., Kaplinghat & Turner 2002ndgn-Bell 2011) on galactic scale
structures. (I chose this example because this is somegimesnted as evidence for MOND, which
is unwarranted.) It is therefore important to distinguigtveen (a) trivial rewriting standard results
in terms of the horizon temperature throubih= 27 (k5T'), and (b) deriving genuine effects which
arise due to the emergence of cosmic space and holographpaeition.

5 CONNECTING THE TWO DE SITTER PHASES OF OUR UNIVERSE

The fact that an equation like Equation (37) can describeWoéution of the universe suggests that
there must exist a deep relationship between the matteedsgf freedom and dark energy degrees
of freedom. In the correct theory of quantum gravity, we etpke matter degrees of freedom to
emerge along with the space. But, even in the absence of duddamental theory, we can use our
current knowledge about the universe to draw some curionslgsions. | will now discuss some
of these results which provide a link between the inflatignatase in the early universe and the
current phase of accelerated expansion.

5.1 Varieties of Universes

Since we have identified the increase in the Hubble vollime (47/3)d3; wheredy = H~! =
(a/a)~! with the emergence of space, let us focus on the behaviouri®fiéngth scale in our
universe. One can broadly identify three kinds of unive(ses Figs. 4 and 5) based on the behavior
of dy (t)

The first type is a universe without late time acceleratecdagn but with an early inflationary
phase shown in the left diagram of Figure 4. The red thickdapegesentd z which is nearly constant
during the inflationary phase and grows steeper thaafter the end of inflationa > ar), in the
radiation and matter dominated phases. The quantum flimbsagenerated during the inflationary
phase — which act as seeds of structure formation in the tg@ve- can be characterized by their
physical wavelength. Consider a perturbation at some givarelength scale which is stretched
with the expansion of the universe &sx a(t) (line marked AB in left diagram of Fig. 4). During
the inflationary phase, the Hubble radius remains consthile\ithe wavelength increases, so that
the perturbation will leave the Hubble radius at the pointAcigure 4. In the radiation dominated
phase, the Hubble radiusdg; o t < a? while in the matter dominated phase (ignored in the figures
for simplicity) di o< t o< a®/2. In both phasesiy grows faster than the wavelengthx a. Hence,
normally, the perturbation would re-enter the Hubble radiisome point B as shown in Figure 4.

In such a universe, one can extetid indefinitely into the past or future, as shown by the
dashed ends of the red line. If we do thédl, the perturbations can exit and re-enter the Hubble
radius. The inflationary phase is (to a high degree of acglitame translation invariant but the
matter dominated phase is not. So a universe like this ons $tam a more symmetrical state and
ends up, all the way to eternity, in a less symmetric phase.

The second type of universe is the one which did not have aatimflary phase but has a late
time acceleration due to the presence of a cosmologicatlaoinee the right diagram in Fig. 4).
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InL B InL

Fig. 4 The two diagrams contrast two types of universes. On théslefuniverse which underwent
inflation untila = ar and became radiation (and matter) dominatedafar ar. The thick line
denotes the Hubble radius which is constant during inflagiod increases as a power law during
radiation and matter dominated phase. In principle, bathirifiation (in the past) and matter dom-
inated expansion (in the future) can be extended indefjnitelindicated by the broken extensions
of the thick line. The wavelength of a perturbation genetatering inflation is shown by the thin
line AB. The perturbation exits the Hubble radius at A anceentt again at B. In principlell the
perturbations can exit and re-enter the Hubble radius ih sugniverse. On the right is a universe
which did not have an inflationary phase but underwent late thcceleration at > ax due to the
presence of a cosmological constant. In this case, the emytis of any perturbation will be bigger
than the Hubble radius at sufficiently early times. The pedtion marked 1 will enter the Hubble
radius at some stage and exit in the late phase but pertomsatiith wavelengths larger than the
critical one (marked 2) wilhever enter the Hubble radius

The universe is matter (or radiation) dominateddi#- a, and fora > a,, it becomes dominated by
the cosmological constant. The proper wavelengths of alligeations would have been larger than
the Hubble radius at sufficiently early phase of the universih, incidentally, causes difficulties
for generation of initial perturbations. A wavelength reggnted by label 1 will enter the Hubble
radius during the matter/radiation dominated phase.

More relevant for us is the fact that some perturbatamsaot entethe Hubble radius at all and
remain outside the Hubble radius for the entire evolutiothefuniverse! The line marked 2 denotes
the limiting wavelength of the perturbation which just $kithe Hubble radius at = a,. Longer
wavelengths remain outside the Hubble radius. Since weidenthe Hubble radius to demarcate
the space that has emerged from the space yet to emerge, uld phabably be interested in the
modes which are inside the Hubble radius during at least srase of the evolution.

Itis rather remarkable that our real universe is actuallyralzination of both these types, shown
in Figure 5. It has an initial inflationary phase which enda at ar and is followed by radiation
and matter dominated phases. These give way to another tde [Siase of late time accelerated
expansion fora > a,. The first and last phases are time translation invariaat; i)t — ¢+
constant is an (approximate) invariance for the univerdbease two phases. The universe satisfies
the perfect cosmological principle and is in steady staténduhese phases; these symmetries are
broken during the radiation and matter dominated phaseimiddle. In principle, the two de Sitter
phases can have arbitrarily long duration (Padmanabha®)2B€om this perspective, the middle
phase — in which most of the cosmology is done — is of neglegibkasure in the span of time. It
merely connects two steady state phases of the universe.



912 T. Padmanabhan

InL

Space that has
already emerged
T T

le eN‘> le eN ‘>1 %eN%

a a an ¢

Fig.5 The universe we live in seems to be a combination of the tweensés shown in Figure 4
having two distinct de Sitter phases, one during the inffaéiod one during the late time accelera-
tion. While both of these phases can be extended indefinitthe past and future with a constant
Hubble radius, there are physical processes which limiptiysically relevant region within the par-
allelogram ADCB. Because of the late time accelerationtthieble radius “flattens out” fag > ax.

So all perturbations with wavelengths larger than a cllifieturbation (shown by line AB) will
never re-enter the Hubble radius which we treat as the boyrmd@mergent space. Therefore, only
the perturbations which exit the inflationary phase duting< a < ar, along the line AD, are phys-
ically relevant. These perturbations enter the Hubbleusadiuring the phaser < a < aa, along
the line DB and later exit duringa < a < avac, @long the line BC. Equating the number of degrees
of freedom involved in these perturbations, we get the tesufar = aar/ar = ayac/an = €.
These equalities connect up the three different phasesedfiritverse and allow us to express the
cosmological constant in terms of thdolding factor during inflation ad L% ~ 3¢ ™" ~ 107122,

Such an evolution is interesting from the holographic pointiew. In the initial inflationary
phase, we have almost exact holographic equipartition éetwhe bulk and surface degrees of
freedom and the emergence of space occurs at a very smalllretiee conventional, slow roll-over
inflation dV/dt = (9/4L%)(¢?/VZ) which is quite small.) At the end of the inflation, the ground
state energy density of the inflation field converts itsetb iradiation and we could say that the
matter emerges during the reheating process. This alsarlolésthe holographic equipartition and
the space begins to emerge along with radiation. If there isidual ground state energy left (that
is, if there is no cosmological constant) we will end up in eyl universe in which there is no hope
for late time holographic equipartition. We know from obsgions that this is not the case and a
non-zero cosmological constant survives, lies dormatudin the radiation and matter dominated
phases of the universe and makes its presence felt at las.tive will now describe some curious
links between the two de Sitter phase evolutions in our us&e

5.2 Linking the Late Time Acceleration with Inflation

To do this, we begin by noting that — while the two de Sitterggsacan last forever, mathematically
— there are physical cut-off length scales in both of themciwhinake the region of relevance
to us be finite. Let us first consider the accelerating phagbanate universe. As the universe
expands exponentially, the wavelength of CMBR photons béllredshifted exponentially. When
the temperature of the CMBR radiation drops below the deiSigmperature (that is, when the



Emergent Perspective of Gravity and Dark Energy 913

wavelength of the typical CMBR photon is stretched to the sizthe Hubble radiué., = H;l),
the universe will be dominated by the vacuum thermal noisthefde Sitter phase. The universe
is, of course, in approximate holographic equipartitiothét phase and will now also reach normal
thermodynamic equilibrium with the kinetic temperaturgpbbtons becoming equal to the de Sitter
temperature. This happens at the point marked C when thesiguefactor iss = a.. determined
by the equatio(ao/avac) = (Ha/27) = (1/27Ly). If a = ay is the point (marked B in Fig. 5)
at which the cosmological constant started dominating) th& /ao)® = (Qumat/). Using these
results we find that the range of BC is

Qvac 27TT’O QA 1/3
Qmat '

o~ i (47)
Since the universe would be dominated by de Sitter vacuuserim@yond C, it seems reasonable to
consider BC to be the physically relevant range in the late taccelerating phase.

It turns out a natural bound exists for the physically retéviuration of inflation in any universe
which has a late time accelerating pha¥®e saw that, if there is no late time acceleration, thkn
wavelengths will re-enter the Hubble radius sooner or |&et if the universe enters an accelerated
expansion at late times, then the Hubble radius flattensralisame of the perturbations wilever
re-enter the Hubble radius. The limiting perturbation, ebhjust makes it into the Hubble radius as
the universe enters its accelerated phase of expansidmussy the line marked AB in Figure 5.
Again since the Hubble radius is treated as the boundanedafiihce that has emerged, it makes sense
to consider this as a physical cut-off during the inflatignginase. This portion of the inflationary
regime is marked by AD and its range is

- /3

ap ToH," ) ( Qa )1 <a> -

— | = = 2 Trc ea o, ) 48
(al> (TrchcatHinl Qmat apn ( i heatin ) ( )

whereT neat IS the reheating temperature after inflation. Normally,d@8UT scale inflation with
Egur = 10" GeV, Treheat = Ecut, pin = B&yr we have2r H, ' Tienear ~ 10°. But in the
context of our approach, it is more meaningful to considetaaék scale inflation so that we can
actually think of space emerging from a Planck scale Hududéus. TherﬂwHingreheat = 0(1),
and we get the remarkable result that AD and BC are equal!

()= () @

The above result also holds — as can be easily verified — if \wek thf the pointB as defined by
the epoch at which the energy densityadiationrather than matter is equal to the energy density in
the cosmological constant. This will just change the fa¢fdt /Qumac )"/ by (Q4/Q%)Y* in both
Equation (47) and in the first equality of Equation (48); thésctors cancel out when we obtain
Equation (49).

What is more interesting is that if we treat DB as the Hubbdtusiduring a radiation dominated
epoch, so thaiy o a?, then we also have the result

()-(2)-(2)

This is very easy to see from the geometrical fact that whiBeig\ a line of unit slope, DB is a

line of slope 2. In the real universe the entire range of DBasmadiation dominated because a
small part near B is matter dominated. For the standard peteasof our universe, the radiation
dominated phase occurs when the universe cools from theatnly temperature (which we take
to be10'® GeV in the diagram) till about 1 eV. During this phase, thevarse expands by about a
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factor102%. On the other hand, the universe expands only by a factormftab* during the matter
dominated phase. For the purpose of illustrating the olvereiure, we have ignored the matter
dominated phase in Figure 5. (The description of the unéiverderms of these three phases was
attempted earlier by Bjorken 2004 in a completely differenmtext.) A more precise calculation
changes the diagram slightly. Clearly, there is very dedmitelationship between the cosmological
constant and matter degrees of freedom, which leads to BgU&D).

In fact, one can give a more direct interpretation to the &tyua Equation (50). Note that the
modes which exit the Hubble radius during AD re-enter the Ilelvadius during DB and again
exit during BC. We would like to think of these modes as clgselated to the physical degrees of
freedom emerging with space in the inflationary phaseause for us the Hubble radius is the edge
of the space that has emergéegt us therefore calculate the total number of modes whickscthe
Hubble radius in the intervét,, t5) or, more conveniently, when the expansion factor is in theea
(a1, az). Since the number of modes in themovingHubble volumeV = 47 /3H3a? is given by
the integral ofdN = Vd3k/(27)3 = Vk3/(2n?)d1n k, we need to compute the integral over the
relevant range ok. We know that the condition for horizon crossingkis= Ha so that in the de
Sitter phase with constaff we havedln k = dIna. In the radiation dominated phage o« a2,
so againdlnk = dln Ha = —dIn a. (We can ignore the minus sign which merely tells us that the
mode which exits last, enters first) Therefore, the total Ibeimof modes which cross the Hubble
radius duringy; < a < ag is given by

VE3 2 da 2 as
N = [ —dhnk= | —— = —1In— 51
(a1, az) / o2 n 37 31 nal ) (51)

in all the three phases if we ignore matter. This allows usritew

a

a_f = eXp[MN(alv QQ)] ) (52)
whereN (a1, az) is the number of modes which cross the Hubble radius in thegvat(aq, a2) and

w is numerical factor of order unity which js = 37 /2 in the de Sitter and radiation phases. So the
equality of ratios in Equation (50) translates to the edyali the degrees of freedom, considered as
the number of modes in a Hubble volume which crosses the ldubdius. That is we have

N(afaaF):N(aAvaF):N(aA7avac)- (53)

This possibly provides an alternative way of understanthiegequality of the three different phases
of our universe.

6 CONCLUSIONS: THE THERMODYNAMIC UNIVERSE

The description of the universe in the last two sectionsiples/an appealing first principle approach
towards cosmology, different from the standard one. Thigagch is capable of reproducing the
usual features of the universe and the evolutionary higtegause the scale factor is governed by
the standard equations of the Friedmann model. In additios,approach provides a new vision
which holds promise for understanding many key issues inifiedrmanner. Let me conclude this
review by describing this broader picture.

The notion that increase in the Hubble radius representsitieggence of space is fundamental
to this approach. A static universe in this picture is repnésd by a universe with a constant Hubble
radius rather than by a universe with a time independentresipa factor. (Historically, this was
the original motivation for the steady state universe beeaun expansion factaft) o exp(Ht) is
invariant under time translation; this is precisely the deBuniverse with constant Hubble radius.)

With such a concept for emergence of space, it seems natulsddin with an evolutionary
epoch in which the Hubble radius is of the order of Planckflenghis is definitely in the quantum
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gravitational domain in which our lack of knowledge of preemetric variables prevents us from
providing a precise mathematical description. We assuiatesthime quantum gravitational instabil-
ity triggers the universe to make a transition from thisestatanother one which again has a constant
Hubble radius that is significantly larger. This transitmeturs along with the emergence of a con-
siderable amount of space and matter — originally — in thenfof radiation. During this phase,
the universe essentially evolves as a radiation dominaiediann model. The precise description
of the transition between the two de Sitter phases is thelatdrdomain of conventional cosmology
in which, depending on the dynamics of the matter sectoryoihbave a radiation dominated phase
giving way to a very late time matter dominated phase. Itasyéver, obvious that in the overall cos-
mological evolution, the matter dominated phase is not ofmaignificance since it again quickly
gives way to the second de Sitter phase dominated by the ¢ogival constant. Viewed in this
manner, the domain of conventional cosmology merely dessrihe emergence of matter degrees
of freedom along with cosmic space during the time the us&é& making a transition from one de
Sitter phase to another. [The radiation dominated phasesisjtransient connection between two
de Sitter phases.]

As | have already remarked, such a universe with two de fittases has its relevant cosmology
contained in three separate epochs, each of equal duratishich the expansion factor increases
by eV ~ 1039, During the first phase of expansion bY, the perturbations generated in the Planck
scale inflation (to use a conventional terminology, thougim not sure whether inflation is the
correct word to describe this Planck scale process) leavdtibble radius. During the second phase
of expansion bye?, these perturbations re-enter the Hubble radius, mosttinglihe radiation
dominated phase and a little bit during the matter domingkede at the end which, as | said before,
is a minor detail and of doubtful cosmic significance. Durthg third phase of expansion kY,
these perturbations again leave the Hubble radius. Dunisdime, the radiation temperature drops
below the Hubble temperature of the cosmological constante this happens, the universe is
completely dominated by vacuum noise and is in an asympiteaady state.

The entire evolution during the second and third phases eaoimpletely described as that of a
system which is evolving towards holographic equipantitibhe tendency of the universe to achieve
Npuk = Nsue IS What drives the cosmic evolution. Such a perfect stateegist during the initial
Planck scale phase as well. The question as to why it washlastad made a transition to the
radiation dominated phase probably can be answered only wieunderstand the pre-geometric
Planck scale physics. However, it should be stressed tegd ttave been several quantum cosmolog-
ical models in which “the creation of the universe” is linkiedquantum gravitational instabilities.
Therefore | do not consider this as a serious difficulty fag #tenario.

In a way, the problem of the cosmos has now been reduced tosiadding one single number
N closely related to the number of modes which cross the Hulaldlies during the three phases of
the evolution. This, in turn, will be related to the total noen of matter degrees of freedom which
emerge from the pre-geometric variables along with spalse.cbnventional question of whyL?,
is approximatelyl 0~ 122 is answered in this approach by linking itdo*". Thus, | would think that
one needs to work towards providing a fundamental undedstgrof the results in Equation (52) —
Equation (53).
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