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Abstract This study investigates the problem of areostationantedround Mars in
three-dimensional space. Areostationary orbits are éggedo be used to establish a
future telecommunication network for the exploration ofisldHowever, no artificial
satellites have been placed in these orbits thus far. Thexctesistics of the Martian
gravity field are presented, and areostationary pointslagidlinear stability are cal-
culated. By taking linearized solutions in the planar cas¢ha initial guesses and
utilizing the Levenberg-Marquardt method, families of ipdic orbits around areo-
stationary points are shown to exist. Short-period orhit$ lng-period orbits are
found around linearly stable areostationary points, buy short-period orbits are
found around unstable areostationary points. Verticabp@r orbits around both lin-
early stable and unstable areostationary points are almmierd. Satellites in these
periodic orbits could depart from areostationary pointaligw degrees in longitude,
which would facilitate observation of the Martian topodngipBased on the eigenval-
ues of the monodromy matrix, the evolution of the stabilitgéx of periodic orbits
is determined. Finally, heteroclinic orbits connecting ttvo unstable areostationary
points are found, providing the possibility for orbital isfer with minimal energy
consumption.

Key words: planets and satellites: Mars — martian gravity field — peidaabit —
areostationary orbits

1 INTRODUCTION

Stationary orbits are approximately equatorial and cacund share the same period as the plan-
etary rotation. Satellites in stationary orbits remain ihibover the same location on the planetary
surface. The notion of stationary orbits for Earth was firsippsed by Clarke, and these orbits were
considered to be a good application for communication lfate(Clarke 1945). Earth’s geostation-
ary orbits have been widely used in practical engineerirmgiegtions, including communication,
navigation, and meteorological applications. Geostatiporbits have been studied for many years,
and plenty of papers have contributed to this research.

Stationary orbits around Mars are also known as areostatiarbits, and their characteristics
are similar to Earth’s geostationary orbits. Areostatigraabits are expected to be used to establish
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future telecommunication networks for the exploration cdisl (Edwards et al. 2000; Bell et al.
2000; Hastrup et al. 2003; Turner 2006; Edwards & Depaula/28@dwards 2007). However, no
artificial satellites have been placed in these orbits thusaind few studies concerning stationary
orbits around Mars have been conducted.

The positions of stationary points of Earth, the Moon, andsweere found to be singular points
of the zero-velocity surface (Zhuravlev 1977). For Eartll &fars, Deprit and Lopez-Moratalla
proved that the two linearly stable points are also stabtheérsense of Liapunov properties (Deprit
& Lopez-Moratalla 1996). The influences of the individuakimonics of the Martian potential on
the positions of stationary points were examined qualgitiand quantitatively, in which th€'y,
Css, and S terms were considered in the planar case (Wytrzyszczak)1898ther research on
areostationary orbits, the drift in longitude due to spterharmonics up to the second degree and
order was analyzed, and both the period of libration and theuat of stationkeeping maneuvers
were calculated (Alvarellos 2011). Liu et al. also analy#ee longitudinal drift in the Martian
second degree and order gravity field, and more accuratersiag points for reducing drift in the
full gravity field were obtained using numerical methodsi(ét al. 2010). In addition, periodic orbits
around equilibrium points in the Earth second degree andragchvity field (Lara & Elipe 2002)
and in an arbitrary second degree and order uniformly regagravity field (Hu & Scheeres 2008)
have been studied in terms of planar motion.

This paper investigates areostationary orbits in thregedsional space. The major perturbation
of concern is the effect of the Martian gravity field, and theys/in which the gravitational potential
of Mars independently influences areostationary orbitseapdored. The results can be used as a
starting point for correction methods when consideringta! perturbations including three-body
perturbations, atmospheric forces, and solar radiatieagure. By taking linearized solutions in the
planar case as the initial guesses and utilizing the Lewvgrllarquardt method (Levenberg 1944;
Marquardt 1963; Moré 1977), it is demonstrated that péciodbits exist around both unstable and
linearly stable areostationary points, and their stahitilexes are also calculated. Finally, hetero-
clinic orbits connecting the two unstable areostationaiyns are found, providing the possibility
for orbital transfer with minimal fuel expenditure.

2 THE MARTIAN GRAVITY FIELD

The gravitational potentidl in the body-fixed reference frame is expressed as followsI@<E66)

1
_ kK :
== 1+ Z Z ( ) Py (sin ) (Crpm cosmA 4+ Sy sinm) | Q)

=1 m=0

wherey is the Martian gravitational constan®, is the reference radius of Marsjs the position of
the spacecraftP,, is the associated Legendre function of degraead ordem; C;,, andS;,, are
the coefficients of the spherical harmonic expansipisg the latitude of the body-fixed coordinate
system; and\ is the longitude of the body-fixed coordinate system. Fordyilre prime meridian is
defined as the longitude of the crater Airy-0.

The recently improved spherical harmonic Martian graviydiused in this paperis MRO110B2
(Konopliv et al. 2011). The values of some first coefficieftsl®O110B2 are given in Table 1. The
gravity coefficients are normalized and are related to tm®tmalized coefficients as follows (Kaula

1966) )
<gf::> _ {(l—m>!((2lzjn{b))!(2—5om)} <ng: > .

wheredy,, is the Kronecker delta

if m =0,

%m:{oz if m # 0. ®)
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Table 1 Normalized values of certain normalized zonals and teksefahe
Martian gravity model MRO110B2.

l m élm Slm

2 0 —0.8750219729111999E-03 0

2 2 —0.8463591454722000E-04 0.4893448966831000E-04
3 0 —0.1189641481101000E-04 0

3 2 —0.1594791937546000E-04 0.8361425579193003E-05

The value of the reference radiig = 3396 000 m, and the value of the gravitational constenat
4.282837452%10* m3 s=2 (Konopliv et al. 2011).

Itis well known that the gravity field of Mars is farther awapiin the potential of a sphere than
that of Earth (Wytrzyszczak 1998); therefore, areostatigrorbits are more perturbed than geo-
stationary orbits. According to the Martian gravity field MR10B2, it is obvious that the Martian
oblateness terryg is dominant among all harmonic coefficients, but it is not@amhant as Earth’s
Cs. The MartianC'so term has the opposite sign and is stronger compared to E&fh’Moreover,
the Martian tesseral harmonics are also stronger than tifdsarth. Unlike Earth, the Martia@'so
andS»» terms have different signs.

Previous research has determined that the t&rspsCsa, Soa, Cso, C32, andSs, are essential
for areostationary orbits (Wytrzyszczak 1998). The zomahtonicCy, causes the main shift of the
position of areostationary points in the radial directithe tesseral harmonics,, andS2; mainly
influence the longitudinal distribution of areostationagints and the distances of areostationary
points from Mars; the termé&’sy, Cs2, andSs2 contribute significantly to the displacement in the
z direction; and other harmonics only result in invisible bas in the position of areostationary
points. The gravitational potentiél including these essential terms is written as follows

U=~ {1 + C%i%z (3 sin? ¢ — 1) + 3:35 cos? ¢ (Caz cos 2\ + Sag sin 2)\)
C3oR?

3
+=5 (5 sin® ¢ — 3sin cp) + 5%

r3

(4)

sin ¢ cos? ¢ (C3z cos 3\ + S3o sin 3/\)} )

3 EQUATIONS OF MOTION

The motion of a satellite can be described in a rotating eefee frame that is rotating with Mars.
Accordingly, the rotating reference frarfxyz is established with the origi@® located at the center
of mass of Mars, the-axis taken as the rotation axis, and thaxis coinciding with the prime

meridian. It is assumed that Mars rotates uniformly arotmed taxis with constant angular velocity
w. Equation (4) can be rewritten in the form of rectangulant€san coordinates as follows

U= uo uRiCQ(thgf—QzQ) T 3MR§CQQ£m2—y2)
o 27F e 5
6uR35’22my 15HR2032(12_?J2)Z 30MRSS321yZ ( )
+ 5 + i + i .

In mechanics, the effective potentidl is defined as the combined gravitational potential and
rotational potential terms as follows (Scheeres et al. 20B2mas 1993)

1
W= 5(.«)2 (® +y*) + U. (6)
Then, the Lagrangiah of the motion is expressed as

1 1
L:5(j:2+g]2—|—z‘2)+w(xy—x'y)+§w2(x2—|—y2)+U, (7)
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1/

whereT is the kinetic energy. Scaling is performed so that (u/w?) % is the unit of length and

1/w is the unit of time. With scaling, the Lagrangiaris rewritten as
1 1
L:5(:b2+y'2+22)+(:vy—9'cy)+§(x2+y2)+‘/, (8)

whereV = U/ (wQZQ). It is obvious that the Lagrangian is time-invariant, sodiggamical system
admits the Jacobian integrélas follows

J:%(:bQ—l—y'Q—i—z?Q)—%(xz—i—yQ)—V. 9)
The Lagrange equations are written as
d (0L oL
— (=)= =0o. 10
dt ( or ) or 0 (10)

Therefore, the equations of motion of the spacecraft in ttating reference fram@xyz can be
written as
i—-2y=a+V,,
J+2e=y+V, (11)
2=V,

4 AREOSTATIONARY POINTS

Areostationary points can be located by setting the rigimnehsides of Equation (11) to zero, i.e.

z+V,=0,
y+V,=0, (12)
V.=0.

The initial values of the areostationary points are chosam Liu et al. (2010). With these initial
values, the Levenberg-Marquardt method (Levenberg 1944giardt 1963; Moré 1977) based on
nonlinear least-squares algorithms can be applied to sodveonlinear Equation (12). The iteration
is processed until the tolerance of Equation (12) is lesa @ 3. Finally, the positions of the
areostationary points can be obtained, which are shownbiteTa

Table 2 Positions of Areostationary Points in the Rotating Frame

Areostationary Point T y z Linear Stability*
Eq —0.965866684631854  0.259123824182275 —0.0000002088509 LS

Es 0.259126533910926  0.965876790581445  0.000000640235545 U

E3 0.965866684631854 —0.259123824182275 —0.0000002089509 LS

Ey —0.259126533910926 —0.965876790581445 0.0000006483355 U

Notes: * LS = linearly stable; U = unstable.

5 THE LINEAR STABILITY OF AREOSTATIONARY POINTS

The linear stability of areostationary points can be deiieechby analyzing the linearized equations
of the system represented by Equation (11) in the vicinitpreostationary points. Because of the
symmetry of the system, the stabilities of areostationaiynts £; and F5 are identical, and the
stabilities of areostationary point, and E, are identical.

Using the notation

gzx—xe, nN=Y— Ye, Y =2 Ze, (13)
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and .

X)) =& &, (14)
wherez., y., andz, are the coordinates of the areostationary point, the linedrequations of the
system represented by Equation (11) can be expressed as

X(t)=A(t)- X (1), (15)
where
0 0 0 1 0 0
0 0 0 0 1 0
o 0 0 0 0 1
AWM=y W, Wee 0 200 (16)
Wye Wyy Wy —2w 0 0
W Woy W 0 0 0

The second order partial derivatives
corresponding areostationary point.
For areostationary points; andFEs, the six eigenvalues of the matr(¢) are calculated as

A1,2 = +£0.0079244626753689 Az,4 = £0.999892722423221
As,6 = £1.000075870390122

They are all purely imaginary, so areostationary pofiitsand E'3 are linearly stable. For areo-
stationary pointd’, and E,, the six eigenvalues of the matrik(t) are calculated as

A} o = +0.007923923801517, \; , = +0.999945057867454
5.6 = £1.000086331179820

=]

f the effective piidéivVVIW must be calculated at the

17)

(18)

Since\] > 0, areostationary point&s and E, are unstable. The states of stability of all these
areostationary points appear in the fifth column of Table 2.

6 PERIODIC ORBITS AROUND AREOSTATIONARY POINTS

Note that around areostationary points, the displacemehgiz direction is much smaller than that
in thez or y direction. The periodic orbits of the linearized systenmresgnted by Equation (15) in
thexy-plane can be obtained easily. Therefore, the linearizeidgie solutions in thexy-plane can
be taken as the initial guesses of periodic orbits arourmstaidonary points in the three-dimensional
space.

6.1 Short-period Orbits around Linearly Stable Areostationary Points

The motion of the spacecraft in thg-plane corresponds to the case@f, = 0, C32=0, S3,=0,
andz= 0. Around areostationary poinfs; and E3, the general solutions of the linearized system
represented by Equation (15) in the-plane are

5 = A1 sin (Iilt + (pl) + A2 sin (K/Qt + (pg) y

1N = aA cos (kit + ¢1) + adls cos (kat + p2) , (19)

wherer; andk, are the frequenciesi; and A, are the amplitudes; and = % (ko + Waa/K2).
Sinceks < k1, the general solutions of the linearized system inxaplane consist of long-period
and short-period terms.

Here, only the case df; is considered because the case&pfind F'3 are symmetrical. First,

setA; # 0 and A, = 0; thus, only short-period terms are retained

&= Apsin (kit + 1), 17 = adj cos (kit + 1) . (20)
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The motion of the spacecraft is approximately periodic piniod
To = 27T/I<61 . (21)
For example, given amplitudé; = 0.01, the approximate periodic condition in thg-plane is

xo = —0.975525140963676 , yo = 0.261715005628121, 2y =0,
2o = 0.005182255008665, yo = 0.019316508183033%, =0, (22)
T = 6.283859422887580 .

Based on the above initial guess, the Levenberg-Marquastttad is used to solve the periodic
condition
T(to)—T(t0+T) =0,

v (to) — v (to +T) = 0. (23)

The iteration is processed until the mismatch between teiipo and velocity at the initial time
to and the position and velocity at the final tithe+ T is less than 10'2. The exact initial condition
of the periodic orbit is derived as

xp = —0.975525140963676y, = 0.261715005628121z, = 0.000011183843109,
o = 0.005169425044549 7, = 0.019268683278553%, = 0.000001892841807 , (24)
T = 6.283859507415385.

The periodic orbit arounds; derived above is shown in Figure 1; it has an oval shape with
a period of approximately 1.03 days. In this orbit, a spaafé@an depart from the areostationary
point £; by about 1.15 at most in longitude. It is expected that useful multi-viemeiges could
be derived from an offset of a few degrees, especially foenlzions of Elysium Planitia and lani
Chaos below the stable areostationary politsand E3, respectively.

The family of short-period orbits is shown in Figure 2. It da@ seen that the shape of the
short-period orbits arounl; changes from oval to heart-shaped as amplitude increases.

According to the theory of ordinary differential equatioffi®binson 2004), the fundamental
solution matrix®(¢) yields the following

dH)=A)D (). (25)

The stability of periodic orbits can be determined by analyzhe eigenvalues of the mon-
odromy matrix®(7"), whereT is the motion’s period. The monodromy matrix here is the poid

-0.95
= -0.96

-0.97
0.23 -0.98

Fig. 1 Short-period oval-shaped orbit around the areostatiopaint F;. Different scales are used
for abscissas and ordinates.
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Fig. 2 Family of short-period orbits around the areostationainps; .

6.004
6.003
6.002)

X

6.001]

6

5.999

Fig.3 Evolution of stability indexk as a function of the Jacobian const@hfor short-period
orbits aroundE; .

of the inverse of the fundamental matrix of Equation (11)ested at the zero and the fundamental
matrix of Equation (11) evaluated at the period. The initahdition®(0) used for the integration
of Equation (25) is the identity matrix. For Hamiltonian ®rs, the eigenvalues @&(7") come
in pairs. Each pair is a reciprocal of the other. Thus, if oai ponsists of two conjugate complex
eigenvalues, both eigenvalues are on the unit circle heg: modului are both equal to one.

Here, the stability index is introduced to estimate the stability of the orbit, andegirtkd as
the sum of all the eigenvalues &f{(7T")

6
k= ll, (26)
=1

wherey; is the eigenvalue o®(T"). Therefore, ift > 6, the orbit is unstable; it = 6, the orbit is
stable.

The general behavior of the stability indkxas a function of the Jacobian constant is presented
in Figure 3. It can be seen that ti#& family of periodic orbits changes from stable & 6) to
unstable k > 6) as the value of the Jacobian constant increases.

6.2 Long-period Orbits around Linearly Stable Areostationary Points
WhenA;=0andA; # 0, only long-period terms are retained

& = Agsin (kat + p2) n = oAy cos (kat + ¢2) . (27)



558 X. D. Liu, Hexi Baoyin & X. R. Ma

<01 o1 _0‘98‘ 096 -0.94 —092 ~09
y X

Fig. 4 Long-period orbit around the areostationary pdiht

If A;=0andA; =0.001, Equation (27) is taken as the initial guess, and tehberg-Marquardt
method is utilized until the mismatch between the positiod 2elocity at the initial time, and the
position and velocity at the final timg + 7T is less than 10'3. Then, the exact parameters for the
periodic orbit can be obtained as

xo = —0.966832530336112, yo = 0.259382942061755%, = —0.000000206142371 ,
o = 0.000388605225698 7y = 0.001448499930975, %¢ = 0.000000000052347 , (28)
T = 800.1262797809567 .

The long-period orbit around the areostationary paéints shown in Figure 4. The period of the
orbit is approximately 0.36 years. For this long-periodipthe six eigenvalues of the monodromy
matrix ®@(7") are all on the unit circle, and it is easy to see ttm6, based on Equation (26). Thus,
this long-period orbit around the areostationary pdéintis stable.

6.3 Short-period Orbits around Unstable Areostationary Pants

Around areostationary poinfs, and F;, the general solutions of the linearized system repredente
by Equation (15) in they-plane are

€ = Dierit + Doe "1t Alsin (kht +¢') | -
n=a} (Dle’”"llt — Dge”“,lt) + ab A’ cos (kht + &), (29)
where ) and «), are the frequenciesD,, Dy, and A’ are the amplitudes; and) =
2 (K — Waa/K}) andal, = § (kb 4+ Wae/kb). It can be seen that Equation (29) consists of secular
terms, attenuation terms, and periodic terms. In order tovel@eriodic orbits, the coefficient of
secular termD; and the coefficient of attenuation ter® must be set equal to zero, so

&= Alsin (kht + ¢'), n = ah A’ cos (kat + ') . (30)

Based on the Levenberg-Marquardt method, the initial goésise periodic orbit represented
by Equation (30) can be slightly adjusted. The iteratiorrgecpssed until the mismatch between the
position and velocity at the initial timig and the position and velocity at the final time+ T is less
than 10712, Taking the case aft’ = 0.01 as an example, the exact initial parameters for the periodic
orbit can be obtained as

xo = 0.261717716762586y, = 0.975535246535669z;, = —0.000045126967204,
o = 0.0192694932691707, = 0.005169641770384z, = —0.000002453663158, (31)
T = 6.283530658585495.
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Fig.5 Oval-shaped periodic orbit around the unstable areosgtyoppointFs.

Fig. 6 Family of short-period orbits around the areostationaiipss.

6.004

6.003]

6.002
x
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Fig. 7 Evolution of the stability index as a function of the Jacobian constéhtor short-period
orbits aroundEs.

An oval-shaped periodic orbit around the areostationainytygo, is shown in Figure 5; its period
is approximately 1.03 days.

Figure 6 shows that the shapes of the periodic orbits ardinalso change from oval to heart-
shaped as amplitude increases.

Figure 7 presents the evolution of the stability inde&s a function of the Jacobian constant.
It is clear that thels; family of periodic orbits changes from unstable % 6) to stable ¢ = 6) as
the value of the Jacobian constant increases. It can be lsaestable periodic orbits exist around
unstable areostationary points. This means that a spdiceotdd stay in the vicinity of an unsta-
ble areostationary point for a long time, which would faaile observation of Martian topography,
including Syrtis Major Planum and Tharsis below unstabématationary point&; andE,, respec-
tively.
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Fig. 8 Vertical periodic orbit around the linearly stable aretsteary pointE;.

6.4 Vertical Period Orbits around both Linearly Stable and Unstable Areostationary Points

Vertical periodic orbits around both linearly stable andtable areostationary points are also noted,
which are different from both short-period and long-perastits. The motion of the spacecraft in
the z direction corresponds to the casesaf 0 andrn = 0.

Around all areostationary points, it is easy to obtain that¢igenvalues of Equation (15) in the
z direction are all purely imaginary. Thus, the general sohg of the linearized system represented
by Equation (15) in the direction are calculated as

~v = Bsin (st +6), (32)

where ¢ is the frequency, and is the amplitude. Based on the initial guess represented by
Equation (32), the periodic character (23) can be confirnsatuthe Levenberg-Marquardt method.
The iteration is processed until the mismatch between tkéipo and velocity at the initial timeéy
and the position and velocity at the final timg+ 7 is less than 10'2.

For example, given the amplitude= 10~° around the areostationary poilit, the exact initial
parameters for the vertical periodic orbit can be obtaireed a

r9 = —0.965866684631854), = 0.259123824182275%; = 0.000008038019607
to= 0, o =0, %o = 0.000000506705147 (33)
T = 6.282708621687184.

The vertical periodic orbit around; derived above is shown in Figure 8; its period is approxi-
mately 1.03 days. For this vertical periodic orbit, the sgeavalues of the monodromy matidx(7")
are all on the unit circle, and it is easy to see that 6, based on Equation (26). Thus, this vertical
periodic orbit around the linearly stable areostationaniynpl; is stable.

Given amplituded = 10~° around the areostationary poifit, the exact initial parameters for
the vertical periodic orbit can be obtained as

xo = 0.259126533910926y, = 0.965876790581445, = 0.000008320016725
to= 0, o = 0, Zp = 0.000001413345788 (34)
T = 6.282642913717483.

The vertical periodic orbit arounds derived above is shown in Figure 9; its period is also
approximately 1.03 days. For this vertical periodic orbits easy to obtain that = 6.0025 based
on Equation (26). Thus, this vertical periodic orbit arouhd unstable areostationary poifif is
unstable. Note that the vertical periodic orbits aroundstiaionary points; and E, are both
below the areostationary points.
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T 0.2501

y 0.9659 0.2591

Fig. 9 Vertical periodic orbit around the unstable areostatipmaint £-.

Fig. 10 Heteroclinic orbits connecting unstable areostationaiyts F» and E4. The red line corre-
sponds to the unstable manifold®f (color online); the blue line corresponds to the stable manifold
of E4; the pink line corresponds to the unstable manifoldZaf and the green line corresponds to
the stable manifold of,.

7 HETEROCLINIC ORBITS CONNECTING THE TWO UNSTABLE
AREOSTATIONARY POINTS

The numerical method used to calculate the stable and destamifolds in this study was devel-
oped in previous research (Robinson 2004). The local stafdeunstable manifolds of areostation-
ary points are approximated with line segments through thessationary points in the directions
of stable eigenvectar® and unstable eigenvectot'; these eigenvectors can be obtained easily by
analyzing the linearized equation in the vicinity of theaattionary point. Take the calculation of
the unstable manifold of the areostationary pdintas an example. For a sufficiently smallgiven

as 10°? here), a pointX in the neighborhood of the areostationary pdihtis selected so that

X = By + 6u™. (35)

Taking X as the initial value, the global unstable manifold can beaioled by integrating
Equation (11) forward. Following a similar procedure, thebgl stable manifold can also be ob-
tained by backward iteration.

Figure 10 illustrates the stable and unstable manifoldsedstationary point&s and E,. Note
that the unstable manifolfz‘M};2 of E, coincides with the stable manifolﬂﬂg4L of E4, which is
known as the heteroclinic orbit connecting unstable aegiostary pointsk, and ;. It can also be
seen that the unstable manifald; of F, coincides with stable manifold/3, of E», which is
another heteroclinic orbit connectirig, and E4. The existence of heteroclinic orbits means that a
spacecraft at the unstable areostationary point couldfeato another unstable areostationary point
with minimal energy consumption.
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8 CONCLUSIONS

This study analyzes areostationary orbits around Marsrigetldimensional space. Areostationary
points are derived in the rotating reference frame, andshswvn that periodic orbits exist around
both linearly stable and unstable areostationary poirdsskort-period orbits around linearly sta-
ble areostationary points, their stabilities evolve fraiabte to unstable as the Jacobian constant
increases. For short-period orbits around unstable a@msary points, their stabilities evolve from
unstable to stable as the Jacobian constant increasealdbidetermined that vertical periodic orbits
around linearly stable areostationary points are staliidewertical periodic orbits around unstable
areostationary points are unstable. Finally, heterazlimbits connecting the two unstable areosta-
tionary points are found, providing the possibility for gabtransfer with minimal fuel expenditure.
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