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Abstract An ensemble prediction model of solar proton events (SPEs),combining the
information of solar flares and coronal mass ejections (CMEs), is built. In this model,
solar flares are parameterized by the peak flux, the duration and the longitude. In addi-
tion, CMEs are parameterized by the width, the speed and the measurement position
angle. The importance of each parameter for the occurrence of SPEs is estimated by
the information gain ratio. We find that the CME width and speed are more informa-
tive than the flare’s peak flux and duration. As the physical mechanism of SPEs is not
very clear, a hidden naive Bayes approach, which is a probability-based calculation
method from the field of machine learning, is used to build theprediction model from
the observational data. As is known, SPEs originate from solar flares and/or shock
waves associated with CMEs. Hence, we first build two base prediction models using
the properties of solar flares and CMEs, respectively. Then the outputs of these models
are combined to generate the ensemble prediction model of SPEs. The ensemble pre-
diction model incorporating the complementary information of solar flares and CMEs
achieves better performance than each base prediction model taken separately.
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1 INTRODUCTION

Solar proton events (SPEs) mean that the flux of>10 MeV protons exceeds 10 pfu (particles
cm−2 s−1 sr−1). They are harmful to the safety of satellites, the health ofastronauts, the quality
of communications and so on. Therefore, the prediction of SPEs is important in space weather fore-
casting services.

The operating prediction models are built by the statistical relationships between SPEs and
their precursory phenomena. Among which, the SPE prediction model operated at NOAA’s Space
Weather Prediction Center (SWPC) was introduced by Balch (1999), and its performance was eval-
uated by Balch (2008). The inputs of this model are the time-integrated soft X-ray flux, the peak
soft X-ray flux, the status of type II and type IV radio bursts,and the location of the associated
flare. Kahler et al. (2007) evaluated the performance of the proton prediction system (PPS) devel-
oped by Smart & Shea (1989), which predicts the occurrence ofSPEs by the properties of solar
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flares. Comparing with the SWPC’s prediction model of SPEs, the PPS applies a different modeling
algorithm and does not use the type II and type IV radio burstsas inputs. Kubo & Akioka (2004)
studied the relationships between SPEs and the soft X-ray flux, and found the threshold for occur-
rence of SPEs in the parameter space of solar flare duration and peak soft X-ray flux. Garcia (2004)
built a logistic regression model of SPEs by the temperatureand soft X-ray flux of the associated
solar flare, and Laurenza et al. (2009) developed an SPE prediction model by using flare longitude,
time-integrated soft X-ray intensity, and time-integrated intensity of type III radio emission near 1
MHz. More recently, Núñez (2011) adopted a dual-model system consisting of the well-connected
prediction model and the poorly-connected prediction model for SPE prediction. Moreover, with the
development of the field of machine learning, neural networks have been used to build the SPE pre-
diction model from the observational data (Wang 2000; Gabriel & Patrick 2003; Gong et al. 2004).
These SPE prediction models mainly depend on the propertiesof solar flares. However, SPEs are
considered to originate from solar flares and/or shock wavesassociated with coronal mass ejec-
tions (CMEs) (Reames 1999). Therefore, CMEs can also provide good indexes for the production
of SPEs (Kocharov & Torsti 2002; Gopalswamy et al. 2002, 2008; Ohki 2003; Kahler & Vourlidas
2005; Marqué et al. 2006; Lehtinen et al. 2008; Gerontidou et al. 2009).

Using the machine learning method, we first build two prediction models for SPEs based on
the properties of the associated solar flares and CMEs respectively, and then combine these models
to form an ensemble model, which fuses the information of solar flares and CMEs. Finally, the
performance of the proposed prediction model is evaluated and compared.

The paper is organized as follows: the data set is introducedin Section 2, the modeling algorithm
is described in Section 3, the performance of the ensemble prediction model is evaluated in Section 4
and conclusions are given in Section 5.

2 DATA SELECTION

The dataset consists of SPEs and control events, which meet the necessary conditions of SPEs but
are not associated with any particular SPE (Balch 2008).

(1) SPEs. This list of SPEs collected by SWPC can be obtained fromhttp://www.swpc.noaa.gov/
ftpdir/indices/SPE.txt. In it, the majority of SPEs are associated with both solar flares and CMEs.
There are two major physical processes accelerating the particles near the Sun. One is related to
solar flares, and the other is related to shock waves driven byCMEs. Seventy SPEs associated
with both solar flares and CMEs are selected from 1996 (CMEs observed by LASCO began in
1996) to 2005.

(2) Control events. The solar flares (peak flux≥ M1.0) associated with CMEs are considered
as the conditions to select control events. Yashiro et al. (2006) studied the relationship be-
tween solar flares and CMEs and provided a list of solar flares with CMEs from 1996 to 2005
(http://cdaw.gsfc.nasa.gov/pub/yashiro/flarecme/fclistpub.txt). From this list, 619 solar flares
and CMEs are selected as the control events.

Solar flares are parameterized by their peak flux, duration and longitude, and CMEs are param-
eterized by their width, speed and measurement position angle (MPA). These parameters are ex-
tracted fromftp://ftp.ngdc.noaa.gov/STP/SOLARDATA/SOLARFLARES/FLARESXRAY/for solar
flares andhttp://cdaw.gsfc.nasa.gov/CMElist/UNIVERSAL/textver/univall.txt for CMEs.

The information gain ratio (GR) defined in Equation (1) is used to measure the importance of a
parameter to the SPEs

GR(y, Xi) =
H(y) − H(y|Xi)

H(Xi)
, (1)

wherey is the status of the SPE,Xi stands for thei-th parameter of the precursory phenomena
(i = 1, ..., 6 represents the flare peak flux, the flare duration, the flare longitude, the CME width,
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Fig. 1 Information gain ratio for each selected parameter of solarflares and CMEs.

the CME speed and the CME MPA, respectively), andH stands for the information entropy which
describes the uncertainty of the system. Here the decrease of uncertainty is called information gain
(see the details in Section 3.2 of Yu et al. 2010). Figure 1 shows the information gain ratio for each
parameter. From this figure, we find that the CMEs’ width and the CMEs’ speed are more informative
than the flare peak flux and the flare duration for the SPEs’ prediction, so it is necessary to consider
the information about the CMEs in the SPE prediction model.

3 ENSEMBLE PREDICTION MODEL

It is generally accepted that SPEs are caused by solar flares and/or shock waves associated with
CMEs. Therefore two base prediction models of SPEs are builtby the properties of solar flares and
CMEs, respectively. Then we combine the outputs of these twomodels to generate the ensemble
prediction model whose main modules are shown in Figure 2.

3.1 Base Prediction Model

The hidden naive Bayes (HNB) is used to build the base prediction model from the observational
data (Jiang et al. 2009). It is based on the Bayes formula

P (y|X) =
P (X|y)P (y)

P (X)
, (2)

wherey is the decision (occurrence or nonoccurrence of SPEs), andX = {X1, X2, · · · , Xn} is the
set of parameters (the properties of solar flares and CMEs).

According to the chain rule of probability, the joint distributionP (X|y) can be factored as

P (X|y) =

n∏

i=1

P (Xi|y, X1, X2, · · · , Xi−1) . (3)
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Fig. 2 Main modules for ensemble prediction model of SPEs.

Fig. 3 Structures of naive Bayes (a) and hidden naive Bayes (b). Here y is the status of SPEs,Xi

(i = 1, ..., n) is the parameter of precursory phenomena, andXhi is the hidden node ofXi. The arcs
between nodes represent the probabilistic dependent relationships. The probability of a node is only
dependent on its parent nodes.

Using the conditional independence assumption, that all parameters are independent given the
decisiony, Equation (3) is simplified as

P (X|y) =

n∏

i=1

P (Xi|y) . (4)

The corresponding model is called a naive Bayes model whose structure is shown in Figure 3(a).
However, the conditional independence assumption in the naive Bayes case is not true for the pre-
diction of SPEs. Therefore, the hidden nodes (Xhi) combine the influences from all other parame-
ters that are created for each parameter (Xi). This improved model is called the hidden naive Bayes
method, and its structure is shown in Figure 3(b).

In the hidden naive Bayes model, the joint distributionP (X|y) is calculated as

P (X|y) =

n∏

i=1

P (Xi|y, Xhi) , (5)
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where

P (Xi|y, Xhi) =
n∑

j=1,j 6=i

Wij × P (Xi|y, Xj) . (6)

As shown in Equation (6), the influences from all other parameters are considered, and the
weightWij is the importance of the parameterj compared to the parameteri

Wij =
IP (Xi; Xj |y)

n∑
j=1,j 6=i

IP (Xi; Xj |y)
, (7)

where

IP (Xi; Xj|y) =
∑

xi,xj ,y

P (xi, xj , y) log
P (xi, xj |y)

P (xi|y)P (xj |y)
. (8)

3.2 Ensemble Combination Rule

The maximum rule (Kittler et al. 1998) is used to combine the outputs of these two base prediction
models

µj(X) = max
t=1,2

{Pt(yj |X)} , (9)

wherePt(yj |X) is the probability of thet-th model for thej-th decision.
When the probabilities of SPE occurrence and nonoccurrenceare estimated, a decision threshold

can be formulated to provide a binary prediction (whether SPEs will or will not occur).

4 MODEL VALIDATION

4.1 Validation Measures

SPE prediction is considered to be a yes/no prediction in which SPEs do or do not occur. Four
possible outcomes of the prediction model are shown in Table1 (Jolliffe & Stephenson 2003).

Table 1 Yes/No Prediction

Predicted Yes Predicted No

Observed Yes Hit Miss
Observed No False alarm Correct rejection

The numbers of observations in each category (Hit, Miss, False alarm or Correct rejection) are
represented byNhit, Nmiss, NFA andNCR, respectively. The following four validation measures
(Jolliffe & Stephenson 2003) are used to estimate the performances of the prediction model.

(1) Hit rate (simply H, which is also called the probability of detection (POD))

H =
Nhit

Nhit + Nmiss
. (10)

(2) False alarm rate (simply F, which is also called the probability of false detection)

F =
NFA

NCR + NFA
. (11)
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Fig. 4 ROC curves for SPE prediction models.

(3) False alarm ratio (simply FAR)

FAR =
NFA

NFA + Nhit
. (12)

(4) The Heidke Skill Score (simply HSS)

HSS =

Nhit+NCR

Ntotal
− (Nhit+NFA)∗(Nhit+Nmiss)+(NCR+NFA)∗(NCR+Nmiss)

N2

total

1 − (Nhit+NFA)∗(Nhit+Nmiss)+(NCR+NFA)∗(NCR+Nmiss)
N2

total

, (13)

where
Ntotal = NFA + Nhit + NCR + Nmiss . (14)

4.2 Validation Results

The dataset is divided into 10 folds in which nine folds are used to build the prediction model and the
remaining one fold is applied to test the model. This processis repeated 10 times until all the data
are tested. A single set of binary predictions just shows theperformance of a prediction model at a
single decision threshold. However, a complete evaluationfor the performance of a prediction model
requires evaluating the performance over the full range of possible thresholds. Hence, the receiver
operating characteristic (ROC) curve (Fawcett 2004), which is a graph of the hit rate (Y -axis) against
the false alarm rate (X-axis) for different decision thresholds, is used to estimate the performance of
the prediction model.

The ROC curves for three different SPE prediction models areshown in Figure 4. We find
that the performances of the prediction models based on the properties of solar flares or CMEs are
complementary, and the ensemble SPE prediction model, which fuses complementary information
of both solar flares and CMEs, obtains the best performance over the full range of thresholds. The
physical explanations for the results are as follows. Thereare two types of SPEs: impulsive and
gradual (Reames 1999; Park et al. 2010). Impulsive SPEs are associated with solar flares and gradual
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Fig. 5 Performances of the ensemble SPE prediction model. (a) shows performances of the ensem-
ble SPE prediction model traversing the threshold, and the green vertical line marks the optimal
threshold for HSS. (b) shows the ROC curve of the ensemble SPEprediction model, and the green
horizontal and vertical lines mark the optimal hit rate and false alarm rate, respectively.

SPEs are associated with shocks from CMEs. Although solar flares are correlated with CMEs, the
prediction model based on properties of solar flares (dashedline in Fig. 4) is more effective for
impulsive SPEs, and the prediction model based on properties of CMEs (dotted line in Fig. 4) is
more effective for gradual SPEs. The ensemble prediction model combines the information of these
two prediction models, so it obtains good performance for SPE prediction.

Balch (2008) described the commonly used validation measures for the SPE prediction, and
completely evaluated the performance of SWPC’s predictionmodel. The SWPC’s prediction model
of SPEs mainly depends on the properties of solar flares. There are 127 SPEs and 3656 control
events from 1986 to 2004 in the dataset. The performance of SWPC’s prediction model is evaluated
by POD, FAR and HSS, which are functions of a probability decision threshold. A similar figure
for the ensemble SPE prediction model is shown in Figure 5(a). For the POD curve,Nhit + Nmiss

is a constant andNhit is monotonic with the variation of the threshold, so there isno zigzag in this
curve. For the HSS curve, the HSS measures the improvement ofthe prediction over the standard
prediction, and it is not monotonic with the variation of thethreshold. Furthermore, the maximum
rule is used to combine the outputs of these two base prediction models, and it is not a stable rule.
This means that the prediction model based on the propertiesof solar flares works for some points
in the curve, but the prediction model based on the properties of CMEs works for other points in
the curve. Hence, some zigzags appear in the HSS curve. Usingthe HSS as the optimal goal, we
notice that the optimal probability threshold is 23.47%, and show the corresponding optimal values
in the ROC space (Fig. 5 (b)). At this optimal point, the outputs of the ensemble prediction model
are shown in Table 2.

The proposed ensemble prediction model contains the information of CMEs, hence the selec-
tion of control events is different between the ensemble prediction model and the SWPC prediction
model. Therefore, it is difficult to compare the performanceof these two prediction models for the
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Table 2 Ensemble SPE Prediction Model at the Optimal Point

Predicted Yes Predicted No

Observed Yes 55 15
Observed No 55 564

different testing data. In any case, our conclusion is self-consistent. It means that the performance
of the ensemble prediction model is better than that of the prediction model only depending on the
properties of solar flares.

5 CONCLUSIONS

Solar flares and CMEs are considered to be two important precursors of SPEs. Hence two base
prediction models derived from the properties of solar flares and CMEs are built by HNB, which is
a probability-based calculation method from the field of machine learning. The outputs of these two
base models are combined by the maximum rule to generate an ensemble prediction model of SPEs.
The ensemble model provides a good way to fuse the information about solar flares and CMEs for
SPE prediction, and it obtains better performance than eachbase prediction model taken separately.

The present work focuses on whether solar eruptions will produce SPEs. In the future, peak flux
and rise times of SPEs should be estimated by regression models.
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