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Abstract An ensemble prediction model of solar proton events (SRIBs)bining the
information of solar flares and coronal mass ejections (OME®uilt. In this model,
solar flares are parameterized by the peak flux, the duratidthee longitude. In addi-
tion, CMEs are parameterized by the width, the speed and #asunement position
angle. The importance of each parameter for the occurren8PIBs is estimated by
the information gain ratio. We find that the CME width and spase more informa-
tive than the flare’s peak flux and duration. As the physicatimaism of SPEs is not
very clear, a hidden naive Bayes approach, which is a prityabased calculation
method from the field of machine learning, is used to buildgirezliction model from
the observational data. As is known, SPEs originate frorarsitdres and/or shock
waves associated with CMEs. Hence, we first build two basgigtien models using
the properties of solar flares and CMEs, respectively. Thewottputs of these models
are combined to generate the ensemble prediction modelled.Se ensemble pre-
diction model incorporating the complementary informatid solar flares and CMEs
achieves better performance than each base predictionl takda separately.
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1 INTRODUCTION

Solar proton events (SPEs) mean that the flux>di0 MeV protons exceeds 10 pfu (particles
cm2 s~ sr71). They are harmful to the safety of satellites, the healtlsifonauts, the quality
of communications and so on. Therefore, the prediction &SR important in space weather fore-
casting services.

The operating prediction models are built by the statistie&tionships between SPEs and
their precursory phenomena. Among which, the SPE predictiodel operated at NOAA's Space
Weather Prediction Center (SWPC) was introduced by BaléBg}, and its performance was eval-
uated by Balch (2008). The inputs of this model are the timegrated soft X-ray flux, the peak
soft X-ray flux, the status of type Il and type IV radio bursasd the location of the associated
flare. Kahler et al. (2007) evaluated the performance of toéop prediction system (PPS) devel-
oped by Smart & Shea (1989), which predicts the occurrenc@Ris by the properties of solar
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flares. Comparing with the SWPC's prediction model of SPiEsRPS applies a different modeling
algorithm and does not use the type Il and type IV radio buastsputs. Kubo & Akioka (2004)
studied the relationships between SPEs and the soft X-raydhd found the threshold for occur-
rence of SPEs in the parameter space of solar flare duratibpesak soft X-ray flux. Garcia (2004)
built a logistic regression model of SPEs by the temperaancesoft X-ray flux of the associated
solar flare, and Laurenza et al. (2009) developed an SPEctimmdmodel by using flare longitude,
time-integrated soft X-ray intensity, and time-integchietensity of type Il radio emission near 1
MHz. More recently, NUfiez (2011) adopted a dual-modefesysconsisting of the well-connected
prediction model and the poorly-connected prediction mhfmeSPE prediction. Moreover, with the
development of the field of machine learning, neural netedikve been used to build the SPE pre-
diction model from the observational data (Wang 2000; Gal&iPatrick 2003; Gong et al. 2004).
These SPE prediction models mainly depend on the propetisslar flares. However, SPEs are
considered to originate from solar flares and/or shock wagseciated with coronal mass ejec-
tions (CMEs) (Reames 1999). Therefore, CMEs can also peayibd indexes for the production
of SPEs (Kocharov & Torsti 2002; Gopalswamy et al. 2002, 2@&i 2003; Kahler & Vourlidas
2005; Marqué et al. 2006; Lehtinen et al. 2008; Gerontidal.e2009).

Using the machine learning method, we first build two predicmodels for SPEs based on
the properties of the associated solar flares and CMEs riaggdgcand then combine these models
to form an ensemble model, which fuses the information ofrstiares and CMEs. Finally, the
performance of the proposed prediction model is evaluatdccampared.

The paper is organized as follows: the data set is introdunc8dction 2, the modeling algorithm
is described in Section 3, the performance of the ensemétiqiion model is evaluated in Section 4
and conclusions are given in Section 5.

2 DATA SELECTION

The dataset consists of SPEs and control events, which imee@ecessary conditions of SPEs but
are not associated with any particular SPE (Balch 2008).

(1) SPEs. This list of SPEs collected by SWPC can be obtanwadlttp://www.swpc.noaa.gov/
ftpdir/indices/SPE.txin it, the majority of SPEs are associated with both solaefiand CMEs.
There are two major physical processes accelerating tlielpamear the Sun. One is related to
solar flares, and the other is related to shock waves drivebNdts. Seventy SPEs associated
with both solar flares and CMEs are selected from 1996 (CMBsmied by LASCO began in
1996) to 2005.

(2) Control events. The solar flares (peak flexM1.0) associated with CMEs are considered
as the conditions to select control events. Yashiro et &l0§2 studied the relationship be-
tween solar flares and CMEs and provided a list of solar flaits @MEs from 1996 to 2005
(http://cdaw.gsfc.nasa.gov/pub/yashiro/flame/fclistpub.tx). From this list, 619 solar flares
and CMEs are selected as the control events.

Solar flares are parameterized by their peak flux, duratidi@rgitude, and CMEs are param-
eterized by their width, speed and measurement positioledMPA). These parameters are ex-
tracted fromftp://ftp.ngdc.noaa.gov/STP/SOLARTA/SOLARFLARES/FLAREXRAY ffor solar
flares andttp://cdaw.gsfc.nasa.gov/ICMEBt/UNIVERSAL/texter/univall.txt for CMEs.

The information gain ratio (GR) defined in Equation (1) isdis® measure the importance of a
parameter to the SPEs

H(X;) ’
wherey is the status of the SPEY; stands for the-th parameter of the precursory phenomena
(z = 1,...,6 represents the flare peak flux, the flare duration, the flargitiote, the CME width,



Solar Proton Events Prediction 315

o

p—ry

>
T
L

CME
width

o

-

N
T
1

CME
Flare speed
peak
flux

o
o
T
L

0.08 -

0.06 b

Flare
0.04 duration

Information Gain Ratio of parameter

IFlargt g CME
ongitude MPA

0.02 b

0 1 1 1 L L
1 2 3 4 5 6

Selected parameter

Fig. 1 Information gain ratio for each selected parameter of dtdaes and CMEs.

the CME speed and the CME MPA, respectively), @ahdtands for the information entropy which
describes the uncertainty of the system. Here the decréaseertainty is called information gain

(see the details in Section 3.2 of Yu et al. 2010). Figure Ianshtbe information gain ratio for each

parameter. From this figure, we find that the CMEs’ width amd@MES’ speed are more informative
than the flare peak flux and the flare duration for the SPEs'ighied, so it is necessary to consider
the information about the CMEs in the SPE prediction model.

3 ENSEMBLE PREDICTION MODEL

It is generally accepted that SPEs are caused by solar flatderashock waves associated with
CMEs. Therefore two base prediction models of SPEs are tyilhe properties of solar flares and
CMEs, respectively. Then we combine the outputs of thesentwdels to generate the ensemble
prediction model whose main modules are shown in Figure 2.

3.1 Base Prediction Model

The hidden naive Bayes (HNB) is used to build the base piiedichodel from the observational
data (Jiang et al. 2009). It is based on the Bayes formula

P(X|y)P(y)
WX = —F @)
wherey is the decision (occurrence or nonoccurrence of SPEs)Xand{ X, Xo,--- , X,,} is the

set of parameters (the properties of solar flares and CMESs).
According to the chain rule of probability, the joint digtution P(X|y) can be factored as

n

P(X|y) = HP(Xi|y7X17X2a"' aXi—l)- (3)
i=1
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Fig. 3 Structures of naive Bayes (a) and hidden naive Bayes (bk Hl&s the status of SPESY;
(¢ = 1, ..., n) is the parameter of precursory phenomena, gpgdis the hidden node oX;. The arcs
between nodes represent the probabilistic dependeniorahtps. The probability of a node is only

dependent on its parent nodes.

Using the conditional independence assumption, that airpaters are independent given the

decisiony, Equation (3) is simplified as

P(Xly) =[] P(X:ly)-
=1

(4)

The corresponding model is called a naive Bayes model whosetgre is shown in Figure 3(a).
However, the conditional independence assumption in therigayes case is not true for the pre-
diction of SPEs. Therefore, the hidden nod&s ) combine the influences from all other parame-
ters that are created for each paramei&) (This improved model is called the hidden naive Bayes

method, and its structure is shown in Figure 3(b).

In the hidden naive Bayes model, the joint distributi®(X|y) is calculated as

n

P(X[y) =[] P(Xily, X)),
=1

(5)
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where
P(Xily, Xni) = Z Wij x P(Xily, X;) . (6)
J=1,j#1

As shown in Equation (6), the influences from all other par@nseare considered, and the
weightW;; is the importance of the paramejecompared to the parameter

Wilj _ IP(XZ7X7|y) ’ (7)

> Ip(Xis Xly)
j=T,j#i

where

P:Eiax‘y
Ip(Xi; Xjly) = > P(zi,z5,y)log - (@3, 7518)

_Plaialy) .
@) P(a;19) ®)

3.2 Ensemble Combination Rule

The maximum rule (Kittler et al. 1998) is used to combine thipats of these two base prediction
models

i (X) = max {Pe(y;1X)}, (9)

whereP, (y;|X) is the probability of the-th model for thej-th decision.
When the probabilities of SPE occurrence and nonoccur@moestimated, a decision threshold
can be formulated to provide a binary prediction (whetheeSRill or will not occur).

4 MODEL VALIDATION
4.1 Validation Measures

SPE prediction is considered to be a yes/no prediction irchvi§PEs do or do not occur. Four
possible outcomes of the prediction model are shown in Taelliffe & Stephenson 2003).

Table 1 Yes/No Prediction

Predicted Yes Predicted No

Observed Yes Hit Miss
Observed No False alarm Correct rejection

The numbers of observations in each category (Hit, Missd-alarm or Correct rejection) are
represented bWyig, Nmiss; Nra @and Ngg, respectively. The following four validation measures
(Jolliffe & Stephenson 2003) are used to estimate the pmdaces of the prediction model.

(1) Hitrate (simply H, which is also called the probabilitiydetection (POD))

Nhit
H=—"——. 10
Nhit + Nmiss ( )
(2) False alarm rate (simply F, which is also called the pbillig of false detection)
Npa
F=—rw. 11
Ncr + Nra D
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Fig.4 ROC curves for SPE prediction models.

(3) False alarm ratio (simply FAR)
Npa
FAR= ———. 12
Nra + Nuig (12)

(4) The Heidke Skill Score (simply HSS)

Nuit+Ncr  (Vhie +NFA) * (Nhit+Nmiss) +(Ncr+Nra ) * (NoR + Numiss )
N2

_ Ntotal total
HSS = 1— (Nhic+NFA)*(Ntheriss)er(Ncn,JrNFA)*(NCR+Nmiss) ! (13)
Ntotal
where
Ntotal = NFA + Nhit + NCR + Nmiss . (14)

4.2 Validation Results

The dataset is divided into 10 folds in which nine folds aredu® build the prediction model and the
remaining one fold is applied to test the model. This proégesspeated 10 times until all the data
are tested. A single set of binary predictions just showsg#réormance of a prediction model at a
single decision threshold. However, a complete evaludtiotihe performance of a prediction model
requires evaluating the performance over the full rangeoskible thresholds. Hence, the receiver
operating characteristic (ROC) curve (Fawcett 2004), tvis@ graph of the hit raté{-axis) against
the false alarm rateX(-axis) for different decision thresholds, is used to estintlae performance of
the prediction model.

The ROC curves for three different SPE prediction modelssa@vn in Figure 4. We find
that the performances of the prediction models based onrthEepies of solar flares or CMEs are
complementary, and the ensemble SPE prediction modelhwihges complementary information
of both solar flares and CMEs, obtains the best performaneetbe full range of thresholds. The
physical explanations for the results are as follows. Theestwo types of SPEs: impulsive and
gradual (Reames 1999; Park et al. 2010). Impulsive SPEssoeiated with solar flares and gradual
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Fig. 5 Performances of the ensemble SPE prediction model. (a)sspevformances of the ensem-
ble SPE prediction model traversing the threshold, and teergvertical line marks the optimal
threshold for HSS. (b) shows the ROC curve of the ensemblepB&dction model, and the green
horizontal and vertical lines mark the optimal hit rate aaldd alarm rate, respectively.

SPEs are associated with shocks from CMEs. Although sola@sflare correlated with CMEs, the
prediction model based on properties of solar flares (dakhedn Fig. 4) is more effective for
impulsive SPEs, and the prediction model based on propesfi€MEs (dotted line in Fig. 4) is
more effective for gradual SPEs. The ensemble predictiotainmombines the information of these
two prediction models, so it obtains good performance fdE $rediction.

Balch (2008) described the commonly used validation messfor the SPE prediction, and
completely evaluated the performance of SWPC's predictiodel. The SWPC's prediction model
of SPEs mainly depends on the properties of solar flares.eTaer 127 SPEs and 3656 control
events from 1986 to 2004 in the dataset. The performance ¢fS¥\prediction model is evaluated
by POD, FAR and HSS, which are functions of a probability dieci threshold. A similar figure
for the ensemble SPE prediction model is shown in Figure 5@)the POD curveNyi; + Niiss
is a constant andVy,;; is monotonic with the variation of the threshold, so thereasigzag in this
curve. For the HSS curve, the HSS measures the improveméin¢ girediction over the standard
prediction, and it is not monotonic with the variation of tineeshold. Furthermore, the maximum
rule is used to combine the outputs of these two base prediotbdels, and it is not a stable rule.
This means that the prediction model based on the propeftsslar flares works for some points
in the curve, but the prediction model based on the proedfieCMEs works for other points in
the curve. Hence, some zigzags appear in the HSS curve. thengSS as the optimal goal, we
notice that the optimal probability threshold is 23.47%g ahow the corresponding optimal values
in the ROC space (Fig. 5 (b)). At this optimal point, the oupaf the ensemble prediction model
are shown in Table 2.

The proposed ensemble prediction model contains the irdftiom of CMES, hence the selec-
tion of control events is different between the ensembldipti®n model and the SWPC prediction
model. Therefore, it is difficult to compare the performantéese two prediction models for the
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Table 2 Ensemble SPE Prediction Model at the Optimal Point

Predicted Yes Predicted No
Observed Yes 55 15
Observed No 55 564

different testing data. In any case, our conclusion is seffsistent. It means that the performance
of the ensemble prediction model is better than that of tleeliption model only depending on the
properties of solar flares.

5 CONCLUSIONS

Solar flares and CMEs are considered to be two important ppeiof SPEs. Hence two base
prediction models derived from the properties of solar #amed CMESs are built by HNB, which is
a probability-based calculation method from the field of hiae learning. The outputs of these two
base models are combined by the maximum rule to generatesaméie prediction model of SPEs.
The ensemble model provides a good way to fuse the informatiout solar flares and CMEs for
SPE prediction, and it obtains better performance than lkasé prediction model taken separately.

The present work focuses on whether solar eruptions willpce SPEs. In the future, peak flux
and rise times of SPEs should be estimated by regressionisnode
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