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Abstract The structural properties of asymmetrical nuclear matter have been calcu-
lated, employing theAV18 potential for different values of proton to neutron ratio.
These calculations have also been made for the case of symmetrical nuclear matter
with theUV14, AV14 andAV18 potentials. In our calculations, we used the lowest or-
der constrained variational method to compute the correlation function of the system.
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1 INTRODUCTION

The interpretation of many astrophysical phenomena depends on a profound understanding of differ-
ent areas of physics. Nuclear physics plays an important role in determining the energy and evolution
of stellar matter. Most of the calculations for asymmetrical nuclear matter have a close relationship
with astrophysics. These studies are also potentially useful for understanding the effective nucleon–
nucleon interactions in dense asymmetrical nuclear matter, an important ingredient in nuclear struc-
ture physics, heavy-ion collision physics, as well as compact star physics. Nuclear matter is defined
as a hypothetical system of nucleons interacting without Coulomb forces, with a fixed ratio of pro-
tons and neutrons, and can be supposed as an idealization of matter inside a large nucleus. The aim
of nuclear matter theory is to match known experimental bulkproperties, such as binding energy,
equilibrium density, symmetry energy and incompressibility, starting from fundamental two-body
interactions (Pandharipande & Wiringa 1979).

A good many-body theory for nuclear matter can be useful for studying the details of nucleon-
nucleon interactions. The observed phase shifts from scattering experiments, plus the properties
of the only bound two-nucleon system, the deuteron, are not enough to obtain a unique nucleon–
nucleon potential. Nuclear matter studies can help us better understand exactly how the properties of
the matter are affected by different elements of a potential, and what sort of features are required to
produce the observed saturation. Nuclear matter studies may also indicate whether a potential model
for nuclear forces is workable or not (Pandharipande & Wiringa 1979).

The starting point for a microscopic theory of finite nuclei is to solve the infinite matter problem.
A solution to the infinite matter problem would also be the first step in obtaining the equation of
state for dense matter, which is necessary in the study of neutron stars. At the end, it is simply a very
interesting many-body problem in its own right. Methods developed for it should be helpful in other
dense quantum fluids such as liquid helium (Pandharipande & Wiringa 1979).
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The starting point for any nuclear matter calculation is a two-body potential that models the
nucleon-nucleon interaction (Pandharipande & Wiringa 1979). The first nuclear matter calculations
were done by Euler (1937). Very little was known about the interaction of nucleons at that time
(Pandharipande & Wiringa 1979). At the same time the Yukawa potential was formulated as

V = γ
e−µr

r
, (1)

whereγ is a constant,µ is defined as ~

Mπc
= 1

µ
(c is the speed of light andMπ is the mass of theπ

meson) andr is the relative distance between the two nucleons (Cohen 1971; Wong 2007). Several
years later, Gammel et al. (1957) introduced a potential of the form

V = VC(r) + VT(r)S12 . (2)

In Equation (2),VC(r) is the central potential,VT(r) is the tensor potential and

S12 = 3(σ1 · r̂)(σ2 · r̂) − σ1 · σ2

is the usual tensor operator. Then the potential was allowedto depend at most linearly on the relative
momentump, and a spin-orbit term was added to it,

V = VC(r) + VT(r)S12 + Vls(r)L · S , (3)

whereL is the relative angular momentum andS is the total spin of the nucleon pair. This was the
form originally proposed by Eisenbud & Wigner (1941).

In 1962 the two most widely used potentials were introduced.Both abandoned the Wigner form.
The Hamada & Johnston (1962) model had the form,

V = VC(r) + VT(r)S12 + VLS(r)L · S + VLL(r)L12 , (4)

where
L12 = [δLJ + (σ1 · σ2)]L

2 − (L · S)2

and the Yale potential was defined as (Lassila et al. 1962),

V = VC(r) + VT(r)S12 + VLS(r)L · S + Vq(r)[(L · S)2 + L · S − L2] . (5)

In 1968 another potential was introduced by Reid (1968). This potential has a central term,
VC(r), for uncoupled states (singlet and triplet withL = J) and for coupled states (triplet with
L = J ± 1) has the form of Equation (3). In 1974, Bethe & Johnson (1974)(BJ) introduced a
potential that had the general form of the Reid potential. The BJ potential has a very hard core in the
(S, T ) = (0, 0), (1, 1) channels.

In general the above potentials are limited to a few operators and do not fit the data for all the
scattering channels very well. In many-body calculations of nuclei and nuclear matter, it is acceptable
to represent the two nucleon interaction as an operator (Lagaris & Pandharipande 1981)

Vij =
∑

p

V p(rij)O
p
ij , (6)

whereV p(rij) are functions of the interparticle distancerij , andO
p
ij are suitably chosen opera-

tors. The nucleon-nucleon (NN ) interaction scattering data uniquely show the occurrenceof terms
belonging to the eight operators (Lagaris & Pandharipande 1981)

O
p=1−8
ij = 1, σi · σj , τi · τj , (σi · σj)(τi · τj), Sij , Sij(τi · τj), (L · S)ij , (L · S)ij(τi · τj) (7)
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in the Vij . Many nuclear matter calculations have been done withV8 potential models (Lagaris
& Pandharipande 1981). This potential has two different models. One of them is Reid-V8

(Pandharipande & Wiringa 1979) and the other is the BJ-IIV8 (Pandharipande & Wiringa 1979)
model. There is also aV6 model. TheVi=7,8 terms are neglected in theV6 model. The HJV6 model
is obtained by neglecting theL · S and quadratic spin-orbit terms in the Hamada and Johnston po-
tential (Pandharipande & Wiringa 1979), while the GT-5200 potential (Pandharipande & Wiringa
1979) is itself aV6 form.

Another NN interaction model isV12. In this model, in addition to the eight operators of
Equation (7), there are four momentum-dependent terms

O
p=9−12
ij = L2, L2(σi · σj), L

2(τi · τj), L
2(σi · σj)(τi · τj) . (8)

The V12 potential, like theV6 model, has two different forms, which are Reid-V12 and BJ-IIV12

(Lagaris & Pandharipande 1981).
In 1981 a phenomenological two-nucleon interaction potential was introduced by Lagaris &

Pandharipande (1981). This potential was obtained by fitting the nucleon–nucleon phase shifts up to
425 MeV inS, P , D andF waves, and the deuteron properties. It has two additional terms other
than the operators in Eqs. (3) and (4) and is called theV14 or Urbana V14 (UV14) potential.

O
p=13,14
ij = (L · S)2, (L · S)2(τi · τj) . (9)

In theUV14 model, the two nucleon interaction is written as

Vij =
∑

p=1,14

(

V p
π (rij) + V

p
I (rij) + V

p
S (rij)

)

O
p
ij , (10)

whereV p
π (rij) is the well known one-pion-exchange interaction,V

p
I (rij) is an intermediate-range

interaction andV p
S (rij) is a purely phenomenological short-range interaction.

There is also another form of theV14 potential which was proposed by Wiringa et al. (1984). It
is called the ArgonneV14 (AV14) potential, and it has the general form of theUV14 potential. The
difference between theAV14 andUV14 models is in how the functionsV p

π (rij), V
p
I (rij) andV

p
S (rij)

are defined.
Traditionally,NN potentials are formed by fittingnp data for theT = 0 states and eithernp

or pp data for theT = 1 states. Unfortunately, potential models which have been fitted only to the
np data often do not give a good description of thepp data (Stoks & de Swart 1993), even after
applying the essential correlations for the Coulomb interaction. By the same token, the potentials fit
to thepp data in theT = 1 states simply give a mediocre description of thenp data. This problem
is largely due to charge-independence breaking in the strong interaction. In the present work we use
an updated version of the Argonne potential, theAV18 model (Wiringa et al. 1995), which fits both
thepp andnp data as well as the low-energynn scattering parameters and deuteron properties. This
potential is written in an operator format that depends on the values ofS, T andTZ of theNN pair.
TheAV18 potential includes a charge-independent part that has 14 operator components (as in the
AV14 model) and a charge-independent breaking part that has three charge-dependent operators and
one charge-asymmetric one. The four additional operators that break charge-independence are given
by

O
p=15−18
ij = Tij , (σi · σj)Tij , SijTij , (τzi + τzj) , (11)

where
Tij = 3τziτzj − τi.τj

is the tensor operator. In between the operators of Equation(11), the first three represent charge-
dependence, while the last one represents charge-asymmetry.
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In this paper, we use the lowest-order constrained variational (LOCV) method to calculate the
correlation function of the nuclear matter. Primarily, theLOCV technique was used to study the
bulk properties of quantal fluids (Owen et al. 1977; Modarres& Irvine 1979a). The method was
later extended to calculate the symmetry coefficient for thesemi-empirical mass formula (Howes
et al. 1978a, 1979; Modarres & Irvine 1979a,b), the properties of beta-stable matter (Modarres &
Irvine 1979a,b; Howes et al. 1978b), the surface energies ofquantal fluids (Howes et al. 1978b)
and the binding energies of finite nuclei (Bishop et al. 1978;Modarres 1984). The LOCV method
was further extended for finite temperature calculations and was very successfully applied to neu-
tron, nuclear and asymmetrical nuclear matter (Modarres 1993, 1995, 1997) in order to calculate the
different thermodynamic properties of these systems. Recently, LOCV calculations have been done
for symmetric nuclear matter with phenomenological two-nucleon interaction operators (Bordbar
& Modarres 1997) and asymmetrical nuclear matter with theAV18 potential (Bordbar & Modarres
1998). The incompressibility of hot asymmetrical nuclear matter has also been investigated within
an LOCV approach (Modarres & Bordbar 1998). Very recently, some nucleonic systems such as
the spin polarized neutron matter (Bordbar & Bigdeli 2007a), symmetric nuclear matter (Bordbar
& Bigdeli 2007b), asymmetrical nuclear matter (Bordbar & Bigdeli 2008a) and neutron star matter
(Bordbar & Bigdeli 2008a) at zero temperature have been studied using the LOCV method with a
realistic strong interaction in the absence of a magnetic field. The thermodynamic properties of the
spin polarized neutron matter (Bordbar & Bigdeli 2008b), symmetric nuclear matter (Bigdeli et al.
2009) and asymmetrical nuclear matter (Bigdeli et al. 2010)have also been studied at finite temper-
ature in the absence of a magnetic field. These calculations have been extended in the presence of a
magnetic field for the spin polarized neutron matter at zero temperature (Bordbar et al. 2011). The
LOCV method is a fully self-consistent formalism and does not bring any free parameters into the
calculation. It considers the normalization constraint tokeep the higher order terms as small as pos-
sible. The functional minimization procedure represents an enormous computational simplification
over unconstrained methods (i.e. to parameterize the short-range behavior of correlation functions)
that attempt to go beyond the lowest order (Bordbar & Modarres 1998).

In the present work, we intend to calculate the structure function of asymmetrical nuclear matter
using the LOCV method, employing theUV14, AV14 andAV18 potentials. The plan of this article
is as follows. The LOCV method is described in Section 2. Section 3 is devoted to a summary of
the pair distribution function and the structure function.Our results and discussion are presented in
Section 4, and finally, the summary and conclusions are presented in Section 5.

2 LOCV FORMALISM FOR ASYMMETRICAL NUCLEAR MATTER

We consider a trial many-body wave function of the form

Ψ = FΦ , (12)

whereΦ is a slater determinant of the plane waves ofA independent nucleons,F is anA-body
correlation operator which will be replaced by a Jastrow form, i.e.

F = S
∏

i>j

f(ij) , (13)

andS is a symmetrizing operator. The cluster expansion of the energy functional is written as

E([f ]) =
1

A

〈Ψ|H |Ψ〉

〈Ψ|Ψ〉
= E1 + E2 + E3 + · · · . (14)

The one-body termE1 for asymmetrical nuclear matter that consists ofZ protons andN neutrons is

E1 =
∑

i=1,2

3

5

~
2kF 2

i

2mi

ρi

ρ
. (15)
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Labels 1 and 2 are used instead of proton and neutron, respectively, andkF
i = (3π2ρi)

1

3 is the Fermi
momentum of particlei (ρ = ρ1 + ρ2).

The two-body energyE2 is

E2 =
1

2A

∑

ij

〈ij|V(12)|ij − ji〉 (16)

and

V(12) = −
~

2

2m

[

f(12), [∇2
12, f(12)]

]

+ f(12)V (12)f(12) . (17)

The two-body correlation operatorf(12) is defined as follows

f(ij) =

3
∑

α,p=1

f (p)
α (ij)O(p)

α (ij) . (18)

α = {J, L, S, T, Tz} and the operatorsOp
α(ij) are written as

Op=1−3
α = 1,

(

2

3
+

1

6
S12

)

,

(

1

3
−

1

6
S12

)

, (19)

whereS12 is the tensor operator. We choosep = 1 for uncoupled channels andp = 2, 3 for coupled
channels. The two-body nucleon-nucleon interactionV (12) has the following form

V (12) =

18
∑

p=1

V p(r12)O
p
12 , (20)

where the 18 operators that are defined as before are denoted by the labels c, σ, τ, στ, t,
tτ, ls, lsτ, l2, l2σ, l2τ, l2στ, ls2, ls2τ, T, σT, tT andτz (Wiringa et al. 1984). By using correlation
operators in the form of Equation (18) and the two-nucleon potential from Equation (20), we find
the following equation for the two-body energy (Bordbar & Modarres 1998)

E2 =
2

π4ρ

(

~
2

2m

)

∑

JLSTTz

(2J + 1)
1

2

[

1 − (−1)L+S+T
]

×

∣

∣

∣

∣

〈

1

2
τz1

1

2
τz2

∣

∣

∣

∣

TTz

〉
∣

∣

∣

∣

2 ∫

dr

{[

(

f (1)′

α

)2

a(1)2

α (kF r) +
2m

~

({

Vc − 3Vσ

+(Vτ − 3Vστ )(4T − 3) + (VT − 3VσT ) × [T (6T 2
z − 4)] + 2VτzTz

}

a(1)2

α (kF r)

+
[

Vl2 − 3Vl2σ(Vl2τ − 3Vl2στ )(4T − 3)
]

c(1)2

α (kF r)
)

]

+
∑

i=2,3

[

(

f (i)′

α

)2

a(i)2

α

+
2m

~2

({

Vc + Vσ + (−6i + 14)Vt − (i − 1)Vls + [Vτ + Vστ

+(−6i + 14)Vtτ − (i − 1)Vlsτ ](4T − 3) + [VT + VσT (−6i + 14)VtT ]

×[T (6T 2
z − 4)] + 2VτzTz

}

a(i)2

α (kF r) + [Vl2 + Vl2σ + (Vl2τ + Vl2στ )

×(4T − 3)]c(i)2

α (kF r) +
[

Vls2 + Vls2τ (4T − 3)
]

d(i)2

α (kF r)
)

f (i)2

α

]

+
2m

~2

{

Vls + 2Vl2 − 2Vl2σ − 3Vls2 +
[

(Vlsτ − 2Vl2τ − 2Vl2στ − 3Vls2τ )

×(4T − 3)
]

b2
α(kF r)f (2)

α f (3)
α +

1

r2

(

f (2)
α − f (3)

α

)2

b2
α(kF r)

}}

, (21)
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where the coefficients such asa
(1)
α (x) are defined as

a(1)2

α (x) = x2IL,Tz
(x),

a(2)2

α (x) = x2[βIJ−1,Tz
(x) + γIJ+1,Tz

(x)],

a(3)2

α (x) = x2[γIJ−1,Tz
(x) + βIJ+1,Tz

(x)],

b2
α(x) = x2[β23IJ−1,Tz

(x) − β23IJ+1,Tz
(x)],

c(1)2

α (x) = x2ν1IL,Tz
(x) , (22)

c(2)2

α (x) = x2[η2IJ−1,Tz
(x) + ν2IJ+1,Tz

(x)],

c(3)2

α (x) = x2[η3IJ−1,Tz
(x) + ν3IJ+1,Tz

(x)],

d(2)2

α (x) = x2[ξ2IJ−1,Tz
(x) + λ2IJ+1,Tz

(x)] ,

d(3)2

α (x) = x2[ξ3IJ−1,Tz
(x) + λ3IJ+1,Tz

(x)] ,

with

β1 = 1, β =
J + 1

2J + 1
, γ =

J

2J + 1
, β23 =

2J(J + 1)

2J + 1
,

ν1 = L(L + 1) , ν2 =
J2(J + 1)

2J + 1
, ν3 =

J3 + 2J2 + 3J + 2

2J + 1
,

η2 =
J(J2 + 2J + 1)

2J + 1
, η3 =

J(J2 + J + 2)

2J + 1
, (23)

ξ3 =
J3 + 2J2 + 2J + 1

2J + 1
, ξ3 =

J(J2 + J + 4)

2J + 1
,

λ2 =
J(J2 + J + 1)

2J + 1
, λ3 =

J3 + 2J2 + 5J + 4

2J + 1

and

IJ,TZ
(x) =

∫

dqPTZ
(q)J2

J (xq) . (24)

PTZ
(q) is written as [τ1Z or τ2Z = − 1

2 (neutron) and+ 1
2 (proton)],

PTZ
=

2

3
π

[

kF 3

τZ1 + kF 3

τZ2 −
3

2

(

kF 2

τZ1 + kF 2

τZ2

)

q −
3

16

(

kF 2

τZ1 − kF 2

τZ2

)2

+ q3

]

, (25)

for 1
2

∣

∣

∣
kF

τZ1
− kF

τZ2

∣

∣

∣
< q < 1

2

∣

∣

∣
kF

τZ1
+ kF

τZ2

∣

∣

∣
,

PTZ
(q) =

4

3
π min

(

kF 3

τZ1, k
F 3

τZ2

)

,

for q < 1
2

∣

∣

∣
kF

τZ1 − kF
τZ2

∣

∣

∣
and

PTZ
(q) = 0,

for q > 1
2

∣

∣

∣
kF

τZ1 + kF
τZ2

∣

∣

∣
. TheJJ(x) are the familiar Bessel functions.

Now we can minimize the two-body energy, Equation (21), withrespect to the variations in
the functionsf i

α but subject to the normalization constraint (Owen et al. 1977; Modarres & Irvine
1979a,b; Bordbar & Modarres 1998)

1

A

∑

ij

〈

ij
∣

∣

∣
h2

TZ
(12) − f2(12)

∣

∣

∣
ij

〉

a
= 0 , (26)



Calculation of the Structural Properties of Asymmetrical Nuclear Matter 351

where in the case of asymmetrical nuclear matter the function hTZ
(x) is defined as

hTz
(r) =

[

1 −
9

2

(

J1(k
F
i r)

kF
i r

)2]−
1

2

, Tz = ±1 , (27)

hTz
(r) = 1 , Tz = 0 .

In terms of channel correlation functions we can write Equation (26) as follows

4

π4ρ

∑

α,i

(2J + 1)
1

2

[

1 − (−1)L+S+T
]

∣

∣

∣

∣

〈

1

2
τz1

1

2
τz2

∣

∣

∣

∣

TTz

〉∣

∣

∣

∣

2

×

∫

∞

0

dr
[

h2
Tz

(kF r) − f (i)2

α (r)
]

a(i)2

α (kF r) = 0 . (28)

As we will see later, the above constraint introduces a Lagrange multiplierλ through which all of the
correlation functions are coupled. From the minimization of the two-body cluster energy we get a
set of coupled and uncoupled Euler-Lagrange differential equations. The Euler-Lagrange equations
for uncoupled states are

g(1)′′

α −

{

a
(1)′′

α

a
(1)
α

+
m

~2

[

Vc − 3Vσ + (Vτ − 3Vστ )(4T − 3)

+ (VT − 3VσT )[T (6T 2
z − 4)] + 2VτzTz + λ

]

+
m

~2

[

Vl2 − 3Vl2σ

+ (Vl2τ − 3Vl2στ )(4T − 3)
] c

(1)2

α

a
(1)2
α

}

g(1)
α = 0, (29)

while the coupled equations are written as

g(2)′′

α −

{

a
(2)′′

α

a
(2)
α

+
m

~2

[

Vc + Vσ + 2Vt − Vls + (Vτ + Vστ + 2Vtτ

− Vlsτ )(4T − 3) + (VT + VσT + 2VtT )[T (6T 2
z − 4)] + 2VτzTz + λ

]

+
m

~2

[

Vl2 + Vl2σ + (Vl2τ + Vl2στ )(4T − 3)
] c

(2)2

α

a
(2)2
α

+
m

~2

[

Vls2 + Vls2τ

× (4T − 3)
]d

(2)2

α

a
(2)2
α

+
b2
α

r2a
(2)2
α

}

g(2)
α +

{

1

r2
−

m

2~2

[

Vls − 2Vl2 − 2Vl2σ

− 3Vls2 + (Vlsτ − 2Vl2τ − 2Vl2στ − 3Vls2τ )(4T − 3)
]

}

×
b2
α

a
(2)
α a

(3)
α

g(3)
α = 0 , (30)
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g(3)′′

α −

{

a
(3)′′

α

a
(3)
α

+
m

~2

[

Vc + Vσ − 4Vt − 2Vls + (Vτ + Vστ − 4Vtτ

− 2Vlsτ )(4T − 3) + (VT + VσT − 4VtT )[T (6T 2
z − 4)] + 2VτzTz + λ

]

+
m

~2

[

Vl2 + Vl2σ + (Vl2τ + Vl2στ )(4T − 3)
] c

(3)2

α

a
(3)2
α

+
m

~2

[

Vls2 + Vls2τ

× (4T − 3)
]d

(3)2

α

a
(3)2
α

+
b2
α

r2a
(2)2
α

}

g(3)
α +

{

1

r2
−

m

2~2

[

Vls − 2Vl2 − 2Vl2σ

− 3Vls2 + (Vlsτ − 2Vl2τ − 2Vl2στ − 3Vls2τ )(4T − 3)
]

}

×
b2
α

a
(2)
α a

(3)
α

g(2)
α = 0 , (31)

where
g(i)

α (kF r) = f (i)
α (r)a(i)

α (kF r) . (32)

The primes in the above equation mean differentiation with respect tor. As we pointed out before,
the Lagrange multiplierλ is associated with the normalization constraint, Eq. (28).The constraint is
incorporated by solving the Euler-Lagrange equations onlyout to certain distances, until the logarith-
mic derivative of the correlation functions matches those of hTZ

(r) and then we set the correlation
functions equal tohTZ

(r) (beyond these state-dependent healing distances) (Bordbar & Modarres
1998). Finally, by numerically solving the above differential equations (Eqs. (29), (30) and (31)), we
obtain the correlation functions.

3 STRUCTURE FUNCTION

There are two types of structure functions: dynamicS(k, w) and staticS(k). They measure the
response of the system to density fluctuations (Feenberg 1969).

The static structure function of a system consisting ofA particles is defined as (Feenberg 1969)

S(k) = 1 +
1

A

∫

d3r1d
3r2e

ik·r12ρ1(r1)ρ1(r2)[g(r1, r2) − 1] , (33)

whereρ1(r) is the one-particle density andg(r1, r2) is the pair distribution function. In infinite
systems,ρ1(r) is constant (= ρ) andg is a function of the interparticle distancer12 = |r1 − r2|,
therefore Equation (33) takes the following form,

S(k) = 1 + ρ

∫

eik·r12 [g(r12) − 1]d3r12 . (34)

For calculating the pair distribution function, we use the lowest order term in the cluster expansion
of g(r12) as follows (Clark 1979),

g(r12) = f2(r12)gF (r12) , (35)

wheref(r12) is the two-body correlation function andgF (r12) is the two-body radial distribution
function of the noninteracting Fermi-gas,

gF (r12) = 1 −
1

ν
l2(kF r12) . (36)

In the above equation,ν is the degeneracy factor, andl(x) = 3x−3(sin x − x cosx) is the statistical
correlation function or the Slater factor.
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4 RESULTS AND DISCUSSION

4.1 Correlation Function

In Figure 1, we plotted our results for the correlation function of symmetrical nuclear matter
versus internucleon distance (r12 = r) employingUV14, AV14 and AV18 potentials at density
ρ = 0.16 fm−3. Here the correlation functions are calculated from the average over all states. We
can see that the correlation function is zero at the internucleon distancer < 0.06 fm for the three
potentials. This distance represents the famous hard core of the nucleon-nucleon potential. When
the internucleon distance increases, the correlation alsoincreases until it approaches unity, approx-
imately atr > 3.8 fm. This means that atr greater than the above value, the nucleons are out of
the range of the nuclear force (correlation length). The correlation value for theAV18 potential has a
maximum greater than unity and then approaches unity. However, for theUV14 andAV14 potentials,
there is no such maximum.

In Figure 2, we plotted the correlation function of asymmetrical nuclear matter employing the
AV18 potential for different values of proton to neutron ratio (pnrat =0.2, 0.6, 1.0) at different isospin
channels (nn, np, pp). From this figure, it can be seen that for all values of pnrat,the correlation
functions of thenn andpp channels have maximums greater than unity, whereas at thenp channel
there is no such maximum. This means that at thepp andnn channels, the nucleon-nucleon potential
is more attractive than at thenp channel.

We can see that at thenn andpp channels, the maximum values of the correlation function
decrease with increasing pnrat. We also found that at thepp andnp channels, the correlation length
decreases as pnrat increases, while at thenn channel, with increasing pnrat, the correlation length
increases. In addition, for each pnrat, the value of the correlation length at thepp channel is greater
than that of thenp channel, and the correlation length at thenn channel has a greater value than the
pp channel. These have been clarified in Table 1, in which the values of the correlation length for
different values of pnrat at different isospin channels have been presented.

Table 1 Correlation Length of Asymmetrical Nuclear Matter

pnrat Correlation Length(fm)
nn np pp

0.2 2.95 2.09 2.18
0.6 3.36 1.97 2.11
1.0 3.39 1.94 2.06

4.2 Pair Distribution Function

We know that the pair distribution function,g(r), represents the probability of finding two particles
at the relative distance ofr. In Figure 3, we plotted our results for the pair distribution function
of symmetrical nuclear matter versus internucleon distance withUV14, AV14 andAV18 potentials at
densityρ = 0.16 fm−3. Our results are in good agreement with those of other calculations employing
the Reid potential (Modarres 1987).

Figure 3 shows that forr in the range1.1 to 3.4 fm, the pair distribution function corresponding
to theAV18 potential is greater than those of theUV14 and AV14 potentials. This is due to the
behavior of two-body correlation as mentioned in the above discussions. In the Fermi gas model,
due to the absence of interaction between nucleons, the pairdistribution function is not zero even in
the small internucleon distances shown in Figure 3. However, in the real system, in which there is
interaction between nucleons, the value ofg(r) atr < 0.06 fm is zero for the three potentials. This is
the same as for the case of the correlation function, and thisdistance represents the hard core of the
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Fig. 1 Correlation function of symmetrical nuclear matter employing UV14, AV14 andAV18 poten-
tials. The correlation functions have been calculated fromthe average over all states.
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−3 and different values of pnrat at different isospin channels(nn, pp andnp).
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Fig. 4 Same as Fig. 2, but for the pair distribution function of asymmetrical nuclear matter.
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nuclear potential. From Figure 3, it can be seen that the value of g(r) increases as the internucleon
distance increases and finally approaches unity at approximatelyr > 4 fm.

In Figure 4, we plotted the pair distribution function of asymmetrical nuclear matter employing
the AV18 potential at different values of proton to neutron ratio (pnrat) for ρ = 0.16 fm−3 and
different isospin channels (nn, np, pp). We can see that at all channels, by increasing pnrat, the
pair distribution function decreases, corresponding to a decrease in the correlation. Besides, from
Figure 4 it can be seen that for each pnrat, the pair distribution functions of thenn andpp channels
have identical behaviors, while at thenp channel,g(r) behaves differently compared to the other
two channels. These are corresponding to the behavior of thecorrelation function at these channels.

4.3 Structure Function

In Figure 5, we plotted our results for the structure function of symmetrical nuclear matter versus
relative momentum (k) with UV14, AV14 andAV18 potentials at densityρ = 0.16 fm−3. There
is an overall agreement between our results and those of others calculated with the Reid potential
(Modarres 1987). From Figure 5, it is seen that the nucleon–nucleon interaction leads to a reduction
of the structure function of nuclear matter with respect to that of the non-interacting Fermi gas
system.

In Figure 6, we plotted the structure function of asymmetrical nuclear matter with theAV18

potential at different isospin channels (nn, np, pp) for different values of proton to neutron ratio
(pnrat) andρ = 0.16 fm−3. It is seen that, in a similar way to the pair distribution function, the
structure function of thenn channel is like that of thepp channel, especially at higher values of
k. We found that this similarity becomes clearer as pnrat increases. However, there is a substantial
difference between the structure functions of thenp channel and thepp andnn channels.
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Fig. 6 Same as Fig. 2, but for the structure function of asymmetrical nuclear matter.

5 SUMMARY AND CONCLUSIONS

Using the LOCV method, we computed the correlation function, pair distribution function and the
structure function of the symmetrical and asymmetrical nuclear matter. In order to investigate the
effect of nucleon-nucleon interaction on the properties ofnuclear matter, we also computed the pair
distribution function and structure function of noninteracting Fermi gas. Here, we used theAV18

potential to represent the nucleon-nucleon interaction for the asymmetrical nuclear matter. These
calculations were performed at different isospin channels. In the case of symmetrical nuclear matter,
the calculations were done withUV14, AV14 andAV18 potentials. There is an overall agreement
between our results and those of others calculated with the Reid potential. It was seen that the
nucleon–nucleon interaction leads to the reduction of the structure function of nuclear matter with
respect to that of the non-interacting Fermi gas system. We found that at thenp andpp channels, the
correlation length decreases as the proton to neutron ratio(pnrat) increases, while at thenn channel,
by increasing pnrat, the correlation length increases. However, the behavior of the pair distribution
function at thenp channel is considerably different from the other two channels. This is due to the
difference between the behavior of the correlation functions of these channels. It was indicated that
for higherk and pnrat, the structure functions of thenn andpp channels are identical, corresponding
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to the similarity between the pair distribution functions of these channels. We have also shown that
the structure function at thenp channel was different from those of thenn andpp channels.
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