
Research in Astron. Astrophys.2012Vol. 12No. 2, 127–146
http://www.raa-journal.org http://www.iop.org/journals/raa

Research in
Astronomy and
Astrophysics

On the origin of X-shaped radio galaxies

Gopal-Krishna1 , Peter L. Biermann2,3,4,5,6, LászlóÁ. Gergely7,8 and Paul J. Wiita9
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Abstract After a brief, critical review of the leading explanations proposed for
the small but important subset of radio galaxies showing an X-shaped morphology
(XRGs) we propose a generalized model, based on the jet-shell interaction and spin-
flip hypotheses. The most popular scenarios for this intriguing phenomenon invoke
either hydrodynamical backflows and over-pressured cocoons or rapid jet reorienta-
tions, presumably from the spin-flips of central engines following the mergers of pairs
of galaxies, each of which contains a supermassive black hole. We confront these
models with a number of key observations, and thus argue thatnone of the models is
capable of explaining the entire range of the salient observational properties of XRGs,
although some of the arguments raised in the literature against the spin-flip scenario
are probably not tenable. We then propose a new scenario which also involves galac-
tic mergers but would allow the spin of the central engine to maintain its direction.
Motivated by detailed multi-band observations of the nearest radio galaxy, Centaurus
A, this new model emphasizes the role of the interactions between the jets and the
shells of stars and gas that form and rotate around the mergedgalaxy and can cause
temporary deflections of the jets, occasionally giving riseto an X-shaped radio struc-
ture. Although each model is likely to be relevant to a subsetof XRGs, the bulk of the
evidence indicates that most of them are best explained by the jet-shell interaction or
spin-flip hypotheses.
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1 INTRODUCTION

The morphologies of powerful extragalactic radio sources on kiloparsec and larger scales can typ-
ically be related to a single pair of anti-parallel jets of relativistic plasma ejected from a “central
engine” located at the active nucleus of a massive early-type galaxy (e.g. Begelman et al. 1984).
In some rare cases an additional inner pair (or pairs) of radio lobes is observed, which is roughly
aligned with the outer, presumably older, lobe pair. These so called “double-double” radio galaxies
are believed to be examples of restarted nuclear activity (Lara et al. 1999; Schoenmakers et al. 2000;
Saripalli et al. 2002; Konar et al. 2006), in which the new jetpair broadly retains its alignment with
the older jets. In one scenario, the interruption in jet activity is attributed to the disruption of the
accretion disk due to the inspiral of a second supermassive black hole through the disk surrounding
the larger one (Liu et al. 2003).

In the last few years an even more striking morphological class of radio galaxies has drawn
increasing attention. These radio galaxies exhibit two pairs of radio lobes associated with a single
parent galaxy, such that their axes are grossly misaligned.Although the existence of such “winged”
or “X-shaped” radio galaxies (XRGs) has been known for the past few decades (e.g., Hogbom &
Carlsson 1974; Ekers et al. 1978; Leahy & Williams 1984; Leahy & Parma 1992), the recent upsurge
of interest in XRGs stems from the distinct possibility thattheir precursors were potential sites of
the intense gravitational radiation which is expected in a merger of the two supermassive black holes
(SMBHs) associated with a merged galaxy pair. Another simultaneous outcome expected from such
a merger is a sudden change in the spin axis of the SMBH, which can find manifestation in the
emergence of a new jet pair at an axis grossly misaligned fromthe axis of the jets prior to the merger,
producing the so called “spin-flip” model for XRGs (e.g., Rottmann 2001; Zier & Biermann 2001,
2002; Merritt & Ekers 2002; Biermann et al. 2002; Gergely & Biermann 2009, hereafter GB09). An
earlier explanation, specifically devised for the rare dumbbell galaxies (elliptical galaxies with two
nuclei, such as XRG NGC 326), posited a more gradual reorientation of the large-scale jets during a
close passage between two elliptical galaxies (Wirth et al.1982).

The explanation invoking an SMBH merger accords well with the extensively discussed model
of powerful double radio sources, which argues that jet formation is often triggered by a galaxy
merger, particularly the merger of a gas-rich galaxy with a large elliptical one (e.g. Begelman et al.
1984; Wilson & Colbert 1995; Wang & Biermann 1998). The possibility that inversion symmet-
ric radio galaxy morphologies were due to an SMBH binary in a single galactic nucleus was first
suggested by Begelman et al. (1980). Significant additionalsupport for this scenario comes from
the growing evidence in favor of the presence of binary blackhole systems within the nuclei of
active galaxies. One line of evidence comes from recent discoveries of double-peaked broad low-
ionization lines separated by> 2000 km s−1 (Komossa et al. 2008; Boroson & Lauer 2009; Shields
et al. 2009); however, it must be noted that these systems could just be superpositions of two active
galactic nuclei (AGNs) within the same cluster of galaxies (e.g. Dotti et al. 2009). X-ray imaging and
spectroscopy indicate that both of the optical nuclei (separated by a projected distance of∼1.3 kpc)
in the ultraluminous infrared galaxy NGC 6240 are active andthus house SMBHs (Komossa et al.
2003). It has been noted that the radio emission from NGC 1275is consistent with accelerating jet
precession and this could imply the presence of a binary SMBHsystem with a rapidly changing
orbital separation (Liu & Chen 2007). More interestingly, double-peaked low-ionization emission
lines in the nucleus of a galaxy hosting an XRG J1130+0058 have been reported (Zhang et al. 2007).
Very recently, the detection of a galaxy containing three active nuclei, SDSS J1027+1749, has been
reported (Liu et al. 2011); here the secondary emission linenuclei are offset by 2.4 and 3.0 kpc in
projected separation and by 450 and 111 km s−1 in velocity. Further evidence for binary SMBHs
comes from models of the periodic intensity variations of some blazars, notably OJ 287 (Sillanpaa
et al. 1988; Valtonen et al. 2008). The detection in radio galaxy (RG) 0402+379 of two compact
VLBI sources of variable radio emission, separated by only 7.3 pc, also presents a strong case for an
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SMBH merger in progress (Rodriguez et al. 2006). An earlier stage leading to an eventual merger
is very possibly exemplified by the highly disturbed radio morphology in the compact steep radio
spectrum quasar FIRST J164311.3+315618, which is in a binary system with a projected separation
of 15 kpc (Kunert-Bajraszewska & Janiuk 2011).

Notwithstanding the slow accumulation of observational evidence, the occurrence of SMBH
mergers has been firmly believed for a long time on the basis ofsimple theoretical arguments. For
instance, the Press-Schechter model (Press & Schechter 1974) is premised on an ongoing merger
process for galaxy formation and this yields a good approximation of the galaxy luminosity function.
When this model (or more sophisticated cosmological simulations) is coupled with the more recent
paradigm that a very large fraction of galaxies undergoes central activity emitting a compact radio
signature (e.g. Perez-Fournon & Biermann 1984; Nagar et al.2001; Nagar et al. 2005; Capetti et al.
2010) and that most galaxies harbor a central black hole (BH)(e.g. Kormendy & Richstone 1995;
Faber et al. 1997; Magorrian et al. 1998), the expectation isthat SMBH mergers are not uncommon.

XRGs are now known to constitute a significant fraction (up to10%) of the more powerful, edge-
brightened FR II (Fanaroff & Riley 1974) radio galaxies in the 3CRR catalog (see, Leahy & Williams
1984, hereafter LW84; Leahy & Parma 1992). Many new XRGs, or at least good XRG candidates,
have recently been found and characterized (e.g. Cheung 2007, hereafter C07; Cheung et al. 2009;
Saripalli & Subrahmanyan 2009, hereafter SS09), mostly using the FIRST radio survey (Becker et al.
1995). Usually, XRGs are found to have radio powers near the radio luminosity of the Fanaroff &
Riley (1974) division between FR I and FR II sources atP178MHz ≈ 2 × 1025 W Hz−1 sr−1 (Landt
et al. 2010 and references therein). Therefore, it is striking that not a single case is found where both
lobe pairs are of FR II type; usually only one (but sometimes neither) of the two lobe pairs shows
radio hot spots near the extremities of the lobes, while the other lobe pair lacks compact features
altogether and is normally distinctly less collimated (e.g., LW84; SS09). That pair is thus termed
“secondary lobes,” or “wings,” in contrast to the other lobepair, which is called “primary lobes.”

Several authors have argued that the wings arise due to a diversion of the backflow of syn-
chrotron plasma in the two primary lobes. The diversion could be preferentially into the cavities
left over by the lobes of a previously active phase (LW84), ordue to buoyancy pressure driven by a
steep pressure gradient in the ambient medium (e.g. Worrallet al. 1995; Kraft et al. 2005; Miller &
Brandt 2009; SS09; Hodges-Kluck et al. 2010b). Another variant to this buoyant backflow model is
the “over-pressured cocoon” model where a rapid build-up ofthe pressure within the radio cocoon
leads to a collimated supersonic outflow of the lobe’s synchrotron plasma as it squirts out along the
directions of the fastest declining ambient pressure (Capetti et al. 2002, hereafter C02).

In a less discussed variant of this class of models (Gopal-Krishna et al. 2003, hereafter GBW03),
the backflow gets diverted as it impinges, from opposite sides, onto an inclined “superdisk” of ther-
mal plasma around the host elliptical. The existence of suchsuperdisk structures, with a mean thick-
ness of≈30 kpc, around a number of FR II RGs has been inferred from the sharp strip-like emission
gaps seen between their radio lobe pairs (Gopal-Krishna & Wiita 2000a, 2009). There are a number
of physically reasonable models for the formation of the superdisks (e.g. Gopal-Krishna et al. 2007;
Gopal-Krishna & Wiita 2009). One model worth highlighting in the present context considers the
physics of the final stage of the spin-flip of merging BHs, which is marked by a rapid precession of
the BH axis, due to which the jets swing about rapidly (GB09).These swinging jets can produce a
narrowing cone-like wind through fast and massive entrainment of the surrounding gas, thus poten-
tially giving rise to a superdisk (GB09). If true, this picture could be useful in identifying the best
candidates for an imminent merger of SMBHs.

In Section 2 we contrast the different explanations proposed for the XRG phenomenon with
the current observational results. In Section 3 we propose anew additional mechanism enriching
the phenomenology of galaxy–galaxy interactions when one or both of the galaxies harbor a central
super-massive black hole:the jet–shell interaction modelfor XRGs. Section 4 summarizes our main
conclusions.



130 Gopal-Krishna et al.

2 XRG MODELS

In this section we briefly recapitulate the three main explanations, including some of their variants,
that have been proposed for the XRG phenomenon.

First, however, we summarize some of the key results concerning the orientations of radio emis-
sion axes and optical shells with respect to the optical shape of their host galaxies. For many years,
only rather small samples of RGs (∼ 100) could be used and, while there were claims of a correlation
between radio emission and the minor axes of the host elliptical galaxies (e.g. Palimaka et al. 1979),
no significant correlation was found in some other studies (e.g. Sansom et al. 1987).

An important result has come from the recent work of Battye & Browne (2009) who employed
a much larger sample of>14 000 galaxies obtained from matching the FIRST radio survey with the
SDSS optical catalog. They demonstrated that late type galaxies bear an expected strong correlation
between the optical major axis and the radio emission axis, presumably arising from the association
of the radio emission with star formation in their disks. On the other hand, for early type galaxies
they do find a significant correlation between the radio axis and the optical minor axis; however, this
correlation is dominated by the galaxies with lower ratios of radio to optical powers. For stronger
radio-loud ellipticals, with which we are concerned here, no significant correlation of the radio axis
with the optical axis was found (Battye & Browne 2009).

At the same time, as shown in C02, XRGs are only hosted by substantially elongated ellipticals
(ellipticity η >

∼ 0.2). In addition, C02 found that the principal radio axis defined by the two hot spots
of the primary lobe pair shows a distinct tendency to be closeto the optical major axis of the parent
elliptical. Perhaps an even tighter alignment exists between the host galaxy’s minor axis and the
secondary radio axis as defined by the pair of wings (C02). Both these trends have been confirmed
recently by SS09 and Hodges-Kluck et al. (2010a), hereafterH-K10a, using larger datasets. The
latter authors inferred the minor axis from the distribution of hot, X-ray emitting gas detected with
Chandra around the ellipticals in their sample. Hence for the XRG subset of stronger RGs, all studies
agree that the primary radio lobe pair is preferentially oriented toward the major optical axis of the
host elliptical (C02; SS09; H-K10a), though the samples on which this conclusion is based are still
comparatively small.

In certain cases a Z-symmetric morphology of the secondary lobes was observed (i.e. a lateral
offset between the ridge lines of the two secondary lobes; see GBW03). We later show how such
sources can provide a powerful discriminant between different XRG models.

Another more general, important result, but one we believe could be particularly relevant for
XRGs, concerns optical shells around elliptical galaxies.These optical shells, which probably arise
during the course of the merger of an elliptical with a disk galaxy (e.g. Quinn 1984), are preferen-
tially located along the major axes of post-merger ellipticals (e.g., Malin & Carter 1983; Sect. 3).

Important evidence in favor of mergers playing an importantrole in XRGs comes from a recent
study of 29 XRGs which were compared to a control sample of 36 RGs with “normal” morpholo-
gies but similar redshifts and optical luminosities (Mezcua et al. 2011). These authors found that the
members of the XRG sample have, on average, significantly more massive SMBHs, as would be ex-
pected if a merger engendered the change in jet direction in XRGs. In addition, more direct evidence
for the merger has recently come from the detection of shellsin two XRGs, 3C 403 (Ramos Almeida
et al. 2011) and 4C+00.58 (Hodges-Kluck et al. 2010b).

2.1 The “twin-AGN” Model for XRGs

This model is inspired by the existence of elliptical galaxies with double nuclei, e.g. NGC 326
(Battistini et al. 1980; Worrall et al. 1995). In this model the pair of twin radio lobes is considered
to be two independent radio doubles associated with a close pair of active SMBHs inside a merging
pair of massive ellipticals (Lal & Rao 2007). This model appears particularly appealing when the
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dynamical friction is insufficient, thereby stalling the approach of the two SMBHs. However, such
stalling is normally not expected (e.g. Zier 2007; GB09, andreferences therein), as also inferred
from extensive VLBI imaging observations (Burke-Spolaor 2011). In addition, this situation has a
very low probability, in that it requires both central engines to be simultaneously launching jets.

While this “twin AGN” picture has the advantage of conceptual simplicity, it fails to explain why
none of the XRGs has both lobe pairs of the FR II type. Nor does it explain the preference of the
primary lobe to be oriented towards the major axis of the optical host galaxy (C02; SS09; H-K10a).
Furthermore, it is particularly hard in this picture to understand the often observed Z-symmetric
morphology of the secondary lobes (GBW03). On all these grounds, it is evident that while this
model might account for a tiny fraction of XRGs, it is untenable for the bulk of the XRG population.

2.2 Backflow Diversion Models

In the backflow diversion model for the formation of a secondary lobe pair, (e.g. LW84, Worrall
et al. 1995; Kraft et al. 2005), the (denser) ISM of the host elliptical galaxy plays a key role by
exerting buoyancy pressure on the backflowing synchrotron plasma within the two primary lobes. As
a result, the synchrotron plasma is diverted away from the lobe axis, along the direction of the fastest
declining ISM pressure. In this way, the strong tendency forthe wings to align with the optical minor
axis of the host elliptical can be readily understood. Although appealing for its simplicity, as noted
by several authors (e.g. Dennett-Thorpe et al. 2002), this hydrodynamic backflow model is severely
challenged by the key observation that in several XRGs the wings are found to be distinctlymore
extendedthan the primary lobes, even though the latter are supposed to be advancing supersonically
with respect to the external medium (whose ram pressure causes a bright hot spot marking the leading
edge of the lobe), in contrast to the subsonically growing wings. Examples of such XRGs can be
found, e.g. in Leahy & Parma (1992); SS09 and Section 4.

To circumvent this problem, C02 proposed that the wings can form due to lateral expansion of
the over-pressured cocoon of the double radio source, alongthe steepest gradient in the ISM pressure
(i.e. roughly along the host galaxy’s minor axis, assuming that the galaxy has high ellipticity, making
its ISM asymmetric). The lateral expansion of the synchrotron plasma could well occur in the form
of a pair of loosely collimated supersonic flows of the synchrotron plasma out of the over-pressured
cocoon, via a “de Laval nozzle” formation (e.g. Blandford & Rees 19741). This mechanism for
the formation of secondary lobes can possibly allow them to grow even longer than the primary
lobes, as argued by C02 based on two-dimensional hydrodynamical simulations. As these simulated
“outflows” may be enhanced by the imposed cylindrical symmetry, the result needed to be verified
by the use of three-dimensional (3D) simulations. Very recently, such 3D simulations have been
performed and showed that under special circumstances suchoutflows with secondary lobes with
lengths comparable to those of the primary lobes could indeed occur (Hodges-Kluck & Reynolds
2011). Furthermore, given the appropriate viewing angle, such secondary lobes could appear to have
a larger projected length than the primary ones (Hodges-Kluck & Reynolds 2011; Wiita et al. 2011).

Secondly, in this scenario, a large misalignment between the primary and secondary lobe pairs (a
prerequisite for an XRG classification) would be realizableonly in those cases where the jets happen
to be ejected roughly along the optical major axis of the parent elliptical galaxy.This selection bias
could possibly force the backflow diversion model to be consistent with the observed tendency for
the primary lobes in XRGs to be aligned with the optical majoraxis of the host galaxy, for if the jets
emerged roughly along the host’s minor axis to begin with then any cocoon outflows would tend to
coincide with the original jet direction itself and the source would not be classified as an XRG at all.

The main morphological features of XRGs can be reproduced satisfactorily in this model.
Nonetheless, it is evident that such a scenario can only workprovided the jets are not very pow-

1 We note that this physical concept of a spherical explosion in a stratified atmosphere leading to a jet-like formation of
flow goes back to Kompaneets (1960) and was discussed in detail by Zeldovich & Raizer (1966).
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erful and therefore unable to exit quickly from the denser central region of the ISM, and possibly
also from the intra-cluster medium (according to H-K10a), before a substantial cocoon has devel-
oped. Indeed, numerical simulations of more powerful jets crossing interstellar/intergalactic medium
boundaries show only modest sideways flows from the backflowing plasma and thus only “stubby”
wings (e.g. Hooda & Wiita 1996, 1998). Still, the over-pressured cocoon model does explain why
radio wings do not form in general and, more specifically, whythey do not usually form in the
weaker, edge-dimmed, FR I sources: such RGs simply do not generate the backflow needed to form
over-pressured cocoons. Note that recently SS09 have highlighted cases of a few XRGs where even
the better collimated (primary) lobe pair appears to have the FR I morphology. They suggest that
these lobes probably also had an FR II past when their hotspots generated strong backflows. Such a
morphological transformation at later evolutionary stages has long been predicted from dynamical
considerations (e.g. Gopal-Krishna & Wiita 1988; 2000; Gopal-Krishna 1991; Falle 1991; Bicknell
1994, 1995; Kaiser & Alexander 1997; Nakamura et al. 2008).

The concept of an over-pressured cocoon finds some support from a recent study of the optical
spectra of 53 XRGs by Landt et al. (2010), who find that unusually hot plasma (T> 15 000 K)
commonly exists in the nuclear regions of XRGs. Still, it remains unclear if the over-pressure extends
all the way to their cocoons. The difficulty is further underscored by the case of XRG NGC 326 in
which the wings are not only a few times longer than the primary lobes, but the “foot” of the eastern
wing is located about 50 kpc from the nucleus, i.e. well outside the ISM of the galaxy (e.g. Murgia
et al. 2001; Worrall et al. 1995). This situation makes it hard to identify a mechanism to ensure
confinement of the hypothesized over-pressured cocoon.

Finally, we note that in support of the backflow origin of XRG wings (vis-à-vis the spin-flip
scenario described in Sect. 2.3), SS09 have highlighted a few cases where an inner pair of radio
lobes is seen fairly well aligned with the primary lobe pair,indicating that nuclear activity in these
sources has restarted practically along the same axis. In Section 2.3 we shall propose alternative
interpretations for this result.

2.3 Rapid Jet Reorientation Models

In this radically different scheme, the wings are envisioned to be a relic emission from the radio lobes
created during an earlier phase of nuclear activity when thejets were oriented in that direction. The
jet orientation then underwent a rapid change, possibly an abrupt “flip,” resulting in the currently fed
primary lobe pair. Models proposed for jet reorientation invoke either precession or other realigning
mechanisms (Ekers et al. 1978; Rees 1978; Klein et al. 1995; Dennett-Thorpe et al. 2002; Falceta-
Gonçalves et al. 2010; Hodges-Kluck et al. 2010b). A particularly detailed model argues that the
central SMBH is realigned with the binary orbital plane during a process that involves a strong
interaction between the binary and accretion disk that twists and warps the disk, which quickly
realigns the spin axis of the SMBH, ejecting the jets (Liu 2004). Alternatively, jet realignment can
be a more violent process involving the coalescence of the jetted SMBH with another SMBH in the
throes of a galaxy merger (Rottmann 2001; Zier & Biermann 2001; Merritt & Ekers 2002; Dennett-
Thorpe et al. 2002; GBW03). This latter mechanism is particularly interesting since it also results
in a copious emission of gravitational waves, which for the lower mass range of SMBHs lies in the
Laser Interferometer Space Antenna (LISA) frequency band.

In an earlier paper (GBW03) we argued how the spin-flip scenario can also readily account
for the Z-symmetry about the nucleus displayed by many of thewing-pairs. Pointing out the Z-
distortion, GBW03 showed how it can arise prior to the spin-flip as the jets propagated through
the ISM of the massive elliptical host. The outer portion of the ISM had already been set in slow
rotation by the captured galaxy (roughly along its originalorbital plane) as it spiraled into the radio-
loud elliptical, eventually culminating in the coalescence of their BHs (see also Noel-Storr et al.
2003; Heinz et al. 2008). Thus, at large distances from the galactic nucleus the two jets, having been
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slowed down, would be diverted by the rotating ISM in opposite directions. The deflected flows can
exist for extended periods and can arise at substantial distances from the source galaxy. Note that
a recent study of a Z-shaped FR I RG, NGC 3801, provides strongevidence for the presence of a
recent merger and a large fast rotating gas disk interactingwith the jets (Hota et al. 2009).

While the large misalignment between the two lobe pairs is statistically expected in the spin-flip
scenario, it might seem difficult to understand the observedstrong tendency for the primary lobes to
align with the optical major axis of the host elliptical (C02; SS09; H-K10a). However, if the wings
are forced into alignment with the optical minor axis due to the buoyancy pressure of the ISM of the
parent galaxy acting on the backflowing synchrotron plasma,the trend for the primary lobes to be
broadly aligned with the optical major axis (C02; SS09) could follow simply from the requirement
of a large spin-flip angle, or else the source would often end up being classified as a double-double
RG, as for example in the case of J1453+3309 (Konar et al. 2006).

Evidence consistent with significant spin-flips comes from RGs that appear to have restarted
and have inner and outer structures that are significantly misaligned. For example, 1448+63 shows
a nearly90◦ misalignment between its pc and kpc structures (Giovanniniet al. 2005), although
such differences can be exaggerated if the jet is relativistic and pointing close to the line-of-sight.
Less severe misalignments, but on much larger scales, and hence not likely to be affected by such
projection effects, are present in other sources. Examplesinclude the giant RG J0116− 473 (Saripalli
et al. 2002), J1453+3309 (Konar et al. 2006) and 3C 293 (Evans et al. 1999).

In several XRGs an inner compact pair of radio lobes is seen and is roughly aligned with the
primary lobe axis (see, SS09); this double–double morphology of the primary lobes can be eas-
ily reconciled with the spin-flip model and the usual expectation that double–double RGs involve
restarted jets (e.g. Lara et al. 1999). Note that in a few of the double-double XRGs, highlighted in
SS09, the outer lobes lack hot spots and these have been interpreted as the lobes which previously
had an FR II morphology (SS09). The possibility of large-scale jets/lobes transforming from FR II
to FR I at a later stage in their lives has also been noted in earlier studies (Gopal-Krishna & Wiita
1988; Gopal-Krishna 1991; Falle 1991; Bicknell 1994; Kaiser & Alexander 1997; Nakamura et al.
2008; Kawakatu et al. 2009).

A modified version of this scheme was proposed by Dennett-Thorpe et al. (2002), based on
their analysis of radio spectral variation across two XRGs,3C 223.1 and 3C 403. Although a careful
analysis of photometric and spectroscopic evidence led Dennett-Thorpe et al. (2002) to conclude that
there is no evidence in the galaxy or its environs for a recentmerger activity in either 3C 223.1 or 3C
403 (see also Landt et al. 2010, for a similar assertion abouta larger sample of XRGs), they point out
that the backflow models are not consistent with the relativesizes and spectra of the wings in these
sources. Hence Dennett-Thorpe et al. suggest that the required rapid change in the jet axis within
several Myr is either caused by a delayed SMBH merger following the ingestion of a small galaxy
by the radio galaxy, which left no obvious signature in the latter’s stellar population, or, alternatively,
the axis flip may have occurred due to accretion disk instabilities (e.g. Natarajan & Pringle 1998).

In summary, the basic difference between the spin-flip and backflow diversion models is that
in the latter case both the primary and secondary lobe pairs form and evolve quasi-simultaneously.
However, in the spin-flip scenario only the secondary lobe pair (presently appearing as the wings)
existed prior to the SMBH spin-flip episode, and the currently active primary lobe pair was created
after the spin-flip.

While discussing the three main approaches to model the XRG phenomenon, we have tried to
underscore the difficulties each of these mechanisms encounters when confronted with the available
range of observations. In Section 3 we shall consider a new scenario which appears to surmount the
problems inherent to the existing models. Later, in Section4 we shall contrast all four XRG models
in a condensed tabular presentation.
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3 A JET–SHELL INTERACTION MODEL FOR XRGS

While this proposed new mechanism for XRG formation assumesthat a galaxy merger has occurred,
it does not necessarily require a spin-flip of the central engine, in that the entire observed radio struc-
ture may have formed only after the merger is essentially complete. Originally mooted in GBW03,
this mechanism is premised on an interaction between the radio galaxy jets and stellar shells (e.g.
Gopal-Krishna & Chitre 1983) of the kind that are detected around∼ 10% of nearby early-type
galaxies located in low-density environments (Malin & Carter 1983; Pierfederici & Rampazzo 2004;
Sikkema et al. 2007). The shells are now also known to be fairly rich in gas (see below). Striking ex-
amples of jet–shell interactions on a kiloparsec scale havebeen noticed in the nearest RG, Centaurus
A; in particular, the abrupt flaring of the northern inner jetright at the point of its impact on a shell
(Gopal-Krishna & Saripalli 1984, hereafter GS84; Gopal-Krishna & Wiita 2010, hereafter GW10).
In these papers it was also suggested that the S-shaped symmetry of the pattern of radio peaks about
the galaxy is indicative of a general clockwise rotation of the shell complex. A similar scenario, in-
volving rotating shells is proposed here for XRGs and can explain the observed oppositely directed
geometry of the wings.

We have argued that such interactions in Cen A may be responsible for the production of many of
the detected ultra-high energy cosmic rays (Gopal-Krishnaet al. 2010). In several nearby ellipticals,
radial sequences of such shells straddling the galaxy have been detected (e.g., Malin & Carter 1980,
1983; Malin et al. 1983; Prieur 1988; Sikkema et al. 2007). Anelegant interpretation for these shells
in terms of a phase-wrapping formalism has been put forward,which invokes a merger of a disk
galaxy with a massive elliptical (Quinn 1984; Dupraz & Combes 1986; Hernquist & Quinn 1988).

Clear signatures of such a merger indeed exist in the case of Cen A (see Israel 1998, for a
review). Since substantial quantities of HI and molecular gas have since been detected in the Cen
A shells (Schiminovich et al. 1994; Charmandaris et al. 2000; Oosterloo & Morganti 2005), this
very close-by system provides a unique laboratory for studying the jet–shell interaction process.
There, at two locations, the northern radio jet is seen to be interrupted by a gaseous shell, and in
each of these encounters the jet is found to bend and flare-up towards the same (north-eastern) side,
giving rise to the two local radio peaks called the “northerninner lobe” and the “northern middle
lobe” (GW10; GS84). As argued in these papers, such repeatedinterruptions of the Cen A jets by the
rotating gaseous shells at different distances from the nucleus can explain the observed multi-peaked,
S-shaped morphology of its radio lobes.

Here we argue that such directly observed jet-shell interactions might hold vital clues for un-
derstanding the XRG phenomenon as well. Shells have also been detected in the XRGs 3C 403 and
4C +00.58 (Ramos Almeida et al. 2011; Hodges-Kluck et al. 2010b). Unfortunately, since power-
ful RGs are rare in the local universe, all XRGs are sufficiently far away that the vast majority of
shells that they may possess cannot be detected with currentinstrumentation. However, given the fre-
quency of their detection around nearby elliptical galaxies that host RGs (e.g. Sikkema et al. 2007),
it is most reasonable to investigate the hypothesis that they are present in many such host galaxies
and that suitably oriented jets will interact with them as a matter of course.

Since the relativistic plasma jets in XRGs are typically1−2 orders of magnitude more powerful
than their counterparts in Cen A, they are unlikely to be totally disrupted upon encountering the
shells. It is much more plausible that such encounters wouldslow down the jet and the lateral kick
imparted by the rotating shell would bend it sideways fairlyabruptly in a fashion somewhat similar
to the situation seen in Cen A, as mentioned above. It is important to note that gas and dust have
been detected in shells around several other nearby elliptical galaxies (e.g. Schiminovich et al. 1995;
Balcells et al. 2001; Sikkema et al. 2007), while some cool gas has been detected in a very large
number of radio-AGN hosts (e.g. Sadler & Gerhard 1985; Oosterloo et al. 2002), although this
cannot be resolved sufficiently to indicate that much of it isassociated with shells. Thus it is quite
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reasonable to expect that more distant elliptical galaxies, hosting more powerful radio jets, also
possess gaseous shells which cannot, however, be detected with current instrumentation.

An additional impetus for pursuing the jet–shell collisionscenario for XRGs comes from the
clear detection of a jet–cloud collision in the RG 3C 321 at a redshift ofz = 0.096 (fig. 1 of Evans
et al. 2008). It is seen that the western jet of this powerful RG, while being impacted by the ISM
of a northward-moving gas-rich galaxy, has undergone a sharp bend (by∼ 40◦). Both this deflected
jet plume, which lacks a terminal hot spot, and the collimated main jet which has, post-interruption,
resumed its original course and terminates in a radio/X-rayhot spot, are presently visible in this
source. Evans et al. estimated that the jet’s interruption by the moving galaxy lasted for< 2 × 106

yr. Thus, within the XRG terminology, the western half of this RG exhibits both an active (primary)
radio lobe and a relic secondary lobe (wing), closely resembling the XRG-type radio structure.

Several powerful radio-loud quasars have long been known toshow evidence for abrupt bends
on large scales, due to which they have been named “dog-leg” quasars, and interactions with dense
clouds or even nearby galaxies have been suggested to explain their morphology (Stocke et al. 1985).
We note that evidence for jet-cloud interactions on smallerscales is also available, for example the
cases of the nearby Seyfert I galaxy III Zw 2 (Brunthaler et al. 2005) and the broad absorption line
quasar QSO 1045+352 (Kunert-Bajraszewska et al. 2010).

In this context we stress that the key requirement of a large temporary deflection of a light
jet colliding with a massive cloud a few times wider, along with subsequent stable flow, has been
shown to be possible by multiple groups performing 3D numerical simulations using different well
tested hydrodynamic codes (de Gouveia Dal Pino 1999; Higgins et al. 1999; Wang et al. 2000).
Detailed simulations of light jets passing through many small clouds show significant deviations to
the jet flow, though not the large bends that can be achieved bystriking large clouds (Sutherland
& Bicknell 2007). 3D simulations of relativistic jets striking massive clouds also show structures
similar to those seen in 3C 321 forming under suitable circumstances (Choi et al. 2007) and lasting
for a significant amount of time. The remarkable observational finding in 3C 321, taken together
with the two clear incidences of jet/shell collisions observed in Cen A (see above), and the results of
the 3D simulations, suggest the following physically motivated scenario for the formation of XRGs.

Usually, multiple shells are prominently observed within abi-conical region centered at the
elliptical galaxy with its axis broadly aligned with the optical major axis of the elliptical (Malin
et al. 1983). This is a result that is consistent with computations of phase wrapping following a
merger (Quinn 1984). The existence of shells on opposite sides of the elliptical, forming a bi-conical
pattern broadly aligned with the elliptical’s major axis, is particularly conducive for the success
of an XRG formation scenario based on jet–shell interaction. Such “aligned” systems of shells are
preferentially found in elongated ellipticals (Prieur 1990 and references therein). Accordingly, only
the radio jets emerging along the optical major axis would suffer significant interruptions by the
shells. The resulting lateral impact on the jets, if adequate in strength and duration, would deflect
them, giving rise to a pair of radio wings typically extruding at a large angle from the jet’s original
direction, as observed in 3C 321 (see above).

This observationally inspired scenario is capable of explaining the two main trends established
for XRGs, namely, the strong tendency for their wings to be aligned with the optical minor axis
of the host elliptical and for the primary lobe axis to be roughly along the optical major axis (e.g.
C02; SS09; H-K10a). Simultaneously, this yields a simple explanation for the seemingly puzzling
result that the wings are often comparable to, or even largerthan, the primary lobes (Sect. 2.2),
which is an embarrassment for the backflow deflection model for XRGs (see below). As discussed
in Section 2.2, C02, in an attempt to address this formidableproblem, have suggested that the driv-
ing mechanism for the backflow diversion is the over-pressure of the radio cocoon, out of which
a loosely collimated outflow of the synchrotron plasma wouldensue along a direction dictated by
buoyancy forces. Conceivably, the wings forming in this manner can grow (along the optical minor
axis) as rapidly as the primary lobes (Sect. 2.2). However, as noted above, it is unclear if the ra-
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dio lobes are in fact over-pressured (e.g. H-K10a). Moreover, as noted by these authors, in the well
known XRG NGC 326, the ISM cannot be the “confining medium” required for the hypothesized
over-pressured cocoon, since the northern secondary lobe originates well outside the ISM, although
if there is confinement by hot gas associated with a group or cluster then this gas might provide
adequate confinement. We recall that in this XRG the secondary lobes are again a few times longer
than the primary lobes (Worrall et al. 1995; Murgia et al. 2001).

We wish to stress that, in this new model, if a post-merger RG has a jet orientation independent
of the optical axis, as seems to be the case for powerful sources (Battye & Browne 2009), then
only the random fraction of jets launched along the major axes are likely to encounter shells and
thereby possibly form XRGs through this mechanism. The majority of jets would not end up being
intercepted by the shells and would hence evolve as normal RGs, as is of course observed, since
XRGs are a small fraction of all RGs. If the preference for jets to roughly align with the optical minor
axis, as seen in weaker RGs, is at all relevant for XRGs, whosepowers tend to be near the borderline
between the FR I and FR II sources, then this preference for the minor axis would imply that the
fraction of sources actually aimed toward the major axes would be less than expected from purely
random jet/galaxy orientations. Still, we can speculate about a mechanism that would produce an
observed correlation between the jet direction and the galaxy’s optical major axis, at least as seen in
projection. If the incoming, smaller galaxy has no central SMBH, as appears to be the case with M33
and other dwarf galaxies (e.g. Ferrarese et al. 2006), then during the merger, the spin of the SMBH
in the primary galaxy would not be altered, nor would the jet direction be reoriented. Nonetheless,
if one averages over all possible directions, the random direction of a jet is expected to be within
30◦ of any plane. Of course as we can only see the entire configuration of the merged galaxies in
projection, it would therefore not be surprising if the jet hits a shell.

As noted in Biermann & Kronberg (1983) the extent of the outerfringes of the ISM in early
Hubble type galaxies can be quite large. However, the pressure in the ISM strongly decreases out-
wards and the pressure in the intra-group medium or even intra-cluster medium is very low. The
observed near-orthogonal deflection of the two jets in opposite directions, giving rise to the pair of
secondary lobes, should occur naturally in the jet–shell encounter model proposed here. Moreover,
in this model the size of the wings is not determined mainly bythe speed of the backflow within the
radio lobes (vis-à-vis the speed of the hot spots). Instead, it would be determined by the net duration
over which the jet remained interrupted by the shell(s), as compared to the phase(s) during which
the jet advanced uninterrupted by the shell(s).

In Figure 1 (a) striking realization of the scenario proposed here can be seen in the recent VLA
image of RG 3C433 (Miller & Brandt 2009: see also Holt et al. 2007; Tadhunter et al. 2000). From
the radio contours, the northern jet certainly appears to have recently resumed its advance after
successfully boring its way through a (hypothetical) shellwhich has caused a prolonged interruption
of the jet that has quite plausibly resulted in the radio wingextending to the east. Surviving evidence
for the interruption of the jet in the past is seen in the form of the compact radio peak (N3) precisely
at the point of the jet/shell interaction, which can be seen in this case thanks to the sub-arc second
resolution of the VLA map by Black et al. (1992). Such high quality maps are, unfortunately, not
available for most XRGs so the signatures of jet/shell interactions are usually less clear, as is the
case for nearby radio galaxies such as 3C 433 and Cen A.

Thus, this simple picture can readily allow for the possibility of secondary lobes (wings) being
more extended than even the primary lobes (GW10), as observed in several XRGs (e.g. 3C 223.1 and
3C 403, Dennett-Thorpe et al. 2002; NGC 326, Murgia et al. 2001; J1130+0058, Zhang et al. 2007;
4C+00.58, Hodges-Kluck et al. 2010b). At the same time, it isclear that even if jets’ interruptions by
the shells (disposed roughly along the optical major axis) are not strong enough to cause significant
diversion of their flow, the repeated stalling of the jets would retard their advance. This could well
be why giant radio sources are preferentially seen to align with the optical minor axis of the host
galaxy, as found by SS09, Palimaka et al. (1979) and Guthrie (1980). Lastly, the observed Z-shaped
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Fig. 1 Radio contours overlain on X-ray emission for the XRG 3C 433.Reprinted with permission
from Miller & Brandt (2009); copyright AAS.

morphology of the secondary lobe pair (GBW03) about the nucleus is clearly another natural out-
come of this scenario. We note that this assertion would holdeven if the Z-deflections of the two jets
occur at vastly different separations from the nucleus, as for instance seen in the XRG NGC 326 (see
above). This is because, in this scenario, the deflection points of the two jets are determined by the
radial locations of the two (partial) shells, on the opposite sides of the galaxy along its major axis,
which were successful in effectively interrupting and deflecting the respective jets.

The jet–shell interaction model proposed here for XRGs may also be invoked for understanding
other intriguing recent results about powerful RGs. It has been noted that the lobes of RGs display
more pronounced lateral distortions when the radio source axis is better aligned with the major axis
of the host elliptical (SS09). This can be readily understood since the interaction of the lobe plasma
with the shells that causes the lobes’ distortion would happen mostly when the lobes happen to lie
along the host’s major axis, i.e. where the shells preferentially form. Finally, the jet–shell collision
scenario for the formation of wings may even apply in the exceptionally rare case of XRG 4C+00.58,
where the jet appears aligned with the optical minor axis, provided a gradual jet reorientation via
accretion, as inferred by Hodges-Kluck et al. (2010b), is a valid description of the system. Bearing
in mind the vast potential of this scenario for explaining several intriguing morphological aspects
of double radio sources, we strongly encourage deep opticalsearches for the shells about the host
galaxies of XRGs, whose counterparts in several nearby ellipticals were already discovered three
decades ago (Malin & Carter 1980, 1983; Malin et al. 1983) andwhose relevance to the intriguing
RG morphologies was recognized soon thereafter (Gopal-Krishna & Chitre 1983; GS84). In this
context, it is encouraging that a rich system of shells has recently been discovered in the archetypal
XRG 3C403 (Ramos Almeida et al. 2011). Likewise, it is also important to establish the nature of
the environment around XRGs; in the jet-shell interaction picture they are expected to reside in a
comparatively low-density environment, like the shell galaxies. It may also be noted that even on
the parsec scale, jets seem to get repeatedly interrupted bygas clouds, as revealed by the extensive
VLBI observations of the nearby Seyfert I galaxy III Zw 2 (Brunthaler et al. 2005).
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4 SUMMARY AND MAIN CONCLUSIONS

In the foregoing sections we have endeavored to collate various available clues in order to arrive at an
improved understanding of the mechanism responsible for XRGs. Thus, we confronted the various
proposed models with the fairly large body of observations that are now available. Although rather
enigmatic, XRGs may not be rare objects when it is realized that XRG classification demands not
merely that the primary and secondary lobe axes have a large misalignment, but also that they are
oriented far from the line of sight. A condensed overview of the principal merits and shortcomings
of the various proposed models is presented in Table 1.

While an occasional XRG might arise from the superposition of two independent AGNs inside a
merging pair of ellipticals, this explanation does not accord with the bulk of the data. A simple buoy-
ancy aided back-flow diversion model (e.g. LW84) might be adequate to explain RGs with modest
“wings,” where the secondary lobes are short compared with the primary ones. The only way this
class of models could account for the not-infrequent occurrence of secondary lobes comparable to
or even larger than the primary lobes is for the backflow filledcocoon to become strongly over-
pressured, so that the relativistic plasma might rapidly squirt out and escape along the minor axis
of the host galaxy. If then, the primary jets happen to be fortuitously oriented along the host ellip-
tical’s major axis, the interesting correlation found by C02 can probably be understood. However,
the numerical simulations purporting to demonstrate that this is feasible were long restricted to
two-dimensions (C02), and this artificially induced symmetry is very likely to exaggerate the colli-
mation and strength of these outflows. However, very recent 3D simulations have demonstrated that
it is possible to obtain lengthy overpressured outflows if the host galaxy has a very high ellipticity
(Hodges-Kluck & Reynolds 2011; Hodges-Kluck et al. 2010b);if viewed at particularly favorable
orientations the secondary lobes can even appear to be longer than the primary ones in projection
(Hodges-Kluck & Reynolds 2011; Wiita et al. 2011).

In addition, the over-pressured cocoon model does not seem capable of explaining the impor-
tant Z-symmetric subset of XRGs. Moreover, convincing evidence for the requisite over-pressured
regions within the cocoons is still lacking. There is strongevidence that mergers are necessary for
triggering at least some AGNs, and several nearby AGNs, suchas Cen A, are prime examples of an
elliptical having recently swallowed a gas- and dust-rich neighbor. These mergers are also of great
interest for the generation of gravitational radiation andperhaps prompt electromagnetic signals.

The basic spin-flip model can also readily explain why at mostonly one pair of lobes is ever of
FR II type. In addition, a simple variant of this basic picture is able to produce the Z-shaped distortion
clearly witnessed in some of the XRGs, another important merit. Thus it seems likely that at least
some XRGs are indeed created in this manner. The spin-flip model also produces very interesting and
specific relations between gravitational radiation and electromagnetic wave signatures (e.g. GB09),
and their detection would be extremely important and would also provide proof of the relevance of
such mergers in AGNs. However, this physically well motivated spin-flip model offers no natural
explanation for the correlation of the primary lobe pair with the optical major axis of the parent
elliptical, and so probably cannot account, by itself, for the majority of XRGs.

Related to the spin-flip scenario, we show in Appendix A that the probability of any specific
mass ratioq is close to a flat distribution in∆q/q; thus mass ratios close to unity should be exceed-
ingly rare. We also address a number of observations which occur for semi-major mergers (defined
as having the most likely mass ratios, between 1:30 to 1:3, with 1/10 being typical). In Appendix
B, we compute the spin evolution of the radio-loud (primary)SMBH as well as the expected in-
tervals between successive semi-major BH mergers. We find that the spin reorientations during the
two phases (separated by the time when the declining orbitalmomentum of the infalling SMBH has
become comparable to the spin momentum of the main SMBH) are similar in magnitude, but the
rate of spin evolution is about104 times faster in the second phase, resulting in a duration as short
as∼ three years, while the precession timescale is less than a day. If the rapidly rotating jets are
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Table 1 Comparison of the Salient Aspects of the Main Models of XRGs

Twin AGN model: primary & secondary lobes (wings) arise independently

Description Two AGNs within a core of an elliptical, each ejecting a jet pair (probably an advanced
stage of ellipticals with a pair of nuclei identified, e.g. NGC 326).

Key merit/evidence Double-peaked broad emission lines (e.g. XRG J1130+0058)
Main caveat Chance superposition of two AGNs in the same cluster.
Does not explain ∗ Why both jet pairs are never seen to produce hot spots.

∗ Z-symmetric distortion of the secondary lobe pair (wings).
∗ Clear tendency of the primary lobe pair to align with the
optical major axis of the host elliptical galaxy.

Backflow diversion model: primary lobes & wings form simultaneously

Description Pair of wings (secondary lobe pair) arise from the diversion of the synchrotron plasma
back flowing from the hotspots in the primary lobe pair. The diversion is caused due to
the buoyancy pressure of the ISM of the host elliptical galaxy, along the steepest pressure
gradient, or due to the escape of the backflow into the cavities left by a past episode of the
radio-loud phase.

Key merit/evidence ∗ Explains why one of the two lobe pairs always lacks hotspots.
∗ Explains why the lobes lacking hotspots (or “wings”) tend tobe aligned with the optical
minor axis of the host elliptical galaxy.

Does not explain ∗ Secondary lobes (subsonically advancing) often being found to be distinctly longer
than (supersonic) primary lobes (e.g. in 3C 223.1, 3C 403, NGC 326, J1130+0058 and
4C+00.58).
Attempts to explain this “anomaly” by postulating burstingof over-pressured cocoons of
synchrotron plasma which formed inside the lobes that face difficulty in explaining the
huge secondary lobes seen to originate at extremely large distances (∼ 50 kpc) from the
galactic nucleus (e.g. NGC 326).
∗ SMBHs in XRGs being statistically more massive than in RGs.

Spin-flip model: wing formation ceases before the primary lobes begin to form

Description Jet direction flips due to re-alignment of the spin of the dominant SMBH, due to its merger
with another SMBH.

Key merit/evidence ∗ Explains why hotspots are never seen in both lobe pairs.
∗ Can explain secondary lobes being larger than primary lobes.
∗ Post spin-flip, jets can easily propagate straight outwards.
∗ Z-symmetry of the wings can be easily understood.
∗ The empirically inferred systematic excess of SMBH mass in XRGs (compared to those
in RGs) fits naturally into this picture.
∗ Can also explain the formation of superdisks.

Does not naturally explain ∗ The correlation of the radio lobe axis with the optical axis of the host elliptical.

Jet–shell interaction model: primary lobes & wings form intermittently

Description Jets start after a disk galaxy merges with the elliptical host of the RG, creating a sequence
of shells (usually disposed along the optical major axis of the elliptical). Wings form
during the jets’ interruption(s) by the shells.

Key merit/evidence ∗ The jet–shell interaction causing the jet’s decollimationand sideways deflection has
been witnessed in Cen A and also probably in 3C 321 and 3C 433.
∗ Explains why hotspots are never seen in both lobe pairs.
∗ Can explain the observed correlation between the radio lobeaxes and the host elliptical’s
axes.
∗ Can explain cases where the wings are much longer than the primary lobes.
∗ The observed greater distortion of the lobes in those RGs whose radio axis aligns with
the host’s optical major axis can be understood.
∗ The empirically inferred systematic excess of SMBH mass in XRGs (compared to RGs)
fits naturally with this model.
∗ Explains the Z-shape of the secondary lobes.

Main caveat So far, shells have been detected in very few XRG hosts.
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relativistic and if they came close to our line of sight, theycould produce significant variability at
all wavelengths (but are mostly detectable in radio, hard X-ray and gamma-ray) years before the
coalescence. Such systems would provide a detectable electromagnetic precursor of theimpending
strong gravitational wave emission.

A careful scrutiny of the mechanisms leading to XRGs shows that while each of them might
play a dominant role in different XRGs, the mechanisms involving galaxy mergers, which include
the spin-flip scenario, are likely to have the widest applicability, considering their greater overall
compatibility with the observations. More specifically, the various observational constraints in some
sources have led us to propose a jet-shell interaction modelfor XRGs. While this proposed new
alternative mechanism also involves a galaxy merger and assumes that each galaxy possesses an
SMBH, as does the spin-flip model, it does not require the galaxy to have been radio loud prior to
the merger. However, it may be noted that a spin-flip will typically have occurred in the course of
a merger, and the direction of the jets thus triggered will probably be along the axis defined by the
angular momentum of the accreted galaxy and therefore also be perpendicular to any central dust-
lane. The powerful interruptions of jets by moving massive clouds in the environments of the host
galaxy, as observed in some nearby RGs, such as Cen A and 3C 321, provide fairly persuasive evi-
dence in favor of the jet–shell interaction scenario being important in a substantial subset of XRGs.
Here, it is relevant to recall that the stellar shells (whichare probably also gaseous) in a bi-conical
pattern are preferentially disposed along the optical major axes of the post-merger galaxy. When
these features are combined with simulations that show substantial sideways flows from powerful
jets striking massive clouds, the wide range of morphological properties associated with XRGs can
be understood.
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Appendix A: THE EXPECTED MASS RATIO OF MERGING SMBHS AND THE
CONSEQUENCES

In GB09 the characteristic merger ratio was estimated to be between 3:1 and 30:1, with the value
of 10:1 being found typical. Here we give independent considerations supporting the statement that
both equal mass encounters and extreme mass ratio mergers, which qualify as a test particle falling
into a black hole, are rare.

Mergers between two black holes both drawn from a black hole mass distribution can be written
as integrals over a merger rateα(M1, M2) multiplied by the density at each of the massesM1

andM2. This approach uses the assumption that the highest densityregions of the universe are in
groups and clusters, where the density depends (actually does not depend) on redshift as(1 + z)0

(Cavaliere et al. 1991, 1992; Cavaliere & Menci 1997) up to some critical redshift. Silk & Takahashi
(1979) found an analytic asymptotic solution to the merger equation using a merger rate running
asM

ǫ/2
1 M

ǫ/2
2 . We can reproduce the data to a good approximation with a merger rate varying as

M
2/3
1 M

2/3
2 ; in fact this exponent,ǫ = 4/3, is the gravitational focusing limit in the analysis of
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Silk & Takahashi. This gives a low mass tail ofM−2 for the BH mass distribution, and a high mass
tail, which can be approximated byM−3, quite close to what the data show (Caramete & Biermann
2010). These two regimes are joined at a break massMb of about108 M⊙.

Including mergers between two black holes both below the bend, 60% of all mergers occur
within the mass ratio ranges 3:1 and 100:1. Ignoring mergersbetween two partner black holes both
below the break mass, we work out the frequency in various mass ratio ranges in more detail: for
the ratio rangesq = 1 to 3, 3 to 10, 10 to 30 and 30 to 100, the corresponding percentages are 3,
15, 61 and 21%. Therefore the most common mass ratio is 10 to 30with 61% of all mergers, and an
additional 36% of mergers occur in the two adjoining mass ranges. Therefore, the mass ratio range
from 3:1 and 100:1 covers 97% of all mergers.

Under specific initial conditions the linear momentum kick imparted to the merged SMBHs can
exceed several thousand km s−1, which is enough for the merged SMBH to escape from the host
elliptical (Bogdanovič et al. 2007). These large linear momenta can only be produced when the BH
mass ratio is nearly 1, and for restricted spin configurations (anti-aligned spins, lying in the orbital
plane). We will argue below that such initial conditions areunlikely.

First, as seen above, the probability of any specific mass ratio, q, is close to a flat distribution in
∆q/q; thus mass ratios close to unity should be exceedingly rare.

Secondly, any gas/circumbinary disk will act toward an alignment of the spins with the orbital
momentum, significantly reducing the kick velocity (Bogdanovič et al. 2007). This occurs through
the Bardeen-Petterson effect (Bardeen & Petterson 1975), which in turn is based on the Lense-
Thirring precession. The real situation is expected to fallbetween the two rare extremes, namely an
extremely “wet” merger (i.e. copious amounts of gas associated with it, leading to this pre-merger
realignment), and a completely “dry” merger with essentially no gas (hence allowing for random
spin orientations). Therefore it is expected that even the presence of some gas or a circumbinary disk
will disfavor the spin configuration, leading to a large recoil, but will still leave room for a significant
spin-flip.

Consequent to a “semi-major” merger, the SMBH spin could undergo a large directional “flip.”
The new spin axis would tend to get reoriented towards the orbital momentum axis of the in-spiraling
massive BH (and therefore the ISM rotation axis: see GB09). Such a geometry would ensure, firstly,
that the post-merger jets, ejected along the new spin axis, will encounter little lateral impact from
the rotating ISM and hence propagate essentially straight outward. Secondly, the old lobes would
gradually acquire the appearance of wings/relics which would be kept energized at a significant
level as the synchrotron plasma backflowing from the new hot spots would find a natural escape
sideways into these pre-existing low-pressure relic lobes(GBW03; LW84).

Following a semi-major merger (SMBH mass ratio> 1 : 30), the spin axis of the coalesced
SMBH pair is expected to settle down roughly along the direction of the original orbital angular
momentum of the secondary galaxy about the primary one (GB09). Then the same axis is likely
to be retained during any subsequent ejections of restartedjets. This is because the probability of
recurring semi-major mergers, each causing a large spin-flip, is quite small, in that the temporal
interval between them is> 1 Gyr for semi-major mergers with mass ratios> 1 : 30, and even
longer for major mergers (Z. Lippai, private communication, based on the merger tree program in
Lippai et al. 2009). Whereas, if jets are restarted while theearlier lobes are still visible, then it is
likely that they have done so within∼ 108 yr of the launch of the original jets, since visible radio
activity seldom lasts much longer than that (e.g. Blundell &Rawlings 1999; Gopal-Krishna & Wiita
2001; Barai & Wiita 2007; Kaiser & Best 2007).

In this way, the situations where the incipient inner lobe pair is essentially aligned with the
(outer) primary lobes, as shown for a few XRGs (SS09), can be explained naturally. An alternative
possibility for such an observed alignment is from a fortuitous projection of a real XRG onto the
plane of the sky in such a way that the shorter primary lobes appear embedded within the decaying
secondary lobes, thereby giving the appearance of a “double-double” source (Wiita et al. 2011).
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Appendix B: THE EXPECTED TIME EVOLUTION OF THE SMBH SPIN

In GB09 the following evolution of the inclination angle wasderived

α̇ ≈
32c3

5Gm
ε9/2ην−1

(

L

J

)2

sin (α + β) , (B.1)

with ε = Gm/c2r the post-Newtonian parameter (increasing during the inspiral with the decreasing
separationr; herem = m1 + m2 is the total mass),α andβ the angles spanned by the orbital
angular momentum and the spin with the total angular momentum (with their sumα + β being
constant during the inspiral),ν = m2/m1 ≤ 1 is the mass ratio,η = m1m2/m2 = ν (1 + ν)

−2
=

µ/m , the symmetric mass ratio andJ the magnitude of the total angular momentum. For mutually
perpendicular spin and orbital angular momentumJ2 = L2 + S2

1 . For circular orbits and to leading
order,S1/L = ε1/2ν−1χ1 holds (whereχ1 ∈ [0, 1] is the dimensionless spin), and we now obtain
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thus the evolution of the inclination angle is described by

α̇ ≈ Cν−1ε9/2
(

1 + εν−2χ2
1

)−1
, (B.3)

with the constant coefficient given as

C =
32c3

5Gm
η sin (α + β) . (B.4)

We note thatα̇ as a function ofε is monotonically increasing, thus the spin-flip rate increases with
increasing post-Newtonian parameter (with decreasing radius).

In order to findδα during any part of the inspiral we have to integrate

δα =

∫

α̇ (r) dt =

∫

α̇ (r)

ṙgw

dr , (B.5)

where byṙgw we mean the rate of the inspiral. As for a Keplerian circular orbit L2 = Gmµ2r,

thereforeṙgw = 2
(

Gmµ2
)−1

LL̇gw. Employing

L̇gw = −
32Gµ2

5r

(

Gm

c2r

)5/2

, (B.6)

which holds in the radial orbit on average (Apostolatos et al. 1994), we get

ṙgw = −
64η

5
cε3 , (B.7)

thus

δα ≈
5C

64ηνc

∫

ε−1/2

1 + εν−2χ2
1

dε . (B.8)

For mass ratios aboutν ≈ 0.1 the inspiral begins at aboutε∗ ≈ 10−3 (GB09), then proceeds through
theL ≫ S1 phase untilL ≈ S1 is reached (whenε ≈ ν2), then continues through the phaseL ≪ S1

until εfin =
(

Gm/c2rms

)

, whererms is the marginally stable orbit. For high spin (χ1 ∼ 1) we have
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rms ∼ 2Gm/c2 thusεfin ∼ 0.5. Let us estimate the ratio of the changes in the inclination angle (the
ratio of spin-flips) during these two phases. We obtain

δαI

δαII

=

∫ 10−2

10−3

ε−1/2

1+100εdε
∫ 0.5

10−2

ε−1/2

1+100εdε
= 0.74 . (B.9)

Therefore, the respective spin-flips are comparable.
Now let us see how long the phases last. For this we evaluate ina similar way

δt =

∫ t2

t1

dt =

∫ r2

r1

∣

∣

∣

∣

dr

ṙgw

∣

∣

∣

∣

= −
5Gm

64ηc3

∫ ε2

ε1

ε−5dε =
5Gm

256ηc3
ε−4

∣

∣

ε2

ε1

, (B.10)

to see that the timescale varies linearly with the total mass. So then we have

δtI
δtII

=

∫ 10−2

10−3 ε−5dε
∫ 0.5

10−2 ε−5dε
≈ 9999 . (B.11)

We conclude that the second part of the spin-flip occurs approximately104 times faster than
the first part. Due to the increased post-Newtonian parameter and increased rate of change of the
inclination angle, a considerable and certainly observable part of the spin-flip will occur during the
last stages of the inspiral. An estimate for this was given inGB09 as three years.
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