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Abstract The existence of outflow and magnetic fields in the inner region of hot
accretion flows has been confirmed by observations and numerical magnetohydro-
dynamic (MHD) simulations. We present self-similar solutions for radiatively inef-
ficient accretion flows (RIAFs) around black holes in the presence of outflow and
a global magnetic field. The influence of outflow is taken into account by adopt-
ing a radius that depends on mass accretion rate Ṁ = Ṁ0(r/r0)s with s > 0.
We also consider convection through a mixing length formula to calculate convec-
tion parameter αcon. Moreover we consider the additional magnetic field parameters
βr,ϕ,z

[
= c2

r,ϕ,z/(2c2
s )

]
, where c2

r,ϕ,z are the Alfvén sound speeds in three directions
of cylindrical coordinates. Our numerical results show that by increasing all compo-
nents of the magnetic field, the surface density and rotational velocity increase, but the
sound speed and radial infall velocity of the disk decrease. We have also found that the
existence of wind will lead to reduction of surface density as well as rotational veloc-
ity. Moreover, the radial velocity, sound speed, advection parameter and the vertical
thickness of the disk will increase when outflow becomes important in the RIAF.
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1 INTRODUCTION

Observations of accreting black holes with different masses show impressive similarities of data
which point to an identical physical process in the accretion flow. Also, black hole accretion disks
exhibit a great variety of physical conditions, so we may have a variety of accretion regimes. Existing
theories describe different regimes of black hole accretion flows, which can be realized under differ-
ent physical conditions. Accreting black holes in nearby galactic nuclei and low-state X-ray binaries
are much dimmer than the standard Shakura-Sunyaev disk model would predict. A phenomenon of
under-luminous accreting black holes in X-ray binaries and super-massive black holes in galactic
nuclei has stimulated the recent investigations of radiatively inefficient accretion flows (RIAFs) (see
Narayan et al. 1998; Kato et al. 2008 for reviews). In such a flow, radiative losses are small be-
cause of the low particle density in the accretion flow at low accretion rates. Contrary to the standard
Shakura-Sunyaev disk model, which successfully explains sources that emit soft radiation and which
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are luminous in X-rays, models of RIAFs are used to explain a significant deficit of radiation ob-
served in some X-ray sources. A particular example of such underluminous sources is the Galactic
center, Sagittarius A∗, which hosts a 2 × 106 solar mass black hole. The Galactic center has a lu-
minosity that is well below the estimated value based on the Shakura-Sunyaev accretion disk model
(Melia & Falcke 2001).

Advection-dominated accretion flows (ADAFs) are in the opposite regime compared to that
of the standard model. In the standard model, the flow is described in such a way that the heat
generated by the viscosity radiates out of the system immediately after its generation (Shakura &
Sunyaev 1973). These ADAFs occur in two regimes depending on their mass accretion and optical
depth. Actually, the optical depths of accretion flows are highly dependent on their accretion rates.
In a situation with a high mass-accretion rate, the optical depth becomes very high and the radiation
generated by the accretion flow can be trapped within the disk. In this case, the optical depth is
very large, and photons, which carry most of the internal energy, are trapped inside the inflowing
matter and cannot be radiated away. This type of model is called a ‘slim disk,’ or optically thick
ADAF. Although the radiative efficiency of an optically thick ADAF is also low, we usually only
call the optically thin ADAF an RIAF. In the limit of low mass-accretion rate, the disk becomes
optically thin. In this case, the cooling time of accretion flows is longer than the accreting time-
scale. The energy generated by accretion flows therefore remains mostly in the disks, and the disks
cannot radiate their energy efficiently. This type of accretion flow is named an RIAF. This type of
accretion flow has been investigated by many authors (Narayan & Yi 1994; Abramowicz et al. 1995;
Chen 1995). At the same time as the ADAF model was proposed, it was realized that the ADAFs are
likely to be convectively unstable in the radial direction because of the inward increase of the entropy
of accreting gas (Igumenshchev & Abramowicz 1999; Stone et al. 1999; Igumenshchev et al. 2003).
Most recent work focusing on the convective instability was performed by Yuan & Bu (2010). Two
and three dimensional simulations of a low-viscosity RIAF confirmed the convective instability in
these flows (Igumenshchev et al. 1996; Igumenshchev & Abramowicz 2000; McKinney & Gammie
2002). Narayan et al. (2000) and Quataert & Gruzinov (2000) constructed another analytical model
of RIAFs which was based on a self-similar solution called the convection dominated accretion
flow (CDAF). CDAFs consist of a hot plasma at about virial temperature and have a flattened time-
averaged radial density profile, ρ ∝ r−1/2, where ρ is the density and r is the radius. In CDAFs,
most of the energy which is released in the innermost region of the accretion flow is then transported
outward by convective motion.

The self-similar CDAF model, being the same as other self-similar models, is very clear and
instructive, but it has some limitations. It is only a local, not a global solution for an RIAF, in the
sense that it can only be valid for a region far from boundaries. Hence, it cannot reproduce the
physical behavior of an accretion flow, which is transonic radial motion — the most fundamental
feature of a black hole accretion flow. Abramowicz et al. (1995) did suggest a two-zone structure for
an RIAF: an outer convection dominated zone and an inner advection dominated zone separated at
a transition radius ∼ 50rg .

There is also evidence that the process of mass accretion via a disk is often and perhaps always
associated with mass loss from the disk in the form of a wind or a jet. Mass loss appears to be a
common phenomenon among astrophysical accretion disk systems. These mass-loss mechanisms
are observed in microquasars, young stellar objects and even from brown dwarfs (Ferrari 1998;
Bally et al. 2007; Whelan et al. 2005). It has long been obvious that a disk wind/outflow contributes
to loss of mass, angular momentum, and thermal energy from accretion disks (e.g. Piran 1978;
; Foschini 2011; Knigge 1999). Various driving sources have been proposed, including thermal,
radiative and magnetic ones. Traditionally the name of the wind depends on its driving force. In
this paper we will follow the hydrodynamical (thermal) wind which has been discussed by many
authors (e.g. Meier 1979, 1982; Fukue 1989; Takahara et al. 1989). There are some observational
implications of outflows in accreting systems. The accretion rates onto neutron stars in soft X-ray
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transients in quiescent states seem to be smaller than those of white dwarfs in cataclysmic variables
with comparable orbital periods, since the typical luminosities in both cases are similar, in spite
of their difference of gravitational potential by three orders of magnitude (Loeb et al. 2001). This
indicates significant outflows in accretion flows, where s ∼ 1. Outflows from hot accretion flows
also seem to be common in the nuclei of galaxies. The compact radio/infrared/X-ray source Sgr A*,
harboring a super-massive black hole in the center of our Galaxy, also has moderate mass loss. Its
mass accretion rate at r ≤ 10 AU (∼ 100 rs, where rs is the Schwarzschild radius) is estimated
as Ṁ ∼ 10−7M¯ yr−1 by a Faraday rotation measurement (Marrone et al. 2006). On the other
hand, the Bondi accretion rate expected by the hot ambient gas around r ∼ 0.04 pc (∼ 105 rs) is
Ṁ ∼ 10−5M¯ yr−1 (Baganoff et al. 2003). This significant difference between the inner and outer
mass accretion rates indicates mass loss from the accretion flow due to the outflow (Kawabata &
Mineshige 2009). As a result of mass loss, the accretion rate, Ṁ , is no longer constant in radius r. It
is often expressed as Ṁ ∝ rs with s being a constant of the order of unity (Blandford & Begelman
1999).

Early work on disk accretion to a black hole argued that a large-scale magnetic field originating
from the interstellar medium, or even the central engine, would be dragged inward and greatly com-
pressed near the black hole by the accreting plasma (Bisnovatyi-Kogan & Ruzmaikin 1974, 1976).
So large-scale B-fields have an important role in the dynamics and structure of a hot accretion flow
since the flow is highly ionized. The effect of magnetic fields on the structure of ADAFs was also
studied (Balbus & Hawley 1998; Shadmehri 2004; Meier 2005; Shadmehri & Khajenabi 2005, 2006;
Ghanbari et al. 2007; Abbassi et al. 2008, 2010; Xie & Yuan 2008; Bu et al. 2009 ).

In this paper we will discuss the properties of CDAFs in a general large-scale magnetic field
with hydrodynamical wind. We will concentrate on the self-similar solution. This study is motivated
by recent works of Zhang & Dai (2008) who showed there is an effect of large scale magnetic fields
on the CDAFs that can be modeled with a constructive self-similar solution. Because CDAFs are
usually modeled for outer regions of RIAFs where the hydrodynamical outflow becomes important,
we investigate the role of outflow in the dynamical structure of magnetized CDAFs. We will show
the basic equations and self-similar solutions in Sections 2 and 3 respectively, and conclusions are
given in Section 4.

2 BASIC EQUATIONS

We are interested in analyzing the structure of a magnetized hot accretion flow bathed in a global
magnetic field where convection and wind play an important role in transport of energy and angular
momentum. Suppose there is a rotating and accreting disk around a compact Schwarzchild black
hole of mass M∗. Thus, for a steady axisymmetric accretion flow, i.e., ∂/∂t = ∂/∂ϕ = 0, we can
write the standard equations in the cylindrical coordinates (r, ϕ, z) centered on the accreting object.
We vertically integrate the flow equations so all the physical variables become only functions of the
radial distance r. Moreover, we consider a magnetic field in the disk with three components, Br,
Bϕ and Bz . We also neglect relativistic effects and Newtonian gravity is considered adequate in the
radial direction.

Under these assumptions, the equation of continuity will be

∂

∂r
(rΣvr) +

1
2π

∂Ṁw

∂r
= 0 , (1)

where Σ is the surface density at the cylindrical radius r, which is defined as Σ = 2ρH , ρ is the
midplane density, H is the disk half-thickness and vr is the radial infall velocity. Also the mass loss
rate by outflow/wind is represented by Ṁw, so

Ṁw(r) =
∫

4πr′ṁw(r′)dr′ , (2)
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where ṁw(r) is the mass loss rate per unit area from each disk surface. We can write the dependence
of accretion rate as follows (Blandford & Begelman 1999; Shadmehri 2008)

Ṁ = −2πrΣvr = Ṁ0

(
r

r0

)s

, (3)

where Ṁ0 is the mass accretion rate at the outer radius of the disk r0 and s is a constant of order
unity (Blandford & Begelman 1999). For a disk without outflow/wind, s = 0 and in the presence of
the outflow/wind, s > 0 (e.g. Fukue 2004). The observed broadband spectra of Sgr A* and soft X-
ray transients can also be fitted by RIAF models with moderate outflows, s ∼ 0.3− 0.4, if the direct
heating of electrons in an RIAF is efficient (Quataert & Narayan 1999; Yuan et al. 2003; Kawabata
& Mineshige 2009).

Considering Equations (1)–(3), we can write

ṁw = s
Ṁ0

4πr2
0

(
r

r0

)s−2

. (4)

The equation of motion in the radial direction is

vr
dvr

dr
=

v2
ϕ

r
− GM∗

r2
− 1

Σ
d

dr
(Σc2

s)−
1

2Σ
d

dr
(Σc2

ϕ + Σc2
z)−

c2
ϕ

r
, (5)

where vϕ is the rotational velocity, cs is the sound speed, which is defined as c2
s ≡ pgas/ρ, with pgas

being the gas pressure. Here, cr, cϕ and cz are Alfvén sound speeds in three directions of cylindrical
coordinates and are defined as

c2
r,ϕ,z =

B2
r,ϕ,z

4πρ
=

2pmagr,ϕ,z

ρ
, (6)

where pmagr,ϕ,z
are the magnetic pressure in three directions. Considering outflow/wind and con-

vection, the angular transfer equation can be written as

Σvr
d

dr
(rvϕ) = −1

r

d

dr
(Jvis)− 1

r

d

dr
(Jcon) + r

√
Σcr

d

dr
(
√

Σcϕ) + Σcrcϕ − l2(rΩ)
2π

dṀw

dr
, (7)

where Jvis and Jcon are viscous and convective angular momentum fluxes, respectively, which are
defined as

Jvis = −νΣr3 dΩ
dr

(8)

and
Jcon = −νconΣr3(1+g)/2 d

dr
(Ωr3(1−g)/2) . (9)

Here, ν is the kinematic viscosity coefficient, ν = αcsH , with α being the constant Shakura &
Sunyaev parameter, νcon is the convective diffusion coefficient, and g is the index that describes
the convective angular momentum transport. When g = 1, the flux of angular momentum due to
convection is

Jcon = −νconΣr3 dΩ
dr

. (10)

The above equation implies that the convective angular momentum flux is oriented down the angular
velocity gradient. For a quasi-Keplerian angular velocity, where Ω ∝ r−3/2, angular momentum is
transported outward. When g = −1/3, the convective angular momentum flux can be written as

Jcon = −νconΣr
d(r2Ω)

dr
. (11)
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This equation represents that the convective angular momentum flux is oriented down the specific
angular momentum gradient. For a quasi-Keplerian angular velocity, Ω ∝ r3/2, angular momentum
is transported inward. Convection generally transports angular momentum inward (or outward) for
g < 0 (or > 0), and the specific case g = 0 corresponds to zero angular momentum transport
(Narayan et al. 2000).

The last term on the right side of the angular transfer equation, Equation (7), also represents
angular momentum carried by the outflowing material. Here l = 0 corresponds to a non-rotating
wind and l = 1 to outflowing material that carries away the specific angular momentum (see e.g.,
Knigge 1999).

By integrating the hydrostatic balance over z, we have

Ω2
KH2 − 1√

Σ
cr

d

dr

(√
Σcz

)
H −

[
c2
s +

1
2
(
c2
r + c2

ϕ

)]
= 0 . (12)

By considering outward energy due to convection and energy loss by outflows, the energy equa-
tion becomes

ΣvrT
dS

dr
+

1
r

d

dr
(rFcon) = f(ν + gνcon)Σr2

(
dΩ
dr

)2

− 1
2
ηṁw(r)v2

K(r) . (13)

In the above equation T is temperature, S is the specific entropy and Fcon is the convective energy
flux which is defined as

Fcon = −νconΣT
dS

dr
, (14)

where

T
dS

dr
=

1
γ − 1

dc2
s

dr
− c2

s

ρ

dρ

dr
. (15)

Here γ is the ratio of specific heats. As was mentioned, the last term on the right hand side of
the energy equation is the energy loss due to wind or outflow (Knigge 1999). Depending on the
energy loss mechanism, dimensionless parameter η may change. In our case, we consider it as a free
parameter (Knigge 1999). Also in the energy equation, we still neglect the Joule heating rate.

We adopt the assumptions of Narayan et al. (2000) and Lu et al. (2004) for the convective
diffusion coefficient, νcon, which is defined as

νcon =
L2

M

4
(−N2

eff)1/2 . (16)

Here Neff is the effective frequency of convective blobs and LM is the characteristic mixing length.
The effective frequency of convective blobs will be

N2
eff = N2 + κ2 , (17)

with N and κ being the Brunt-Väisälä frequency and epicyclic frequency respectively, which are
defined as

N2 = −1
ρ

dpg

dr

d

dr
ln

(
p
1/γ
g

ρ

)
, (18)

κ2 = 2Ω2 d ln(r2Ω)
d ln r

. (19)

For a non-Keplerian flow κ 6= Ω, but for a quasi-Keplerian case (Ω ∝ r−3/2), κ = Ω (Narayan et al.
2000; Lu et al. 2004). Note that convection in flows appears with N2

eff < 0.
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In addition, the characteristic mixing length LM in terms of the pressure scale height, Hp, can
be written as

LM = 2−1/4lMHp (20)

and
Hp = − dr

d ln pg
, (21)

where lM is the dimensionless mixing length parameter and its value is estimated to be equal to
√

2
in ADAFs (Narayan et al. 2000; Lu et al. 2004). The convective diffusion coefficient can also be
written in a form similar to the usual viscosity of Shakura & Sunyaev (1973),

νcon = αconcsH , (22)

where αcon is a dimensionless coefficient that describes the strength of convective diffusion. The
αcon coefficient can be obtained by Equations (16) and (22)

αcon =
L2

M

4csH
(−N2

eff)1/2 . (23)

Finally we can write the three components of the induction equation, (Ḃr, Ḃϕ, Ḃz), to measure the
rate of escape for the magnetic field,

Ḃr = 0 , (24)

Ḃϕ =
d

dr
(vϕBr − vrBϕ) , (25)

Ḃz = − d

dr
(vrBz)− vrBz

r
. (26)

Here Ḃr,ϕ,z is the rate of escaping/creation of the field due to magnetic instability or a dynamo
effect. Now we have a set of magnetohydrodynamic (MHD) equations that describe the structure of
magnetized CDAFs. The solutions to these equations are strongly correlated to viscosity, convection,
magnetic field strength βr,ϕ,z and the degree of advection f . We seek a self-similar solution for the
above equations. In the next section we will present self-similar solutions to these equations.

3 SELF-SIMILAR SOLUTIONS

3.1 Analysis

In order to have a better understanding of the physical processes taking place in our disks, we seek
self-similar solutions of the above equations. The self-similar method has a wide range of appli-
cations for the full set of MHD equations although it is unable to describe the global behavior of
accretion flows since no boundary conditions have been taken into account. However, as long as we
are not interested in the behavior of the flow near the boundaries, these solutions are still valid.

We assume that the physical quantities can be expressed as a power law of radial distance, i.e.,
rν , where ν is determined by substituting the similarity solutions into the main equations and solving
the resulting algebraic equations. Therefore, we can write the similarity solutions as

Σ(r) = c0Σ0

(
r

r0

)s− 1
2

, (27)

vr(r) = −c1

√
GM∗
r0

(
r

r0

)− 1
2

, (28)
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vϕ(r) = c2

√
GM∗
r0

(
r

r0

)− 1
2

, (29)

c2
s(r) = c2

3

(
GM∗
r0

)(
r

r0

)−1

, (30)

c2
r,ϕ,z(r) =

B2
r,ϕ,z

4πρ
= 2βr,ϕ,zc

2
3

(
GM∗
r0

)(
r

r0

)−1

, (31)

H(r) = c4r0

(
r

r0

)
, (32)

where constants c0, c1, c2, c3 and c4 will be determined later from the main MHD equation. Σ0 and
r0 are exploited to write the equations in non-dimensional forms and the constants βr,ϕ,z measure
the ratio of the magnetic pressure in three directions to the gas pressure, i.e., βr,ϕ,z = pmagr,ϕ,z

/pgas.
In addition, the rate of field escaping/creation Ḃr,ϕ,z is assumed to have a form

Ḃr,ϕ,z = Ḃr0,ϕ0,z0

(
r

r0

) 1
2 (s− 11

2 )

, (33)

where Ḃr0,ϕ0,z0 is a constant.
By substituting the above self-similar solutions in the continuity, momentum, angular momen-

tum, hydrostatic balance and energy equations of the disk, we obtain the following system of dimen-
sionless equations to be solved for c0, c1,c2 c3 and c4:

c0c1 = ṁ , (34)

−1
2
c2
1 = c2

2 − 1− [(
s− 3

2

)
+

(
s− 3

2

)
βz +

(
s +

1
2

)
βϕ

]
c2
3 , (35)

(
sl2 − 1

2

)
ṁ

c0
c2 = −3

2

(
s +

1
2

)
(α + gαcon)c2c3c4 +

(
s +

1
2

)
c2
3(βrβϕ)1/2 , (36)

c4 =
1
2
c3

{[(
s− 3

2

)2

βrβzc
2
3 + 4(1 + βr + βϕ)

]1/2

+ c3

(
s− 3

2

)
(βrβz)1/2

}
, (37)

(
1

γ − 1
+ s− 3

2

){
(s− 1)αconc3

3c4 + c1c
2
3

}
=

9
4
fc2

2c3c4(α + gαcon)− 1
4
sη

ṁ

c0
, (38)

where ṁ is the non-dimensional mass accretion rate, which is defined as

ṁ =
Ṁ0

2πr0Σ0

√
GM∗/r0

. (39)

If we solve the self-similar structure of the magnetic field escape rate, we will have

Ḃ0r = 0 , (40)

Ḃ0ϕ =
1
2

(
s− 7

2

)
GM∗
r
5/2
0

c3

√
4πc0Σ0

c4

(
c2

√
βr + c1

√
βϕ

)
, (41)
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Fig. 1 Numerical coefficients ci as a function of magnetic parameter βϕ for several values of s. The
dotted, dashed and solid lines correspond to s = 0.0, 0.1 and 0.2, respectively. Parameters are set as
α = 0.5, γ = 1, g = −1/3, βr = βz = 0.4, η = l = 1 and f = 1.

Ḃ0z =
1
2

(
s− 3

2

)
c1c3

GM∗
r
5/2
0

√
4πβzc0Σ0

c4
. (42)

We can solve these simple equations numerically so that the physical solutions can be clearly
interpreted. Without mass outflow and magnetic field, i.e. s = l = η = βr = βϕ = βz = 0, the
equations and their similarity solutions are reduced to the Narayan et al. solution (Narayan et al.
2000). Also in the absence of outflow they are reduced to the case of Zhang & Dai (2008).

Now we can analyze the behavior of the solutions in the presence of wind, convection and
a global magnetic field. The parameters of our model are the standard viscosity parameter α, the
advection parameter f , the ratio of the specific heats γ, the mass-loss parameter s, the degree that
magnetic pressure contributes to the gas pressure in three dimensions using cylindrical coordinates,
βr, βϕ and βz and l, η parameters correspond to the cases of wind and outflow.

3.2 Numerical Results

In Figure 1 the physical variables of surface density (c0), radial infall velocity (c1), rotational ve-
locity (c2) and sound speed (c3) are shown as a function of toroidal magnetic field parameter βϕ

for several values of wind parameter s, i.e., s = 0 (dotted line, no wind), s = 0.1 (dashed line) and
s = 0.2 (solid line). Four panels of Figure 1 are set as α = 0.5, γ = 1, βr = βz = 0.4, η = l = 1
and f = 1. By adding the toroidal magnetic field parameter βϕ, we see that the surface density
and rotational velocity of the disk increase, although the radial infall velocity and sound speed both
decrease.
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Fig. 2 Numerical coefficients ci as a function of magnetic parameter βz for several values of s. The
dotted, dashed and solid lines correspond to s = 0.0, 0.1 and 0.2, respectively. Parameters are set as
α = 0.5, γ = 1, g = −1/3, βr = βϕ = 0.4, η = l = 1 and f = 1.

On the other hand, the radial flow decreases when the toroidal magnetic field becomes large. This
is because the magnetic tension term dominates the magnetic pressure term in the radial momentum
equation. We can see that by adding the influences of the magnetic field (adding βϕ), the rotation
velocity will increase. This is because the disk should rotate faster than the case without the magnetic
field which results in magnetic tension.

In Figure 1 we also studied the effect of parameter s = 0 on physical coefficients. As was
mentioned, the value of s measures the strength of wind/outflow and a larger s denotes a stronger
wind. We can see that for stronger outflow (s = 0) , the reduction of surface density is more evident.
We see that the convective model of accretion flows with the presence of wind leads to slower rotation
than the case without wind, and adding wind leads to enhanced accretion velocity. The sound speed
of the disk also increases for stronger outflows.

The physical variables as a function of magnetic field parameter βz and several values of mass
loss parameter are shown in Figure 2. As can be seen, a strong z-component of magnetic field leads
to an increase in both surface density and rotational velocity, but the radial infall velocity of materials
and sound speed of the disk decrease.

Figure 3 shows how the coefficients ci depend on the magnetic field parameter in the radial
direction βr for several values of outflow parameter s. We see that the surface density and rotational
velocity rise when the magnetic field parameter βr increases, while the sound speed and accretion
velocity will decrease. According to Figures 1, 2 and 3, by adding all the components of the magnetic
field, the surface density and rotational velocity increase but the sound speed and radial infall velocity
of the disk will decrease.
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Fig. 3 Numerical coefficients ci as a function of magnetic parameter βr for several values of s. The
dotted, dashed and solid lines correspond to s = 0.0, 0.1 and 0.2, respectively. Parameters are set as
α = 0.5, γ = 1, g = −1/3, βϕ = βz = 0.4, η = l = 1 and f = 1.
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Fig. 4 The convective coefficient αcon as a function of magnetic parameters βr , βϕ and βz for
several values of wind parameter s. The dotted, dashed and solid lines correspond to s = 0.0, 0.1
and 0.2 respectively. Parameters are set as α = 0.5, γ = 1, g = −1/3, η = l = 1 and f = 1.

In Figure 4, we have plotted the convective parameter αcon versus magnetic field parameters βr,
βϕ and βz for several values of s. As can be seen, when the magnetic field parameter βr becomes
stronger, the convective parameter decreases (left panel). By adding the toroidal component of the
magnetic field βϕ, the convective parameter αcon also decreases (middle panel), although by adding
the z-component of the magnetic field, αcon increases (right panel).
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Fig. 5 The behavior of H/r as a function of magnetic parameters βr , βϕ and βz for several values of
wind parameter s. The dotted, dashed and solid lines correspond to s = 0.0, 0.1 and 0.2 respectively.
Parameters are set as α = 0.5, γ = 1, g = −1/3, η = l = 1 and f = 1.

Figure 5 shows that the disk thickness is enhanced with the toroidal magnetic field parameter
βϕ and wind parameter s (middle panel). Also, the radial and vertical components of the magnetic
field decrease the vertical thickness of the accretion disk (left and right panels).

4 CONCLUSIONS

The CDAF model consistently represents RIAFs into black holes in the framework of viscous flow.
We have considered the radial structure of RIAFs based on a self-similar analysis. Some approxima-
tions were made in order to simplify the main equations. We assumed an axially symmetric, static
disk with the α-prescription of viscosity, ν = αcsH . A set of similarity solutions was presented for
such a configuration. We have extended self similar solutions of Akizuki & Fukue (2006); Zhang
& Dai (2008) and Faghei & Omidvand (2012) to model the dynamical structure of the CDAFs. We
ignored the relativistic effects and the self-gravity of the disks.

We have found that by increasing all components of magnetic field, the surface density and
rotational velocity increase, although the sound speed and radial infall velocity of the disk decrease.
We have also shown that the existence of wind will lead to reduction of surface density as well
as rotational velocity. Moreover the radial velocity, sound speed, advection parameter and vertical
thickness of the disk will increase when outflow becomes important in the RIAF.

In this manuscript, we have examined the effect of large-scale B-fields on the convective struc-
ture with wind and outflow. In the future it would be interesting to study how these effects would
change the observational appearance of the flow.

Although we have made some simplifying assumptions in order to treat the problem analytically,
our self-similar solution shows large-scale magnetic fields can really change typical behavior of the
physical quantities of a hot accretion flow. Not only the surface density of the disk changes, but also
the rotational and the radial velocities significantly change because of the magnetic fields, which
means that any realistic model for a hot disk should consider the possible effects of the magnetic
fields.
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