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Abstract Non-radial p modes and g modes appear simultaneously in red giant stars.
Their frequencies have different variation rates, causing their frequencies to become
close during stellar evolution so that avoided crossings appear. The separation be-
tween regions where acoustic waves and gravity waves propagate for l = 1, 2 and 3
is different, which results in the coupling efficiency also being different. We present
the results of numerical computations of the models we study. We find that the two
kinds of modes for l = 2 and 3 need to be closer in frequency in order for a complete
exchange to occur, compared to the case for modes with l = 1. Their scaled oscilla-
tion frequencies also present better regularity with evolution than modes with l = 1.
In order to study the effect of the avoided crossings in detail, we set the mode which
has the smallest mode inertia to be the p mode. We plot the two kinds of modes for l
= 1, 2 and 3 in frequency and period échelle diagrams and find modes of l = 2 and 3
fit the two relations better; they are more equally spaced in frequency and period than
modes with l = 1. Under careful observation of the two kinds of échelle diagrams for
l = 2 and 3, we still find that some p modes shift a little from being equally spaced
in frequency and some g modes, which are close to those p modes in period, shift a
little from being equally spaced in period. Then, we study the relation between the
deviation from period being equally spaced and the mode inertia of g modes for dif-
ferent l. The g modes of l = 1 with a period closer to the p mode have less inertia and
the deviation is bigger in the period échelle diagram. Their deviation is also obvious.
However g modes of l = 2 and 3 shift a little or have almost no deviation from being
equally spaced in period, even though some of them may have strong coupling and
close mode inertia like in the p modes. So, we suggest a possible method for measur-
ing period spacing of g modes precisely using mixed g modes with l = 2 and 3 that
have fewer observed mixed g modes than for l = 1.

Key words: stars: oscillations — stars: red giants

∗ Supported by the National Natural Science Foundation of China.



1656 J. J. Guo, Y. Li & X. J. Lai

1 INTRODUCTION

Low-mass red giants are characterized by an extended convective envelope and a contracting degen-
erate helium core. The turbulent motions in the convective envelope stochastically excite solar-like
oscillations. Recently, the CoRoT and Kepler missions provided high-quality observational data for
hundreds of red-giant stars (Bedding et al. 2010; Huber et al. 2010), including both p modes and
mixed g modes. The observed mixed g modes in individual red giants provide new information
on the stellar interior and have begun to be widely studied (Miglio et al. 2008a; Aerts et al. 2010;
Bedding et al. 2011). Bedding et al. (2011) used the period spacing of mixed g modes with l = 1 to
distinguish between hydrogen and helium burning stages of red giants. Mosser et al. (2012) showed
that mixed g modes can be used to probe the thin hydrogen burning shell. Christensen-Dalsgaard
(2011) indicated that measuring the period spacing may provide a method to determine the size of
the convective core in helium-burning red giants. Beck et al. (2012) used the rotational frequency
splitting of l = 1 mixed g modes to demonstrate that the core must rotate at least ten times faster
than the surface.

Owing to contraction of the helium core, the buoyancy frequency can reach very large values
in red giants and produce high frequency g modes. The frequencies of some g modes may coincide
with those of p modes and undergo the avoided crossing (Aizenman et al. 1977; Dupret et al. 2009).
Because of the occurrence of avoided crossings, p modes of l = 1 shift from being equally spaced
in frequency, but radial modes (l = 0) follow the pattern of regular spacing with a separation of
∆ν (Christensen-Dalsgaard 2004). The coupling efficiency between p and g modes becomes weaker
for higher degrees of spherical harmonics (Dziembowski et al. 2001), and with the evolution of red
giants, the interaction of l = 1 modes also becomes weaker because gravity waves are more easily
trapped in the stellar interior and hence are well separated from the region where acoustic waves
propagate (Montalbán et al. 2010; Huber et al. 2010). The properties of avoided crossing for l = 1
modes have been well studied, but l = 2 and 3 modes have not been considered extensively. In this
paper we will focus on properties and effects of the avoided crossing for l = 2 and 3 modes, and
provide a new method to determine period spacing using mixed g modes with l = 2 or 3.

The following sections are organized as follows: We briefly introduce stellar evolution models
and general properties of adiabatic oscillations for our calculated red giant branch (RGB) models in
Section 2. In Section 3, we investigate the effect of an avoided crossing between non-radial modes
in detail, especially focusing on l = 2 and 3 modes. Discussions and conclusions are summarized in
Section 4.

2 PROPERTIES OF STELLAR EVOLUTION MODELS AND ADIABATIC
OSCILLATIONS

We use a stellar evolution code originally written by Paczynski and Kozlowski and updated by
Sienkiewicz. The equation of state comes from the OPAL equation of state (Rogers 1994; Rogers
et al. 1996). The OPAL opacities GN93hz series (Rogers & Iglesias 1995; Iglesias & Rogers 1996)
are used in the high temperature case and Alexander’s opacity tables (Alexander & Ferguson 1994)
are used in the low temperature case. Element diffusion is only included in the main sequence.
Convective heat transfer is treated by the standard mixing-length theory with the mixing-length
parameter α = 1.70. Convective overshooting and rotation are not included.

We calculate a series of stellar evolution models of 1.0M¯, with the initial chemical composition
of hydrogen mass fraction X = 0.7 and metal mass fraction Z = 0.02. The evolution of the model
is simulated from the pre-main sequence until the helium flash. We choose five stellar models spread
along the RGB to calculate their typical parameters, with model 3 being at the middle stage while
models 1 and 2 are in the early stage and models 4 and 5 are in the later stage of the RGB. Table 1
summarizes their basic properties.
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Table 1 Typical Parameters of Calculated Models in Different Stages of Evolution

model age(Gyr) lg (Teff)(K) R (R¯) lg (L/L¯) νmax (µHz) ∆ν (µHz) ∆Pg (s)

1 11.64242 3.67637 2.7883 0.549295 444.3 31.02 164.4–177.6
2 11.85505 3.66807 4.2031 0.872577 197.4 16.73 130.06–133.99
3 11.94962 3.65885 5.8832 1.127771 99.6 10.13 114.04–115.63
4 12.03602 3.64270 9.4738 1.476995 40.0 4.986 88.36–88.52
5 12.10987 3.59366 29.0302 2.253509 4.51 0.973 69.225–69.227

For high-order and low-degree p modes, they are regularly spaced in frequency, approximately
following the asymptotic relation (Tassoul 1980)

νnl ≈
[
2

∫ R

0

dr

c

]−1 (
np +

1
2
l + ε

)
= ∆ν

(
np +

1
2
l + ε

)
, (1)

where np is the radial order in the region where acoustic oscillations propagate. ∆ν is the inverse
of twice the sound travel time between the center and the surface. ε is a phase constant which is
sensitive to the surface layers.

For g modes, they are regularly spaced in period, approximately following the asymptotic theory
(Tassoul 1980; Miglio et al. 2008a)

Png,l ≈ 2π2(ng + αg)√
l(l + 1)

[∫

r1

r2 N

r
dr

]−1

=
∆Pg(ng + αg)√

l(l + 1)
= ∆Pl(ng + αg) (2)

where ng is the radial order in the region where gravity oscillations propagate. αg is an unknown
constant, ∆Pl is the period spacing for spherical harmonic degree l and ∆Pg is related to ∆Pl and l.

The oscillation properties of non-radial modes are determined by the Brunt-Väisälä frequency
and Lamb frequency (Sl). We present the propagation diagram of l = 1, 2, and 3 for model 3 in
Figure 1. It can be seen that the Brunt-Väisälä frequency reaches a very large value in the helium
core, which forms a region where gravity waves propagate. Acoustic waves propagate through the
region in the stellar envelope, and there is a thin region where dissipation occurs between the two
regions where propagation occurs.

From Figure 1, we can see that the region where gravity waves propagate with different frequen-
cies has almost the same inner boundary r1 but a different outer boundary r2. The period spacing
∆Pl is determined by the integral in Equation (2), which is proportional to N and inversely propor-
tional to r.

In Table 1, ∆Pg is given for those g modes with a frequency range about 28 times as large
as ∆ν. It can be seen that ∆Pg changes less for g modes in stellar models during later stages of
evolution on the RGB, which indicates that those g modes are approximately equally spaced in
period in the middle and late stages of the RGB. νmax corresponds to the maximum of the acoustic
power (Kjeldsen & Bedding 1995).

3 AVOIDED CROSSINGS BETWEEN NON-RADIAL P AND G MODES

Full equations of linear and adiabatic oscillations are numerically solved for model 3 to obtain eigen-
frequencies and eigenfunctions of non-radial modes. In order to get accurate results, we use more
than 30 000 grid points in the stellar evolution models.

3.1 Avoided Crossings during the Stellar Evolution

From Equations (1) and (3), we can see that the large frequency separation results from the time it
takes for sound to travel between the center and the surface, while the period spacing is a conse-
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Fig. 1 The Brunt-Väisälä frequency (N ) and Lamb frequency (Sl) are shown against fractional
radius r/R for model 3. The horizontal line indicates a mode with frequency of ν = 100 µHz.

quence of the distribution of Brunt-Väisälä frequency (N ) in the region where gravity waves prop-
agate, so the scaled rate of oscillation frequency for p modes is different from that for g modes.
Kjeldsen & Bedding (1995) give the scaling relation of ∆ν as

∆ν ∼ M1/2/R3/2. (3)

Therefore, the scaled oscillation frequency (R/R¯)3/2ν of the p modes should be almost unchanged
with evolution, including the p modes of l = 1, 2, and 3, which change little when not being affected
by the avoided crossing. However, for non-radial g modes of l = 1, 2, and 3, their scaled oscillation
frequencies rise quickly with evolution when not being affected by the avoided crossing. Therefore,
the scaled frequency of a g mode will increase until it is close to that of a p mode as the stellar
evolution continues, promoting the coupling between acoustic waves in the envelope and gravity
waves in the core. Finally, they exchange characteristics with each other, with p modes becoming g
modes and g modes becoming p modes, and all of the original modes evolve along the evolutionary
track of the other mode. It can be found, from the middle and lower panels in Figure 2, that avoided
crossings exist in the non-radial p modes and g modes of l = 2 and 3, like the case for modes of
l = 1, and their evolutionary tracks show better regularity. The larger the spherical harmonic degree
l is, the closer the two kinds of modes need to be located on the evolutionary tracks to interact with
each other.

3.2 Eigenfunctions of Non-Radial Modes

Examples of eigenfunctions with l = 2, which are the scaled radial displacement of a p-mode with
an eigen-frequency of 121.71 µHz and that of a g-mode with an eigen-frequency of 126.64 µHz, are
given in the upper panel of Figure 3. It can be seen that the p mode is well trapped in the stellar
envelope and the g mode propagates dominantly in the helium core. The normalized mode inertia
provides a rough estimate of the surface amplitude of an oscillation mode (Houdek et al. 1999).
Generally speaking, the smaller inertia a mode has, the bigger the surface amplitude is. G modes
usually have much larger scaled amplitudes than p modes in the core, as shown in the upper panel
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Fig. 2 Scaled oscillation frequencies, as functions of the effective temperature for modes of l = 0, 1,
2, and 3. The heavy vertical line in each diagram represents the results of model 3. The range of the
models in radius and luminosity is 5.6762–6.1166 R¯ and 12.619–14.346 L¯, respectively. Modes
of l = 0 are used for comparison. (a) Circles for l = 1 and pluses for l = 0. (b) Circles for l = 2 and
pluses for l = 0. (c) Circles for l = 3 and pluses for l = 0.
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of Figure 3. As a result, g modes have much larger mode inertias than p modes and are less likely to
be observed.

However, some g modes with frequencies sufficiently close to p modes will undergo avoided
crossings and their acoustic waves couple with gravity waves to form mixed modes. It can be seen
in the lower panel of Figure 3 that a mixed g mode with an eigen-frequency of 121.57 µHz has a
scaled amplitude in the two regions where propagation occurs that is close to the p-mode mentioned
in the upper panel. Such a mixed g mode acts like a p mode that needs a small inertia and a large
surface amplitude to be observable (Beck et al. 2011; Bedding et al. 2011). In this sense, the mixed
g mode has been interacting with the p mode and the region where its acoustic wave propagates has
been coupling with the region where the gravity wave propagates. In this paper, we set the modes
with the smallest inertia as p modes and others are identified as g modes.

3.3 Deviations from Two Equal Spacing Relations for p and g Modes

For a given stellar model such as model 3, we can investigate the effects of avoided crossings on
periods or frequencies of non-radial modes. We focus on modes in a frequency range (210 µHz –
560 µHz). In such a high frequency range, the coupling efficiency between acoustic waves in the
envelope and gravity waves in the core is higher since the separation between the two regions where
propagation occurs is smaller, as shown in Figure 1, which indicates that those two regions can be
more easily coupled. On the other hand, due to relatively larger separation of their spacings, there
are fewer g modes between the two adjacent p modes.

In order to clearly show the effects of avoided crossings on frequencies of non-radial modes, we
define a reduced frequency ν̂ as

νnl = ν0 + k∆ν + ν̂nl (4)

and a reduced period P̂ as
Png,l = P0 + k∆Pl + P̂nl, (5)

where ν0 and P0 are zero, ∆ν and ∆Pl are constants, and k is taken as an integer that makes ν̂nl be
between 0 and ∆ν and P̂nl be between 0 and ∆Pl. In Figure 4 we show the results of model 3. The
left panels are the échelle diagrams of frequency with ν̂nl as the abscissa and νnl as the ordinate,
while the right panels corresponding to the left panels are the échelle diagrams of period with P̂nl

as the abscissa and Pnl as the ordinate. It can be seen in the échelle diagrams of frequency that p
modes of l = 2 and 3 are almost equally spaced in frequency and g modes of l = 2 and 3 scatter
stochastically. In the échelle diagrams of period, however, g modes of l = 2 and 3 are almost equally
spaced in period and p modes of l = 2 and 3 scatter irregularly. By comparing these two kinds
of échelle diagrams we can easily recognize p modes and g modes. Under careful observations of
these panels, we find that some p modes of l = 2 shift slightly from the relation of equal spacing in
frequency and some g modes of l = 2 shift slightly from the relation of equal spacing in period. In
addition, at almost the same frequency or period in the two kinds of échelle diagrams, we can always
find a mode with a different characteristic accompanying those modes which shifts slightly from the
equal spacing relations. This phenomenon is a clear demonstration of avoided crossings between the
two interacting modes. Modes of l = 3 show a similar phenomenon, but the deviation is much less
obvious or even difficult to see. However, most modes of l = 1 obviously shift from these equal
spacing relations, indicating that avoided crossings are much more common in l = 1 non-radial p
and g modes.

3.4 Relation of Period Deviation and Mode Inertia for g Modes with Different l

In the low frequency range, there are many g modes located between two adjacent p modes, since
the relative frequency spacing of g modes decreases when the frequency decreases. This results in
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Fig. 3 The upper panel shows scaled radial displacement eigenfunctions for a p mode (continuous
line) with l = 2, np = 11, and ν = 121.71 µHz and a g mode (dashed line) with l = 2, ng = –168,
and ν = 126.64 µHz. The lower panel shows scaled radial displacement eigenfunctions for the same
p mode as the upper panel (continuous line) and a g mode (dashed line) with l = 2, ng = –175, and
ν = 121.75 µHz. The left two panels show the scaled eigenfunctions in the inner one percent of the
radius of the model we chose. The surface amplitude has been normalized in this figure. For clarity,
the curve for the scaled eigenfunctions has been truncated.

more g modes interacting with a p mode because their frequencies are sufficiently close to each
other. But this trend is different for modes of l = 1, 2, and 3 due to different coupling efficiency. In
Figure 5 we show the effect of avoided crossings on the degree of period deviation and the mode
inertia of g modes with l = 1 in a frequency range of (70 µHz – 140 µHz). We can see several g
modes obviously shift from being equally spaced in period around every p mode in the left panel,
and a g mode deviating more from the equal spacing relation will have less mode inertia through
comparing with the right panel. In addition, a g mode will deviate in the échelle diagram of period
to the right when its period is greater and to the left when its period is less than that of the p mode
it surrounds. For l = 2 modes in Figure 6, there are less g modes shifted from being equally spaced
in period around every p mode. Their degree of period deviation is also less than the case for l = 1
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Fig. 4 The left three panels are frequency échelle diagrams for l = 1, 2, and 3 respectively with
modulo ∆ν = 10.126 (µHz). The right three panels are period échelle diagrams with modulo ∆P1

= 80.00 (s), ∆P2 = 46.28 (s), and ∆P3 = 32.73 (s), all of which correspond to the figure in the left
panel. In each panel, there are pluses for p modes and circles for g modes.

even though some g modes of l = 2 have almost the same inertia as the p mode has. As seen in
Figure 7, g modes with l = 3 show almost no deviations from the equal spacing relation in period,
although some of them may have inertia close to that of the p mode. Therefore, some g modes with
l = 2 and 3 are able to be observed, and the fact that they show little deviation from being equally
spaced in period makes them a better candidate for precise determination of period spacing.
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1664 J. J. Guo, Y. Li & X. J. Lai

 7000

 8000

 9000

 10000

 11000

 12000

 13000

 14000

 0  10  20  30  40  50  60  70  80

P
 (

s)

P modulo 32.98 (s)

 1e-005  0.0001  0.001  0.01  0.1  1

Mode Inertia (E)
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The right panel shows the mode inertia for the abscissa corresponding to the left panel. There are
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4 CONCLUSIONS AND DISCUSSION

In this paper, we present the results of a detailed investigation on avoided crossings for non-radial
modes of l = 1, 2 and 3 in low-mass RGB stars. We have found that p and g modes of l = 2 and 3
need to be closer in frequency to interact with each other than modes of l = 1. Their scaled oscillation
frequencies also show better regularity with evolution than modes of l = 1. In the place of an avoided
crossing, we find that some p modes shift from being equally spaced in frequency and some g modes
which are close to those p modes shift from being equally spaced in period. Modes of l = 1 obviously
shift from the two relations, but modes of l = 2 and 3 shift less or have almost no deviation from them.
In addition, g modes of l = 1 with a period closer to p modes have less inertia and the deviation is
bigger in the period échelle diagram. However, g modes of l = 2 and 3 shift slightly or have almost no
deviation from being equally spaced in period even though some of them may have strong coupling
and a close mode inertia like the p mode has.

At present, many mixed g modes of l = 1 have been observed. They are widely used in detecting
the internal structure and evolution of RGB stars, but mixed g modes of l = 2 and 3 are not well
studied since few of them have been observed. With new methods of observation and progress in
technology, more mixed g modes of l = 2 and 3 will be observed in the future. Because they better fit
the relation of being equally spaced in period, we can use them to precisely measure period spacing,
even with fewer mixed g modes of l = 2 and 3.

Acknowledgements This work is supported by the National Natural Science Foundation of China
(Grant Nos. 10973035 and 10673030), the Knowledge Innovation Key Program of the Chinese
Academy of Sciences under Grant No. KJCX2-YW-T24 and the Yunnan Natural Science Foundation
(Y1YJ011001). Fruitful discussions with Q.-S. Zhang, C.-Y Ding, J. Su, T. Wu and Y.-H. Chen are
highly appreciated.



Oscillation Characteristics of Low-mass Stars in RGB 1665

References

Aerts, C., Christensen-Dalsgaard, J., & Kurtz, D. W. 2010, Asteroseismology, Astronomy and Astrophysics
Library, Volume. ISBN 978-1-4020-5178-4 (Springer Science+Business Media B.V.)

Aizenman, M., Smeyers, P., & Weigert, A. 1977, A&A, 58, 41
Alexander, D. R., & Ferguson, J. W. 1994, ApJ, 437, 879
Beck, P. G., Bedding, T. R., Mosser, B., et al. 2011, Science, 332, 205
Beck, P. G., Montalban, J., Kallinger, T., et al. 2012, Nature, 481, 55
Bedding, T. R., Huber, D., Stello, D., et al. 2010, ApJ, 713, L176
Bedding, T. R., Mosser, B., Huber, D., et al. 2011, Nature, 471, 608
Christensen-Dalsgaard, J. 2004, Sol. Phys., 220, 137
Christensen-Dalsgaard, J. 2011, arXiv:1106.5946
Dupret, M.-A., Belkacem, K., Samadi, R., et al. 2009, A&A, 506, 57
Dziembowski, W. A., Gough, D. O., Houdek, G., & Sienkiewicz, R. 2001, MNRAS, 328, 601
Houdek, G., Balmforth, N. J., Christensen-Dalsgaard, J., & Gough, D. O. 1999, A&A, 351, 582
Huber, D., Bedding, T. R., Stello, D., et al. 2010, ApJ, 723, 1607
Iglesias, C. A., & Rogers, F. J. 1996, ApJ, 464, 943
Kjeldsen, H., & Bedding, T. R. 1995, A&A, 293, 87
Miglio, A., Montalbán, J., Eggenberger, P., & Noels, A. 2008a, Astronomische Nachrichten, 329, 529
Miglio, A., Montalbán, J., Noels, A., & Eggenberger, P. 2008b, MNRAS, 386, 1487
Montalbán, J., Miglio, A., Noels, A., Scuflaire, R., & Ventura, P. 2010, ApJ, 721, L182
Mosser, B., Elsworth, Y., Hekker, S., et al. 2012, A&A, 537, A30
Rogers, F. J. 1994, in IAU Colloq. 147: The Equation of State in Astrophysics, eds. G. Chabrier & E. Schatzman

(Cambridge: Cambridge Univ. Press), 16
Rogers, F. J., & Iglesias, C. A. 1995, in Astronomical Society of the Pacific Conference Series, 78,

Astrophysical Applications of Powerful New Databases, eds. S. J. Adelman, & W. L. Wiese (San Francisco:
ASP), 31

Rogers, F. J., Swenson, F. J., & Iglesias, C. A. 1996, ApJ, 456, 902
Tassoul, M. 1980, ApJS, 43, 469


