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Abstract Using measured radial velocity data of five double-lined spectroscopic bi-
nary systems, HD 89959, HD 143705, HD 146361, HD 165052 and HD 152248,
we find corresponding orbital and spectroscopic elements via a Probabilistic Neural
Network. Our numerical results are in good agreement with those obtained by others
using more traditional methods.
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1 INTRODUCTION

Analysis of both light and radial velocity (hereafter VR) curves of binary systems helps us to deter-
mine the masses and radii of individual stars. One historically well-known method to analyze the VR

curve is that of Lehmann-Filhés (1894). Some other methods were also introduced by Sterne (1941)
and Petrie (1962). The different methods for VR curve analysis have been reviewed in ample detail
by Karami & Teimoorinia (2007). Karami & Teimoorinia (2007) also proposed a new non-linear
least squares velocity curve analysis technique for spectroscopic binary stars. They showed the va-
lidity of applying their new method to a wide range of different types of binary systems (See Karami
& Mohebi 2007a,b; Karami et al. 2008 and Karami & Mohebi 2009).

The method of a Probabilistic Neural Network (PNN) is a new tool to derive the orbital pa-
rameters of spectroscopic binary stars. In this method, the time consumed is considerably less than
the method of Lehmann-Filhés, and even less than the non-linear regression method proposed by
Karami & Teimoorinia (2007).

In the present paper, we use a PNN to find the optimum match to four parameters of the VR

curves from five double-lined spectroscopic binary systems: HD 89959, HD 143705, HD 146361,
HD 165052 and HD 152248. Our aim is to show the validity of applying our new method to a wide
range of different types of binary systems.

HD 89959 is a double-lined object with components that are very similar to one another. The
spectral type is K0 V with a period of P = 10.99291 days (Griffin & Filiz Ak 2010). HD 143705
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is double-lined and has components that are almost identical with one another. The spectral type
is G0 V with a period of P = 8.468685 days (Griffin & Filiz Ak 2010). HD 146361 is a binary
in the sigma CrB system. Sigma CrB is a triple system of G0-G1 spectral type. Its period is P =
1.1397912 days (Bakos 1984). HD 165052 is a massive binary that probably belongs to the open
cluster NGC 6530, in the Lagoon Nebula. The spectral type is O6 and O6.5 for the primary and
secondary stars, respectively and the orbital period is P = 2.95515 days (Linder et al. 2007). HD
152248 is an O+O binary system that belongs to the young open cluster NGC 6231. The spectral
type is O7.5 and O7 for the primary and secondary stars, respectively and the orbital period is
P = 5.816032 days (Sana et al. 2001).

This paper is organized as follows. In Section 2, we introduce a PNN to estimate the four pa-
rameters of the VR curve. In Section 3, the numerical results are reported, while the conclusions are
given in Section 4.

2 ESTIMATION OF VR CURVE PARAMETERS BY USING THE PNN

Following Smart (1990), the VR of a star in a binary system is defined as follows

VR = γ + K[cos(θ + ω) + e cos ω], (1)

where γ is the VR of the center of mass of the system with respect to the Sun, K is the amplitude of
VR of the star with respect to the center of mass of the binary, and θ, ω and e are the angular polar
coordinate (true anomaly), the longitude of periastron and the eccentricity, respectively.

Here we apply the PNN method to estimate the four orbital parameters, γ, K, e and ω, of the VR

curve in Equation (1). In this work, for the identification of the observational VR curves, the input
vector is the fitted VR curve of a star. The PNN is first trained to classify VR curves corresponding
to all the possible combinations of γ, K, e and ω. For this, one can synthetically generate VR curves
given by Equation (1) for each combination of parameters:

• −100 ≤ γ ≤ 100 in steps of 1;
• 1 ≤ K ≤ 300 in steps of 1;
• 0 ≤ e ≤ 1 in steps of 0.001;
• 0◦ ≤ ω ≤ 360◦ in steps of 5◦.

This gives a very large set of k pattern groups, where k denotes the number of different VR

classes, one class for each combination of γ, K, e and ω. Since this very large number of different
VR classes causes some computational limitations, one can start with large step sizes. Note that from
Petrie (1962), one can guess γ, K and e from a VR curve. This enables one to limit the range of
parameters around their initial guesses. When the preliminary orbit has been derived after several
stages, then one can use the above small step sizes to obtain the final orbit. The PNN has four layers
including the input, pattern, summation, and output layers, respectively (see fig. 5 in Bazarghan et al.
2008). When an input vector is presented, the pattern layer computes distances from the input vector
to the training input vectors and produces a vector whose elements indicate how close the input is to
a training input. The summation layer sums these contributions for each class of inputs to produce
as its net output a vector of probabilities. Finally, a competitive transfer function on the output layer
picks the maximum of these probabilities, and produces a 1 for that class and a 0 for the other classes
(Specht 1988, 1990). Thus, the PNN classifies the input vector into a specific k class labeled by the
four parameters γ, K, e and ω because that class has the maximum probability of being correct.

3 NUMERICAL RESULTS

Here, we use the PNN to derive the orbital elements for the five different double-lined spectroscopic
systems HD 89959, HD 143705, HD 146361, HD 165052 and HD 152248. Using measured VR data
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Fig. 1 Radial velocities of the primary and secondary components of HD 89959 plotted against the
photometric phase. The observational data have been measured by Griffin & Filiz Ak (2010).

Fig. 2 Radial velocities of the primary and secondary components of HD 143705 plotted against the
photometric phase. The observational data have been measured by Griffin & Filiz Ak (2010).

of the two components of these systems obtained by Griffin & Filiz Ak (2010) for HD 89959 and HD
143705, Bakos (1984) for HD 146361, Linder et al. (2007) for HD 165052 and Sana et al. (2001)
for HD 152248, the fitted velocity curves are plotted in terms of the photometric phase in Figures 1
to 5.

The orbital parameters obtained from the PNN for HD 89959, HD 143705, HD 146361, HD
165052 and HD 152248 are tabulated in Table 1. This Table shows that the results are in good
accordance with those obtained by Griffin & Filiz Ak (2010) for HD 89959 and HD 143705, Bakos
(1984) for HD 146361, Linder et al. (2007) for HD 165052 and Sana et al. (2001) for HD 152248.
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Fig. 3 Radial velocities of the primary and secondary components of HD 146361 plotted against the
photometric phase. The observational data have been measured by Bakos (1984).

Table 1 Orbital Parameters of HD 89959, HD 143705, HD 146361, HD 165052 and HD 152248

Name Parameter This Paper Other paper Reference

HD 89959 γ(km s−1) −2± 1 −2.97± 0.03
Kp(km s−1) 42± 1 42.31± 0.07
Ks(km s−1) 43± 1 42.68± 0.07 Griffin & Filiz Ak (2010)
e 0.287± 0.001 0.2877± 0.0011
ω(◦) 170± 5 162.60± 0.24

HD 143705 γ(km s−1) 7± 1 7.77± 0.07
Kp(km s−1) 51± 1 50.95± 0.14
Ks(km s−1) 52± 1 51.59± 0.14 Griffin & Filiz Ak (2010)
e 0.120± 0.001 0.1205± 0.0017
ω(◦) 285± 5 279.1± 1.0

HD 146361 γ(km s−1) −12± 1 −12.17± 1.29
Kp(km s−1) 64± 1 63.42± 1.17
Ks(km s−1) 66± 1 65.37± 2.67 Bakos (1984)
e 0.022± 0.001 0.022± 0.010
ω(◦) 90± 5 85± 13

HD 165052 γp(km s−1) 2± 1 2.1± 1.2
γs(km s−1) 2± 1 1.4± 1.3
Kp(km s−1) 97± 1 96.4± 1.6 Linder et al. (2007)
Ks(km s−1) 114± 1 113.5± 1.9
e 0.081± 0.001 0.081± 0.015
ω(◦) 305± 5 298.0± 10.2

HD 152248 γp(km s−1) −30± 1 −30.3± 1.5
γs(km s−1) −30± 1 −28.7± 4.3
Kp(km s−1) 217± 1 216.0± 1.5 Sana et al. (2001)
Ks(km s−1) 214± 1 213.7± 5.2
e 0.127± 0.001 0.127± 0.007
ω(◦) 90± 5 84.8± 4.7
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Fig. 4 Radial velocities of the primary and secondary components of HD 165052 plotted against the
photometric phase. The observational data have been measured by Linder et al. (2007).

Fig. 5 Radial velocities of the primary and secondary components of HD 152248 plotted against the
photometric phase. The observational data have been measured by Sana et al. (2001).

Note that the Gaussian errors of the orbital parameters in Table 1 are produced by the same steps
for generating the VR curves, i.e. ∆γ = 1,∆K = 1,∆e = 0.001 and ∆ω = 5. These are close to
the observational errors reported in the literature. Regarding the estimated errors, following Specht
(1990), the error of the decision boundaries depends on the accuracy with which the underlying
Probability Density Functions (PDFs) are estimated. Parzen (1962) proved that the expected error
gets smaller as the estimate is calculated from a progressively larger data set. This definition of
consistency is particularly important since it means that the true distribution will be approached in
a smooth manner. Specht (1990) showed that a very large value of the smoothing parameter would
cause the estimated errors to be Gaussian regardless of the true underlying distribution and that the
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Table 2 Combined Spectroscopic Elements of HD 89959, HD 143705, HD 146361, HD 165052
and HD 152248

Name Parameter This Paper Other paper Reference

HD 89959 mp sin3 i/M¯ 0.3110± 0.0003 0.3092± 0.0013
ms sin3 i/M¯ 0.3038± 0.0002 0.3065± 0.0012
(mp + ms) sin3 i/M¯ 0.6148± 0.0005 —
ap sin i/106 km 6.0849± 0.1430 6.125± 0.010 Griffin & Filiz Ak (2010)
as sin i/106 km 6.2298± 0.1429 6.179± 0.010
(ap + as) sin i/106 km 12.3147± 0.2859 —
mp/ms 1.0238± 0.0005 1.0088± 0.0023

HD 143705 mp sin3 i/M¯ 0.4736± 0.0003 0.467± 0.003
ms sin3 i/M¯ 0.4645± 0.0003 0.461± 0.003
(mp + ms) sin3 i/M¯ 0.9381± 0.0006 —
ap sin i/106 km 5.8992± 0.1150 5.889± 0.016 Griffin & Filiz Ak (2010)
as sin i/106 km 6.0149± 0.1149 5.963± 0.016
(ap + as) sin i/106 km 26.8271± 0.2299 —
mp/ms 1.0196± 0.0003 1.013± 0.004

HD 146361 mp sin3 i/M¯ 0.1316± 0.0005 0.126
ms sin3 i/M¯ 0.1276± 0.0005 0.122
(mp + ms) sin3 i/M¯ 0.2593± 0.0010 —
ap sin i/106 km 1.0034± 0.0157 0.994 Bakos (1984)
as sin i/106 km 1.0347± 0.0157 1.024
(ap + as) sin i/106 km 2.0381± 0.0313 —
mp/ms 1.0313± 0.0004 —

HD 165052 mp sin3 i/M¯ 1.5387± 0.0008 1.5± 0.1
ms sin3 i/M¯ 1.3092± 0.0007 1.3± 0.1
(mp + ms) sin3 i/M¯ 2.8479± 0.0015 —
ap sin i/R¯ 5.6424± 0.0577 5.6± 0.1 Linder et al. (2007)
as sin i/R¯ 6.6312± 0.0576 6.6± 0.1
(ap + as) sin i/R¯ 12.2736± 0.1153 —
mp/ms 1.1753± 0.0018 1.18± 0.02

HD 152248 mp sin3 i/M¯ 23.3767± 0.0016 23.19± 1.19
ms sin3 i/M¯ 23.7044± 0.0016 23.44± 0.73
(mp + ms) sin3 i/M¯ 47.0810± 0.0032 —
ap sin i/R¯ 24.7226± 0.1107 24.59± 0.17 Sana et al. (2001)
as sin i/R¯ 24.3808± 0.1108 24.35± 0.62
(ap + as) sin i/R¯ 49.1035± 0.2215 —
mp/ms 0.9862± 0.0001 0.990± 0.023

misclassification rate is stable and does not change dramatically with small changes in the smoothing
parameter.

The combined spectroscopic elements including mp sin3 i, ms sin3 i, (mp + ms) sin3 i, (ap +
as) sin i and ms/mp are calculated by substituting the estimated parameters K, e and ω into equa-
tions (3), (15) and (16) in Karami & Teimoorinia (2007), where p is for the primary star and s is
for the secondary star in the binary system. The results obtained for the five systems are tabulated in
Table 2, and they show that our results are in good agreement with those obtained by Griffin & Filiz
Ak (2010) for HD 89959 and HD 143705, Bakos (1984) for HD 146361, Linder et al. (2007) for
HD 165052 and Sana et al. (2001) for HD 152248. Here the errors of the combined spectroscopic
elements in Table 2 are obtained by the help of errors in the orbital parameters, such as equations (3),
(15) and (16) in Karami & Teimoorinia (2007).
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4 CONCLUSIONS

A PNN used to derive the orbital elements of spectroscopic binary stars was applied. PNNs are
used in both regression (including parameter estimation) and classification problems. However, one
can discretize a continuous regression problem to such a degree that it can be represented as a
classification problem (Specht 1988, 1990), as we did in this work.

Using the measured VR data of HD 89959, HD 143705, HD 146361, HD 165052 and HD 152248
obtained by Griffin & Filiz Ak (2010), Bakos (1984), Linder et al. (2007), and Sana et al. (2001),
respectively, we find the orbital elements of these systems with the PNN. Our numerical results
show that the results obtained for the orbital and spectroscopic parameters are in good agreement
with those obtained by others using more traditional methods.

This method is applicable to orbits of all eccentricities and inclination angles. In this method the
time taken is considerably less than the method of Lehmann-Filhés. It is also more accurate as the
orbital elements are deduced from all points of the velocity curve instead of only four in the method
of Lehmann-Filhés. The present method enables one to vary all of the unknown parameters γ, K,
e and ω simultaneously instead of one or two of them at a time. It is possible to make adjustments
in the elements before the final result is obtained. There are some cases, for which the geometrical
methods are inapplicable, and in these cases the present one may be found useful. One such case
would occur when observations are incomplete because certain phases could not have been observed.
Another case where this method is useful is that of a star attended by two dark companions with
commensurable periods. In this case, the resultant velocity curve may have several unequal maxima
and the geometrical methods fail altogether.
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