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Abstract A set of synchronous equations are derived from a set of non-synchronous
equations. The analytical solutions are given by solving the set of differential equa-
tions. The results of the evolutionary trend of the spin-orbit interaction are that the
semi-major axis gradually shrinks with time; the orbital eccentricity gradually de-
creases with time until orbital circularization occurs; the orbital period gradually short-
ens with time and the rotational angular velocity of the primary component gradually
speeds up with time before the orbit achieves circularization. The theoretical results
are applied to evolution of the orbit and spin of synchronous binary stars Algol A
and B that are on the main sequence. The circularization time, lifetime and the evo-
lutionary numerical solutions of orbit and spin when circularization time occurs are
estimated for Algol A and B.
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1 INTRODUCTION

Tidal friction plays an important role in evolution of the orbit and spin of a close binary system. The
earliest author who explored this topic was Zahn (1965, 1966a,b,c, 1975). Alexander (1973) firstly
studied the dynamical problem of tidal friction in a close binary system using the method employed
by Darwin (1879). Later, Hut (1980, 1981) generalized the method given by Alexander (1973).
He studied the stability of tidal equilibrium and tidal evolution in a close binary system using the
method of energy and angular momentum. However, their research only dealt with a few examples of
synchronization. Subsequent research on the synchronization of rotation was given by Zahn (1977,
1978). Rajamohan & Venkatakrishnan (1981) studied synchronization in binary stars. Giuricin et al.
(1984a) investigated synchronization in eclipsing binary stars and Giuricin et al. (1984b) also re-
searched synchronization in early-type spectroscopic binary stars. Zahn & Bouchet (1989) mainly
studied the orbital circularization of late-type binary stars in the pre-main sequence phase and the
theoretical results were given by Zahn (1989). Pan (1996) calculated the timescale for circularization
using two mechanisms: one was an equilibrium tidal mechanism described by Zahn (1977), and the
other was a purely hydrodynamic mechanism from Tassoul (1987). Keppens et al. (2000) studied the
rotational evolution of a binary star system by considering both synchronization and circularization.
Huang & Zeng (2000) also examined evolution of non-synchronized binary stars with masses 9M¯
and 6M¯. Meibom et al. (2005) observed tidal synchronization in detached solar-type binary stars
and Meibom et al. (2006) also performed an observational study of tidal synchronization in solar–
type binary stars in open clusters M35 and M34. Although Li (1998, 2004, 2009) studied some
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methods for judging synchronization of rotation in binary stars, he has not studied the evolution of
orbital rotation in synchronous binary stars. In this paper, we examine the evolutionary trends of
orbit and spin in synchronous binary stars on the main sequence.

2 EVOLUTIONARY EQUATIONS OF SYNCHRONOUS BINARY STARS
EXPERIENCING TIDAL FRICTION ON THE MAIN SEQUENCE

Equations describing secular evolution of the semi-major axis a, eccentricity e, and rotational angu-
lar velocity Ω due to tidal frication in non-synchronous binary stars are given by Zahn (1989)
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where M and R respectively denote the mass and radius of the primary star, q = M ′
M , M ′ denotes

the mass of the secondary star, ω denotes the orbital angular velocity (mean motion), and I denotes
the moment of inertia. The convective friction time tf and tidal coefficient λlm are given by Zahn &
Bouchet (1989)

tf =
(MR2

L

)1/3

, λlm = λ2(2π/|lω −mΩ|).
Here L denotes the luminosity of the primary star.

One can then derive the evolutionary equations of synchronous binary stars. Zahn & Bouchet
(1989) pointed out that when the two components rotate and their orbital motion is synchronized
so that |lω −mΩ| = ω, then all tidal coefficients are identical (λlm = λ) except for λ22. Hence
in Equations (1) – (3), λ11 = λ10 = λ12 = λ32 = λ, λ22 6= λ. When we consider that the two
components rotate synchronously, Ω = ω or Ω

ω = 1. Substituting these conditions into Equations (1)
– (3), the secular Equations (1) – (3) are reduced to the following simplified synchronous secular
equations
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We may also write supplementary secular equations according to Kepler’s third law
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where Porb denotes the orbital period and Prot denotes the rotational period.
Substituting Equation (5) for de/dt into the following equation, we get the timescale of circu-

larization
tcir =
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In the following, we use an analytical method to solve the evolutionary Equations (4)–(9) with ec-
centricity e as an independent variable.

This paper considers the evolutionary trend of the orbital rotation of synchronous binaries before
orbital circularization occurs when the stars are on the main sequence. We assume that the radius of
the primary star R may be regarded as not varying, i.e. R is a constant during the main sequence
phase of the star, but their separation or semi-major axis is variable due to tidal friction.

Combining Equation (4) with Equation (5), we obtain a differential equation

1
a

da

de
=

38
7

e. (11)

Integrating this equation, we get
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Substituting Equation (12) into Equation (5), we obtain
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By setting c = 152/7, the differential Equation (13) can be written as

1
e

exp c(e2 − e2
0)de = exp(−ce2

0)
exp(ce2)

e
de = −21q(1 + q)

λ

tf

( R

a0

)8

dt.

Using the expansion of the series

exp(ce2) = 1 + ce2 +
1
2
c2e4 +

1
3
c3e6 + ...

and integrating the above differential equation yields

exp(−ce2
0)

[
ln(e) +

1
2
ce2 +

1
8
c2e4 + ...

]e

e0

= −21q(1 + q)
λ

tf

( R

a0

)8

(t− t0).

We obtain a timescale in terms of e by neglecting the term with e4
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Combining Equation (4) with Equation (6), we derive equation
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We obtain an expression for the angular velocity of the primary in terms of e
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The integrations of Equations (7) – (9) can be obtained as
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Next, we give analytical solutions of the secular evolutionary equations with time t as an inde-
pendent variable on the main sequence.

For small values of e, as is the case for Algol A and B where e = 0.015 and 1
2ce2 = 0.0024, the

second term on the right-hand side of Equation (14) may be neglected, and we find the eccentricity
decreases with time as given in Equation (14)

e = e0 exp[−21q(1 + q)Q(t− t0)], (22)
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Substituting Equation (23) into Equation (18) or Equation (25) into Equation (16), we obtain
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3 EVOLUTION OF THE ORBIT AND SPIN IN SYNCHRONOUS BINARIES (ALGOL A
AND B )

The eclipsing binary system Algol (β Per) consists of at least three components: A, B and C. There
is actually also a massive but invisible fourth component D (Hopkins 1976). Algol A (primary) is a
main sequence star (B8 V) (Batten et al. 1989). Algol B (secondary) is a subgiant (g K0) (Brancewicz
et al. 1980; Batten et al. 1989). The separation between A and B is small and nearly constant, so
the system Algol A and B is regarded as a synchronous binary system due to the tidal friction.
Based on the work of Giuricin et al. (1984a), the mean rotational angular velocity of primary A is
v = 56 km s−1, the mean orbital angular velocity (the synchronized velocity) is vk = 55 km s−1,
and based on the work of Tan (1985), vsini = 55 km s−1 and vsyn = 55 km s−1. So A and B form
a nearly synchronous binary system and considering the apparent descriptive method for judging
the synchronization of rotation in binary stars, Li (2004, 2009) also concluded that Algol A and
B represent a nearly synchronous binary system. Hence this paper selects Algol A and B as an
example of synchronous binaries to calculate the orbital circularization and evolution of the orbit
and spin before circularization occurs on the main sequence. For the data of Algol A and B, we
cite the orbital period P orb = 2.8672 day, a0 = 14.03 R¯, M = 3.7 M¯, M ′ = 0.81 M¯,
R = 2.74 R¯, R′ = 3.60 R¯, q = M ′/M = 0.22, Te = 12 010 K (Brancewicz & Dworak 1980).
e0 = 0.015 (Tomkin & Lambert 1978, Harrington 1984), Ω0 = v/R = 2.9365×10−5 rad s−1, tf =
tf¯(M/M¯)1/3(Te/Te¯)−4/3, tf¯ = 0.433 yr, Te¯ = 5770 K, tf = 0.2519 yr and L = 2.2 L¯
(Popper 1980), where Te is the effective temperature (Zahn & Bouchet 1989).

Yang et al. (2011) recently presented an XMM-Newton observation of the eclipsing binary
Algol. Their results are useful in this field.

Zahn & Bouchet (1989) showed that when the coefficients λlm are all equal, then

λ = k2. (30)

Here k2 is the apsidal motion which is constant. λ = k2 is calculated from the formula given by
Cowling (1938) and letting k1 = k2 = k
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Here P ′ denotes the period of the apsidal motion; P ′ = 2.476 year for Algol A and B as given by
Hegedüs (1988). Substituting Porb, P ′, a, M , M ′, R and R′ into the above formula, we get

λ = k = 0.003308. (32)

The moment of inertia
I = KMR2,

where K is calculated from the formula 1
K = 3
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2 ) (Schatzman 1963), and the polytropic index

n = 3 for a main sequence star (Algol A). So K = 4/33 = 0.1212.
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= 0.02268× 10−10 km−2, exp(152e2
0/7) = 1.00489.

Substituting the values of k, tf , R, a and exp(152e2
0/7) into Equation (15), we obtain

Q = 2.7× 10−8 yr−1. (33)

Let us estimate the numerical solutions when the orbit of Algol A and B achieves circularization.
We firstly evaluate the timescale of circularization. Substituting the values of q, R0, a0, tf and

λ = k = 0.003308 into Equation (10), we obtain this value as

tcir = 6.4589× 106 yr. (34)
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Next we estimate the numerical solution of the evolutionary trend of the orbit and spin when Algol
A and B achieve orbital circularization. By letting the initial time t0 = 0, and substituting tcir =
6.4589 yr into Equations (22), (24) and (26)–(29), we get a = 14.0226R¯, e = 0.0056, ω =
2.1931 rad d−1, Porb = 2.8649 d, Ω = 2.5536 rad d−1, Prot = 2.4605 d, δa = −0.0074R¯, δe =
−0.0094, δω = 0.0017 rad d−1, δPorb = −0.0023 d, δΩ = 0.0156 rad d−1 and δProt = −0.0160 d.

The lifetime is based on stellar mass-loss Ṁ , i.e.

tlife =
M

Ṁ
. (35)

Its value may be calculated from the formula given by Bowers & Deeming (1984)
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or calculated from the formula given by Nieuwenhuijzen & de Jager (1990)

log Ṁ = −14.02 + 1.24 log(L/L¯) + 0.81 log(R/R¯) + 0.16 log(M/M¯). (37)

Substituting the values of M , R and L into Equations (36) and (35), we get the lifetime

tlife = 7.5703× 107 yr. (38)

The time for the speed up of spin is
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The orbital decay time (the collapse time of the system) is
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= 5.2273× 109 yr. (40)

Times derived in Equations (39) and (40) represent numerical values for Equations (6) and (4) re-
spectively.

4 DISCUSSION AND CONCLUSIONS

(1) The set of Equations (4)–(6) describes synchronous binaries on the pre-main sequence, main se-
quence and post-main sequence phases according to the radius of a star. The radius of a late type
star is variable due to the gravitational contraction on the pre-main sequence phase. The radius
of a giant star is variable possibly due to the expansion of the shell in the post-main sequence
phase. During the main sequence phase, the radius of a star is stable. Its radius can be regarded
as a constant. These cases refer to the radius of the primary star because in Equations (4)–(6), R
denotes the radius of the primary star. It is not applicable to the case of a giant star.

(2) The research in this paper differs from that of Zahn & Bouchet (1989) in some aspects. Zahn &
Boucher’s paper investigates the orbital evolution and circularization of binary stars during the
pre-main sequence phase by using an analytical method and for non-synchronous equations by
numerical integration. In the analytical method, the radii of binaries are variable due to gravita-
tional contraction, but the semi-major axis is not variable in the main sequence phase. However,
the present paper studies the orbit and spin of binary stars on the main sequence by implement-
ing an analytical method in which the star’s radius is not variable, but the semi-major axis is
variable due to tidal friction. In Zahn & Boucher’s paper, they must use numerical integration to
solve non-synchronous equations. However, in the present paper, we use the analytical method
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to solve the synchronous equations. Zahn & Boucher estimated that the eccentricity decreases
from 0.005 to 0.0043 in 10 billion years for binary stars on the main sequence with masses
0.5 M¯ + 0.5 M¯. This paper estimates that the eccentricity decreases from 0.015 to 0.0056
in 6.45 million years for binary stars on the main sequence with masses 3.07 M¯ + 0.81 M¯.
Hence, the different methods give differing results.

(3) The results of the solution for integrating differential equations using the analytical method are
a bit different from those using the method of numerical integration. For example, the semi-
major axis a = 14.0226R¯ for Algol A and B when the circularization time (6.4589× 106 yr)
is calculated by the former method and a = 14.0126R¯ by the latter method. However, this
difference is very small.

(4) The circularization time is shorter than the lifetime, and the time required for the speed up of
spin and the decay time (the collapse time of the system) are longer than the lifetime. Hence the
latter are both meaningless.

(5) In the system of Algol A, B and C, the tidal friction in a triple star system (Kiseleva et al. 1998)
and the perturbing effect of the third star (Algol C) (Li 2006) may decircularize the orbit of the
secondary star (Algol B). In this paper, we do not consider these effects.

Based on these results, we make the following conclusions:

(1) The eccentricity gradually decreases with time until orbital circularization occurs.
(2) The semi-major axis gradually shrinks with time or with decreases in eccentricity.
(3) The orbital period gradually shortens with time or with circularization.
(4) The rotational angular velocity of the primary component gradually speeds up with time.
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Hegedüs, T. 1988, Bulletin d’Information du Centre de Donnees Stellaires, 35, 15
Hopkins, J. 1976, Glossary of astronomy and astrophysics (University of Chicago Press), 3
Huang, R.-Q., & Zeng, Y.-R. 2000, Science in China A: Mathematics, 43, 331
Hut, P. 1980, A&A, 92, 167
Hut, P. 1981, A&A, 99, 126
Keppens, R., Solanki, S. K., & Charbonnel, C. 2000, A&A, 359, 552
Kiseleva, L. G., Eggleton, P. P., & Mikkola, S. 1998, MNRAS, 300, 292
Li, L.-S. 1998, Acta Astrophysica Sinica, 18, 77
Li, L.-S. 2004, Journal of Astrophysics and Astronomy, 25, 203, Erratum, 2005, 26, 447
Li, L.-S. 2006, AJ, 131, 994
Li, L.-S. 2009, Astronomical Research & Technology (Publ. Nat. Astron. Obs. China), 6, 264
Meibom, S., Mathieu, R. D., & Stassun, K. 2005, Bulletin of the American Astronomical Society, 36, #107.02
Meibom, S., Mathieu, R. D., & Stassun, K. G. 2006, ApJ, 653, 621
Nieuwenhuijzen, H., & de Jager, C. 1990, A&A, 231, 134
Pan, K. K. 1996, Acta Astrophysica Sinica, 16, 370



1680 L. S. Li

Popper, D. M. 1980, ARA&A, 18, 115
Rajamohan, R., & Venkatakrishnan, P. 1981, Bulletin of the Astronomical Society of India, 9, 309
Schatzman, E. 1963, in proceedings of the XXVIIIth Course of the International School of Physics “Enrico

Fermi”, Star Evolution, ed. L. Gratton (New York: Academic Press), 177
Tan, H.-S. 1985, Acta Astronomica Sinica, 26, 226
Tomkin, J., & Lambert, D. L. 1978, ApJ, 222, L119
Tassoul, J.-L. 1987, ApJ, 322, 856
Yang, X.-J., Lu, F.-J., Aschenbach, B., & Chen, L. 2011, RAA (Research in Astronomy and Astrophysics), 11,

457
Zahn, J.-P. 1965, Compt. Rend. Acad. Sci. Paris, 260, 413
Zahn, J.-P. 1966a, Ann. Astrophy., 29, 313
Zahn, J. P. 1966b, Annales d’Astrophysique, 29, 489
Zahn, J. P. 1966c, Annales d’Astrophysique, 29, 565
Zahn, J.-P. 1975, A&A, 41, 329
Zahn, J.-P. 1977, A&A, 57, 383
Zahn, J.-R. 1978, A&A, 67, 162
Zahn, J.-P. 1989, A&A, 220, 112
Zahn, J.-P., & Bouchet, L. 1989, A&A, 223, 112


