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Abstract Object correlation and maneuver detection are persistent problems in space
surveillance and maintenance of a space object catalog. We integrate these two prob-
lems into one interrelated problem, and consider them simultaneously under a sce-
nario where space objects only perform a single in-track orbital maneuver during the
time intervals between observations. We mathematically formulate this integrated sce-
nario as a maximum a posteriori (MAP) estimation. In this work, we propose a novel
approach to solve the MAP estimation. More precisely, the corresponding posterior
probability of an orbital maneuver and a joint association event can be approximated
by the Joint Probabilistic Data Association (JPDA) algorithm. Subsequently, the ma-
neuvering parameters are estimated by optimally solving the constrained non-linear
least squares iterative process based on the second-order cone programming (SOCP)
algorithm. The desired solution is derived according to theMAP criterions. The per-
formance and advantages of the proposed approach have been shown by both theoret-
ical analysis and simulation results. We hope that our work will stimulate future work
on space surveillance and maintenance of a space object catalog.

Key words: celestial mechanics — methods: analytical — techniques: miscellaneous
— surveys

1 INTRODUCTION

Object correlation and maneuver detection are very challenging and persistent problems for space
surveillance tasks. It is known that there are currently at least 19 000 trackable objects in Earth orbit
and among them 1300 have the capability of performing mission objectives and/or orbital mainte-
nance (Holzinger & Scheeres 2010). Moreover, these numbersare expected to grow significantly
due to increased tracking capabilities and new launches. Inorder to satisfy the requirements of space
situational awareness and collision avoidance, these orbiting objects should be under continuous
surveillance, however, maintaining a catalog of these objects is a very challenging task. In addition,
the available observations collected by the space surveillance systems are generally discrete in the
spatial-temporal domain. Therefore, the problem of objectcorrelation and maneuver detection dur-
ing the time intervals between these observations becomes much more difficult, in contrast with that
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commonly encountered in real-time tracking applications,particularly in regions of space that have
high-densities of spacecraft.

Object correlation and maneuver detection have been well studied in the literature. Regarding
object correlation, Tommei et al. (2007) solved the problemof orbital determination and correla-
tion of space debris by using the admissible regions and virtual debris algorithm, which can also be
applied to optical and radar observations. By embedding theadmissible regions into the Delaunay
space, Maruskin et al. (2009) presented a notional algorithm for computing an orbital correlation
and determination between two uncorrelated tracks. Farnocchia et al. (2010) described two different
linkage methods, i.e. the virtual debris algorithm and the Keplerian integral method, which aim at
implementation with affordable computational complexity. Regarding the problem of maneuver de-
tection, the corresponding methods are the varieties with respect to different modes of orbital maneu-
vering and detection metrics. Storch (2005) estimated the maneuvering parameters of a collocated
satellite in geosynchronous orbit by using nonlinear leastsquares. In Patera (2008), the energy per
unit mass was computed to detect a space event based on the technique of a moving window curve fit.
Holzinger & Scheeres (2010) presented an object correlation and maneuver detection method using
optimal control performance metrics. Kelecy & Jah (2010) focused on the detection and reconstruc-
tion of single low thrust in-track maneuvers by using the orbit determination strategies based on
the batch least-squares and extended Kalman filter (EKF). Generally speaking, the aforementioned
methods separately handled the problems of object correlation and maneuvering. Moreover, these
algorithms can neither accurately reconstruct the parameters of orbital maneuvers, nor provide an
estimation of confidence for the correct correlation between objects.

However, in practical applications, object correlation and maneuver detection are interrelated.
Orbital maneuvering is a significant factor leading to uncorrelated tracks. In addition, uncorre-
lated tracks themselves lead to intractability in the detection and calculation of orbital maneuvers.
Therefore, it is necessary to solve the problem of space object correlation and orbital maneuvering
simultaneously. In addition, not only the decisions for maneuver detection and object correlation
are necessary, but also detailed information about events,e.g. when and where the orbital maneuver
occurs, whether the reconstructed maneuver event is feasible in application, and the confidence of
correlation, are all needed in order to arrive at the desiredsolutions.

Space objects can maneuver in several modes. According to the corresponding types of thrust
(Sidi 1997), they can be classified into three models: impulsive thrust model, infinite thrust model
and low thrust model. According to whether or not the initialand final orbits have a common point,
orbital maneuvering can be divided into different cases including orbital change, orbital transfer,
etc. However, each type of maneuver will induce a maneuver velocity vector that consists of the
radial, in-track and cross-track (RIC) components. In order to conveniently describe the state of an
object’s movement, the observations can be transformed into a full 6-parameter vector or a partial
parameter vector of orbital elements based on different space surveillance systems and the formats
of observations. Note also that none of the algorithms can beadapted to all possible scenarios and
observations. In this paper, we focus on a well known situation (Sidi 1997; Kelecy & Jah 2010),
where none or only one in-track orbital maneuver occurs during the time intervals between the
different observations for a single orbital object. The observations are characterized by two groups
of full 6-parameter vectors of orbital elements to illustrate the uncertainties. In this work, we propose
a novel approach to achieve maneuver detection and object correlation, which can also be applied to
other potential scenarios.

This paper is organized as follows. The observations and a model of orbital movement are intro-
duced in Section 2. In Section 3, the posterior probabilities of orbital maneuver and a joint associ-
ation event of space objects are analyzed based on the Joint Probabilistic Data Association (JPDA)
algorithm. To derive the maximum posterior probability, the crucial step is the accurate reconstruc-
tion of the orbital maneuver time and velocity during the time intervals between the different obser-
vations. In this work, a novel approach is proposed in Section 4 for the detection and reconstruction
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Fig. 1 The space surveillance scenario in the ECI coordinate frame.

of the orbital maneuver based on a constrained nonlinear least squares scheme. The performance
of maneuver detection is also theoretically analyzed. Based on the maximum a posteriori (MAP)
criterion, the desired decision and the corresponding confidence levels for object correlation and
maneuver detection are presented in Section 5. The effectiveness and advantages of the proposed
approach are validated through the simulation results in Sections 4 and 5. Section 6 concludes this
work and addresses some open problems.

2 OBSERVATIONS AND MOVEMENT MODEL OF AN ORBITAL OBJECT

The orbital elements of space objects are important for identifying the targets and cataloging orbital
objects when conducting space surveillance. This information is often obtained via observing sev-
eral sections of an arc in the object’s orbit through variousobservation devices, e.g. radar, optical
telescope, etc. A diagram showing how the objects being observed are configured is illustrated in
Figure 1.

In this paper, we assume that a full 6-parameter vectorz of an orbital element can be provided
from the observation, which consists of the position vectorr and the velocity vectorv in the Earth-
centered inertial (ECI) coordinate frame at a certain time.We detect the maneuvers and finalize
the correlations for the previously uncorrelated tracks between two arbitrarily observed periods.
Each period may contain many different observation times. For convenience, the observed orbital
elements at different times of a period are propagated to thesame time. The observation time and
the corresponding observations during the pre-period are denoted byt0 andz0,b, respectively. Those
during the post-period are denoted byt1, andz1,a. ∆v andtm are the in-track maneuvering velocity
and maneuvering time of an orbiting object, respectively.O is the geocenter.P and P ′ are the
positions of the observation station at timest0 andt1, respectively.

By solving the Kepler problem without considering the perturbation force, we can describe the
orbital movement using an elegant state transition matrix (Der 1997)

[

r1

v1

]

=

[

fI gI

ḟI ġI

] [

r0

v0

]

. (1)

In the ECI coordinate frame,r0, v0 andr1, v1 are the position vector and velocity vector of the
object in space at timest0 andt1, respectively.I is a unit matrix.f , g, ḟ andġ are functions ofr0,
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Fig. 2 The orbital maneuver process.

v0 andt1 − t0. The concrete expression can be referred to in Der (1997). Equation (1) describes the
non-maneuvering model of the object in space.

Any orbital maneuver is accompanied by a change in the velocity of the satellite, which con-
sumes a certain quantity of fuel. For an orbital maneuver, minimization of fuel consumption is es-
sential because the weight of a payload that can be carried tothe desired orbit depends on this
minimization. Therefore, choices in the modes of orbital maneuver are limited. The thrust imposed
on the in-track direction is an efficient maneuvering mode for minimizing fuel consumption, which
is commonly applied in the process of various orbital maneuvers (Sidi 1997; Kelecy & Jah 2010).
In addition, because the duration of thrust is almost instantaneous relative to the large gap between
observations, the process of orbital maneuver can equivalently be considered as a single in-track
impulsive thrust.

The process of orbital maneuver can be divided into two stages, as illustrated in Figure 2.
In Figure 2,rm is the position vector at maneuver timetm. vm andv′

m are the pre-maneuver
velocity vector and the post-maneuver velocity vector at time tm, respectively. The orbit ma-
neuvers are along the in-track direction, so we can derivev′

m = vm + ∆v · vm/vm, where
vm = ‖vm‖2, ‖·‖2 denotes theℓ2-norm. r0, v0 and r1, v1 are the position vector and veloc-
ity vector of space object at timest0 and t1, respectively.f1, g1, ḟ1 and ġ1 are functions ofr0,
v0 and tm − t0. f2, g2 and ḟ2, ġ2 are functions ofrm, v′

m and t1 − tm. Assuming that the
observations have Gaussian white noise with zero mean,n(0, Q0) and n(0, Q1) denote the ob-
servation noises at timest0 and t1, respectively, whereQ0 andQ1 are the noise covariance. Let
Q0 = Q1 = diag

[

σ2
r , σ2

r , σ2
r , σ2

v, σ2
v , σ2

v

]

in this paper. Thus, the observed orbital elements in the

presence of noise are denoted byz0,b =
[

rT
0 , vT

0

]T
+ n(0, Q0) andz1,a =

[

rT
1 , vT

1

]T
+ n(0, Q1).

The orbital maneuvering model can be represented by the following equation:














































[

r′

1

v′

1

]

=

[

r1

v1

]

+ n(0, Q1)

=

[

f2I g2I

ḟ2I ġ2I

] ([

f1I g1I

ḟ1I ġ1I

] [

r0

v0

]

+

[

0
∆v · vm/vm

])

+ n(0, Q1),

[

r′

0

v′

0

]

=

[

r0

v0

]

+ n(0, Q0),

(2)

where

[

rm

vm

]

=

[

f1I g1I

ḟ1I ġ1I

] [

r0

v0

]

. If the orbital perturbation is taken into account, we should add

the corresponding perturbing terms to Equation (2). However, when the effect of the perturbation
force is uncorrelated with the orbital maneuvering parameters, the problem can be solved using the
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same method whether or not it has a perturbation. For convenience, this paper does not consider the
perturbation during the movement of an object in space.

3 PRINCIPLE OF MANEUVER DETECTION AND OBJECT CORRELATION

In Equation (2), the maneuvering time and velocity are unknown, which makes it possible that one
observed orbit at timet0 can create multiple potential orbits at timet1 via a single in-track maneu-
ver. Therefore, orbital maneuver and object correlation are feasible between two arbitrarily observed
orbits. To solve the aforementioned problem of object correlation and maneuver detection of the
uncorrelated tracks, the multiple hypothesis testing (MHT) method is a reasonable and well-known
solution (Benoudnine et al. 2012). LetZ = {Z0, Z1} denote the observed orbital elements, where
Z0 = {z0,1, z0,2, · · · , z0,b, · · · , z0,B} and Z1 = {z1,1, z1,2, · · · , z1,a, · · · , z1,A} are the ob-
served orbital elements at timest0 andt1, respectively. To simplify our presentation, we useb anda
to denote the corresponding indexes for the numbers of the observed orbits inZ0 andZ1. Similarly,
B andA indicate the maximal ones observed at the different times mentioned above. All the feasible
joint association events are denoted byθ = [θi], i = 1, 2, · · · , n, and the corresponding validation
matrix of the joint association eventθi is (Fortmann et al. 1983)

Ω (θi) =
[

ωi
ab (θi)

]

=







ωi
10 · · · ωi

1B
...

. . .
...

ωi
A0 · · · ωi

AB






, (3)

whereωi
ab (θi) is a binary variable.ωi

ab = 1 indicates that the observed orbitz1,a at timet1 is corre-
lated with the observed orbitz0,b at timet0, andωi

ab = 0 indicates that they are uncorrelated.b = 0
represents a newly observed object (new object and false alarm are considered as the same event in
this paper). According to the rule for constructing joint association events (Fortmann et al. 1983),

the validation matrix should satisfy
B
∑

b=0

ωi
ab = 1, a = 1, 2, · · · , A;

A
∑

a=1
ωi

ab ≤ 1, b = 1, 2, · · · , B.

In the same way, the validation matrix for maneuvering is defined asM i under the feasible joint
association eventθi. Thus, all the possible maneuvering events areM = [M i], i = 1, 2, · · · , n. The
concrete form of the validation matrix for maneuvering is

M i =
[

mi
ab(θi)

]

=







m10ω
i
10 · · · m1Bωi

1B
...

. . .
...

mA0ω
i
A0 · · · mABωi

AB






, (4)

wheremab is also a binary variable withmab = 1 indicating that the orbital maneuver occurs when
a space object moves from the observed orbitz0,b to z1,a, andmab = 0 indicates that there is no
orbital maneuver. Assuming that the orbital maneuver does not occur for the newly observed object,
the value of elementma0 in the matrixM is zero.mi

ab = mabω
i
ab suggests that the maneuver event

is only detected in the case that the orbitsa andb are hypothetically correlated.
The essence of maneuver detection and object correlation isto reconstruct the orbital maneuver

parameters over the large observation gaps and obtain the MAP estimation of a joint association
event based on two groups of observed orbital elements in thepresence of observational uncertainty,
i.e.

[

θi, M
i
]

= arg max
θ

(

arg max
M

p(M , θ|Z)
)

. (5)

The posterior probability in Equation (5) can be evaluated using the Bayesian formula

p(M i, θi|Z) =
p(Z|M i, θi)p(M i|θi)p(θi)

p(Z)
, (6)
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where the posterior probability approximately representsthe confidence of the decision.
We can incorporate two binary indicators given by

τa(θi) =

B
∑

b=1

ωi
ab(θi) =

{

1
0

, (7)

which indicates whether or not the observed orbita at timet1 is correlated with an observed orbit at
time t0.

δb(θi) =

A
∑

a=1

ωi
ab(θi) =

{

1
0

, (8)

which indicates whether or not the observed orbitb at timet0 is correlated with an observed orbit
at timet1. Let φ(θi) denote the number of newly observed objects in the joint association eventθi.

Thus, we can obtainφ(θi) =
A
∑

a=1
[1 − τa(θi)].

In many radar applications, the JPDA algorithm provides a reliable performance about data
association in dense multiple target environments and is very robust with respect to the real-world
environment (Bar-Shalom et al. 2009). According to the parametric JPDA algorithm, the evaluation
of posterior probability for a joint event is done as follows(Bar-Shalom et al. 2009):

p(M i, θi|Z)

=
λφ(θi)

c′

A
∏

a=1

B
∏

b=1

{

max P (mi
ab(θi)|z1,a, z0,b)

}ωi

ab
(θi)

B
∏

b=1

(P b
D)

δb(θi)
(1 − P b

D)
1−δb(θi)

=
λφ(θi)

c

A
∏

a=1

B
∏

b=1

{

max N
[

z1,a; ẑab|z0,b, Sab, m
i
ab(θi)

]

P
[

mi
ab(θi)

]}ωi

ab
(θi)

·
B
∏

b=1

(P b
D)

δb(θi)
(1 − P b

D)
1−δb(θi)

,

(9)

whereλ is the spatial density of the newly observed objects,P b
D is the detection probability of

the orbitb at timet1, andc′ andc are the normalization parameters. Assuming the correlation of
orbit a with orbit b has a Gaussian probability distribution, letN

[

z1,a; ẑab|z0,b, Sab, m
i
ab(θi)

]

be the conditional probability of the correlation under a certain model of maneuvering (i.e.
mi

ab(θi) = 0 or 1), ẑab|z0,b is orbit b’s predicted orbit at timet1 in the maneuver modelmi
ab(θi),

and Sab is the corresponding covariance of the predicted orbit.P
[

mi
ab(θi)

]

is the prior proba-
bility of the orbital maneuver model. In practical application, we can obtain prior knowledge of
P

[

mi
ab(θi) = 1

]

/P
[

mi
ab(θi) = 0

]

= Λ from the statistical probability of maneuvering events of
all cataloged space objects for different gaps of the observations.Λ is a small value in the current
space environment. In addition, based on our experiments, the result is not very sensitive toΛ when
its value is smaller than 0.001.

In order to obtain the MAP estimation, there are two main problems that need to be solved:
firstly, in the case of a joint eventθi, we must obtain the validation matrix of the maneuverM i by
maximizing the posterior probability ofP (mi

ab(θi)|z1,a, z0,b), which is named maneuver detection;
secondly, calculatep(M i, θi|Z) for all the feasible joint association eventsθ = [θi], i = 1, 2, · · · , n,
and select the validation matrix which has the maximum valueof p(M i, θi|Z) as the final estimated
result, which is named the MAP evaluation.
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4 ORBITAL MANEUVER DETECTION

In the case of a joint association eventθi, a Bayesian decision is applied to test for a correlation in
the maneuver event for the hypothetical pair of orbitsa andb

if maxP (mi
ab(θi) = 1|z1,a, z0,b) ≷ max P (mi

ab(θi) = 0|z1,a, z0,b)

decision mi
ab(θi) =

{

1
0

,
(10)

where

max P (mi
ab(θi)|z1,a, z0,b) = max c′′N

[

z1,a; ẑab|z0,b, Sab, m
i
ab(θi)

]

P
[

mi
ab(θi)

]

= max c′′
1

√

2π |Sab|
exp

[

(z1,a − ẑab|z0,b)
T
S−1

ab (z1,a − ẑab|z0,b)
]

P
[

mi
ab(θi)

]

,
(11)

wherec′′ is a normalization parameter. Whenmi
ab(θi) = 0, the maximum posterior probability in

the non-maneuvering mode can be calculated directly. However, whenmi
ab(θi) = 1, the unknown

parameters of maneuver time and velocity must first be estimated. Assuming that a single in-track
maneuver velocity∆v is applied to the space object at timetm (t0 ≤ tm ≤ t1), a simplified equiva-
lent least squares estimation is used to substitute the MAP estimation problem in Equation (11)

arg min
∆v,tm

(z1,a − ẑab|z0,b)
T
Q−1

1 (z1,a − ẑab|z0,b)

≈ arg max
∆v,tm

N
[

z1,a; ẑab|z0,b, Sab, m
i
ab(θi)

]

.
(12)

4.1 Method of Parameter Estimation in Orbital Maneuvering

The first equation in the maneuvering model of Equation (2) isabbreviated as

[

r′

1
T
, v′

1
T
]T

= Φ(r0, v0, ∆v, tm) + n(0, Q1).

Substituting it into the objective function of the least squares problem in Equation (12), we can
obtain

[

∆v̂, t̂m

]

= arg min
∆v,tm

([

r′

1

v′

1

]

− Φ(r0, v0, ∆v, tm)
)

T

Q−1
1

([

r′

1

v′

1

]

− Φ(r0, v0, ∆v, tm)
)

. (13)

Equation (13) is a non-linear least squares problem, with unknown parameter vectorξ =

[r0, v0, ∆v, tm]
T. Before the Gauss-Newton iterative algorithm is applied, we need to compute the

linearized form ofΦ(r0, v0, ∆v, tm) at the parameter vectorξ (Storch 2005)

H(ξ) = [H(r0), H(v0), H(∆v), H(tm)] =

[

∂Φ

∂r0
,

∂Φ

∂v0
,

∂Φ

∂∆v
,

∂Φ

∂tm

]

. (14)

The partial derivatives are calculated in Appendix A.
The initial valueξ(0) of the parameter vectorξ directly affects the convergence of the iterative

algorithm. It is important to choose an appropriate initialvalue based on the prior information of
the correlated orbits. In this paper, the observed values ofr′

0 andv′

0 at timet0 can be taken as the
initial values ofr0 andv0. Moreover, let the observed orbitsa andb propagate in the time interval
[t0, t1]. We calculate the intersection timet′m when the two orbits show the minimum difference
in the magnitude of their position vectors through cross propagation. Thus,t′m is chosen as the
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initial iterative value oftm, and the corresponding magnitude value∆v′ of the two velocity vectors’
difference at the intersection point is chosen as the initial value of maneuvering velocity∆v.

In order to obtain a more sensible and accurate result, the constraints for the unknown parameter
vectorξ should be applied in the iteration process. The constrainediterative form used for solving
the non-linear least squares problem is:

ξ(n + 1) = arg min
ξ̂(n+1)

([

r′

1

v′

1

]

− Φ(ξ(n)) + H(ξ(n))
[

ξ(n) − ξ̂(n + 1)
]

)T

· Q−1
1

([

r′

1

v′

1

]

− Φ(ξ(n)) + H(ξ(n))
[

ξ(n) − ξ̂(n + 1)
]

)

,

s.t.



















∥

∥

∥

∥

[

r0(n + 1)
v0(n + 1)

]

−
[

r′

0

v′

0

]∥

∥

∥

∥

2

≤
[

3σr13

3σv13

]

0 ≤ ∆v(n + 1) ≤ ∆vmax

t0 ≤ tm(n + 1) ≤ t1

,

(15)

where∆vmax is the upper bound of the maneuvering velocity. The iterative process is an opti-
mization problem, which can be handled by the SOCP algorithm(Lobo et al. 1998). Therefore, the
maneuvering timêtm and the maneuvering velocity∆v̂ can be estimated by multiple iterations.

4.2 Detection Performance of Orbital Maneuver

Let x =
[

r′T
1 , v′T

1 , r′T
0 , v′T

0

]T
be the observations. Using the parameter vectorξ =

[r0, v0, ∆v, tm]T, we can calculate the mathematical expectation of the observations µ(ξ) =
[

rT
1 , vT

1 , rT
0 , vT

0

]T
=

[

Φ(ξ)
T
, rT

0 , vT
0

]T

. The observation covariance isQ = diag[Q1, Q0] and

the probability density function of the observations is

p(x; ξ) =
1

(2π)
6 |Q|

exp

[

−1

2
(x − µ(ξ))TQ−1(x − µ(ξ))

]

. (16)

Therefore, the element in the Fisher information matrix forthe unknown parameters is

[I(ξ)]kl =
∂µ(ξ)

T

∂ξk

Q−1 ∂µ(ξ)

∂ξl

. (17)

Using Equation (14),∂r0/∂ξ and∂v0/∂ξ, we can easily obtain the Cramer-Rao lower bound
(CRLB) of the estimated parameterstm and∆v. Here, two common gaps of the observations are
used for analyzing the performance, i.e. one case is that thesurveillance system observes two adja-
cent orbits of an object, whose time interval is about an orbital period (about two hours for an object
in low Earth orbit); the other case is when an ascending arc and a descending arc of the same orbit
are observed, whose time interval is about 12 hours. In this paper, the parameters for the simulation
are set as follows: the initial orbit elements are semi-major axisa = 7000 km, eccentricitye = 0.01,
inclination i = 70◦, longitude of the ascending nodeΩ = 170◦, argument of periapsisω = 30◦,
mean anomalyM = 30◦; the observation errors areσr = 10 m andσv = 0.1 m s−1 . Subsequently,
we calculate the CRLBs in the simulation. For the non-maneuvering object, the CRLB’s square root
of the maneuvering velocity is0.1 m s−1, which is similar to the observation error. For the maneu-
vering objects, the distributions of the CRLBs’ square rootof the estimated maneuvering time and
velocity are shown in Figure 3.

Figure 3 indicates that the precision of estimation fluctuates with respect to the maneuvering
time instead of changing monotonically. With the increase of maneuvering velocity, the parameters
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Fig. 3 The distribution of the CRLBs’ square root of the estimated maneuvering time (a)
and velocity (b).

Table 1 Cumulative Probability Distribution of the Estimated Maneuver Velocity for the Non-
maneuvering Object

Estimated maneuvering velocity (m s
−1) ≤ 10

−3 ≤ 10
−2 ≤ 0.1 ≤ 0.3 ≤ 0.6

Cumulative probability (2 hours) 0.4500 0.4550 0.6500 0.9450 1
Cumulative probability (12 hours) 0.5050 0.5250 0.7000 0.9950 1

will be estimated with a higher precision. In addition, the precision of estimation for a large gap
t1 − t0 in observations is slightly higher than that for a small one.

Furthermore, Monte Carlo simulations are carried out to examine and analyze the performance
of maneuver detection and precision of parameter estimation in the proposed algorithm. The result
is compared with the CRLB. The parameters in the simulation are the same as the aforementioned
settings.

Firstly, we carry out the maneuver detection for the non-maneuvering object. The cumulative
probability distribution of the estimated maneuvering velocity is shown in Table 1.

Table 1 indicates that almost all the estimated maneuveringvelocities are less than3σv, which
results from observation errors. In other words, there is quite a small probability that a non-
maneuvering object would be identified as a maneuvering one.

Subsequently, the maneuver detection is carried out for themaneuvering object. In this paper,
when the estimation biases satisfyδ(tm) ≤ 60 s andδ(∆v) ≤ 0.3 m s−1, we assume that the orbital
maneuver detection is correct. Only the correct maneuver detection is used to evaluate the accuracy
of the parameter estimation. The result is shown in Figure 4.
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Fig. 4 The performance of the proposed maneuver detection algorithm. (a) Probability of correct
maneuver detection, (b) Root Mean Square Error (RMSE) of theestimated maneuver time, (c) Root
Mean Square Error (RMSE) of the estimated maneuver velocity.

Figure 4 suggests that the detection performance is closelyrelated with the real maneuver time
and the maneuver velocity. Comparing the simulation results with the CRLBs, we can find that it
will acquire a high probability of correct detection where the CRLBs of the maneuver time and
velocity are low. When the maneuver velocity exceeds 5m s−1, the probability of correct maneuver
detection probability can be as high as 1. With increasing maneuver velocity, the estimated accuracy
of the maneuver time is improved. However, the estimated accuracy of the maneuver velocity is
more sensitive to the real maneuver time, which coincides with the trend of the CRLB. In addition,
Figure 4 also shows that a larger gap interval of the observations leads to a higher estimated accuracy
than a smaller one, but the probability of correct detectionis much lower. The reasons behind this
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outcome are that it is much more difficult to get an accurate initial value for the iteration for the case
of a large gap interval than for a small gap. The larger difference between the initial iterative value
and the real value will result in a higher probability of non-convergence as well as a problem with
local convergence. This is the main reason why a larger gap ofobservations makes the detection of
an orbital maneuver more difficult.

5 OBJECT CORRELATION BASED ON THE MAP CRITERION

5.1 Evaluation of the Maximum Posterior Probability

According to the results of the maneuver detection, the maneuver timet̂m and the maneuver velocity
∆v̂ are estimated in the maneuver mode. Substituting the observed orbitb and the maneuver param-
eters into the maneuver model, we can calculateẑab|z0,b. Assuming that the prediction errors are
independent in all the dimensions, i.e. the covariance matrix Sab is diagonal, the square roots of the
diagonal elements are

[

δr1

δv1

]

= H(ξ)
[

δrT
0 δvT

0 δ∆v̂ δt̂m

]T

, (18)

where δ∆v̂ =
√

CRLB(∆v̂) and δt̂m =
√

CRLB(t̂m). The correlation probabilityN [za; ẑab|zb,

Sab, m
i
ab(θi) = 1] in the maneuvering mode can be calculated based on Equation (11). For the

non-maneuvering mode,̂zab|zb can be obtained from the state transition matrix. The squareroots of
the diagonal elements in the covariance matrixSab are calculated by

[

δr1

δv1

]

=

[

R̃(t) R(t)

Ṽ (t) V (t)

] [

δr0

δv0

]

. (19)

Therefore, the correlation probabilityN
[

z1,a; ẑab|z0,b, Sab, m
i
ab(θi) = 0

]

for the non-
maneuvering mode can be calculated. Accordingly, the posterior probability p(M i, θi|Z) of the
joint association eventθi and the corresponding validation matrix for maneuveringM i can easily be
obtained. The joint association event and the orbital maneuver are then estimated and detected based
on the MAP decision.

5.2 Performance Analysis of Object Correlation

In order to validate the effectiveness of the proposed algorithm, a simulated scenario is presented
where the incorrect correlations are most likely to take place. Consider two coplanar orbits: one
is an orbit through a single in-track maneuver; the other is anon-maneuvering orbit. The main
reason for the incorrect correlation is that the observed orbits are very close to each other at the
pre-maneuver observation timet0 or the post-maneuver observation timet1. These two scenarios
are completely symmetric, so the performances of object correlation are the same. In this paper, we
analyze the performance using the scenario that the observed orbits are very close to each other at
the pre-maneuver observation timet0, which is illustrated in Figure 5.

When the orbits are coplanar, the difference in orbital altitude is commonly used to describe the
degree of closeness of the two orbits while the other orbitalelements keep the same values. In the
presence of observational uncertainty, we adjust the interval of orbital altitude between the two orbits
for analyzing the correlation performance. The orbital element and the observation error are the same
as the parameter setting in the simulation of maneuver detection. The orbit maneuver occurs at the
center of the observations’ interval. In the simulation, the orbital altitude interval increases with a
step of 25 m, and the prior probability of the orbital maneuver is set toΛ = 0.001. The probability
Pd of the correct object correlation as well as the correct maneuver detection and the mean value of
the corresponding maximum posterior probability are shownin Figure 6.
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Fig. 5 The scenario for the performance analysis of object correlation.
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Fig. 6 Correct correlation probability and the corresponding posterior probability vs. the orbital
altitude interval. (a) Correct correlation probability vs. the orbital altitude interval. (b) The corre-
sponding posterior probability of correct object correlation.

Figure 6 suggests that the ratio of correct object correlation increases as the interval of orbits’ al-
titude becomes larger. When the orbital altitude interval is 500 m, the correct correlation probability
approaches 0.95, and the corresponding maximum posterior probability (confidence value) tends to
1. Furthermore, we can see that it achieves the highest correct correlation probability and confidence
value for the non-maneuvering object and also a larger maneuver velocity can attain higher perfor-
mance and reliability than a smaller one. In addition, the larger gap of the observation will slightly
decrease the performance of the correct object correlation. Generally speaking, the performance of
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the proposed algorithm is related to many factors, including the gaps of the observations, the ma-
neuver time, and the maneuver velocity. The success of object correlation is largely dependent on
correct maneuver detection.

6 CONCLUSIONS AND FUTURE WORK

Maneuver detection and object correlation for uncorrelated tracks play an important role in space
surveillance. This paper presents a novel method to addressthe problem of object correlation of
uncorrelated tracks with a single in-track orbital maneuver. We accurately estimate the maneuvering
time and velocity by solving a constrained non-linear leastsquares iterative problem using the SOCP
algorithm. Subsequently, according to the JPDA algorithm,the posterior probability of the feasible
joint association event and validation matrix for the maneuver are evaluated. Finally, the MAP de-
cision is used to optimally find object correlation and maneuver detection. The performance of the
proposed method is also analyzed in detail, and extensive simulations are carried out to validate the
effectiveness of the algorithm.

This paper mainly focuses on the problem of object correlation and maneuver detection in a spe-
cial situation, where we only consider a single in-track orbital maneuver during observation gaps,
and the perturbation is not taken into account. However, theproposed algorithm is a general method-
ology, which can be adapted to many different situations. A more complex situation will be handled
in future work. The following typical cases are given as examples.

Case 1: consider the perturbation. Generally speaking, the valuesof the partial derivative of the
perturbation force at the maneuver time and velocity are notvery large. Therefore, by implement-
ing the numerical integration of the perturbation force into the iterative process of the maneuver
detection, the algorithm can be applied to solve the problemwith a perturbation.

Case 2: non-in-track maneuver. If the object maneuvers not only in the in-track direction, much
more prior information about the orbital maneuver, such as the minimum energy principle (Holzinger
& Scheeres 2010) and Q-law (Petropoulos 2005), should be explored to constrain the maneuvering
model for estimating the optimum maneuver parameters. Based on the estimated maneuver parame-
ters, we can evaluate the maximum posterior probability of object correlation and maneuver detec-
tion using the JPDA.

Case 3: multiple orbital maneuvers. When orbital maneuvering times are known, the single ma-
neuver model can be extended to a more definitive model describing maneuvering times, and the
proposed method can be applied to multiple orbital maneuvers in the same way. However, in the
case of unknown times of orbital maneuver, the maneuver times must first be estimated. The orbital
maneuvering times during the gap of the observations are usually sparse, so we can reconstruct the
maneuver times based on some efficient algorithms such as sparse reconstruction (Figueiredo et al.
2007) or a global searching algorithm. Then the final resultscan be obtained using the aforemen-
tioned method.

Appendix A: CALCULATION OF THE LINEARIZED FORM OF THE TRANSITION
MATRIX IN THE MANEUVER MODE

The following parameters can be derived from the definitionsin Der (1997): during the period from
time t0 to the maneuver timetm, parameters̃R1(t), R1(t), Ṽ 1(t), V 1(t), f1, g1, ḟ1 and ġ1 are
known and defined; during the period from the maneuver timetm to the maneuver timet1, parame-
tersα, f2, g2, ḟ2, ġ2, A1, B1, A2, B2, A3, B3, Ȧ1, Ȧ2, Ȧ3, Ḃ1, Ḃ2 andḂ3 are already known and
defined.µ = 3.98600436× 1014 m3 s−2 is the Earth’s gravitational constant.
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Let ∆vm = ∆v � vm/vm , then we can obtain that

H (r0) =

[

∂f2/∂r0 ∂g2/∂r0

∂ḟ2/∂r0 ∂ġ2/∂r0

] [

rm

vm

]

+

[

f2R̃1(t) + g2Ṽ 1(t)

ḟ2R̃1(t) + ġ2Ṽ 1(t)

]

+

[

∂g2/∂r0

∂ġ2/∂r0

]

∆vm +

[

g2

ġ2

]

∂∆vm

∂vm
Ṽ 1(t) ,

(A.1)

H (v0) =

[

∂f2/∂v0 ∂g2/∂v0

∂ḟ2/∂v0 ∂ġ2/∂v0

] [

rm

vm

]

+

[

f2R1(t) + g2V 1(t)

ḟ2R1(t) + ġ2V 1(t)

]

+

[

∂g2/∂v0

∂ġ2/∂v0

]

∆vm +

[

g2

ġ2

]

∂∆vm

∂vm
V 1(t),

(A.2)

H (∆v) =

[

∂f2/∂∆v ∂g2/∂∆v

∂ḟ2/∂∆v ∂ġ2/∂∆v

] [

rm

vm

]

+

[

∂g2/∂∆v
∂ġ2/∂∆v

]

∆vm +

[

g2

ġ2

]

∂∆vm

∂∆v
, (A.3)

H(tm) =

[

∂f2/∂tm ∂g2/∂tm
∂ḟ2/∂tm ∂ġ2/∂tm

] [

rm

vm

]

+

[

f2 g2

ḟ2 ġ2

] [

ḟ1 ġ1

f̈1 g̈1

] [

r0

v0

]

+

[

∂g2/∂tm
∂ġ2/∂tm

]

∆vm +

[

g2

ġ2

]

∂∆vm

∂tm
,

(A.4)

where
∂∆vm

∂tm
= − ∆vµ

vmr3
m

rm − µ‖rm‖2

r3
mv3

m

vm,
∂∆vm

∂vm
= I3×3

∆v

vm
+

∆v

v3
m

vm1
T
3 ,

f̈2 = − µ

r3
1

( ‖r1‖2

‖g2/f2 v′

m + rm‖2

)

, g̈2 = − µ

r3
1

( ‖r1‖2

‖f2/g2 rm + v′

m‖2

)

.

Other partial derivatives are calculated as follows:

∂f2

∂∆v
= F1 (A1, A3) = A1

2

αµ
v′m + A3

rT
mvm√
µvm

, (A.5)

∂f2

∂tm
= −ḟ2 + F2 (A1, A2, A3) = −ḟ2 +

(

2A1

αr3
m

rm +
A2

rm
rm +

A3√
µ

v′

m

)T

vm

+

(

2A1

αµ
v′

m +
A3√

µ
rm

)T

·
(

−µ(1 + ∆v)

vmr3
m

rm − µ∆v‖rm‖2

r3
mv3

m

vm

)

,

(A.6)

∂f2

∂r0
= F3 (A1, A2, A3)

=

(

A1
2

αr3
m

rm + A2
rm

rm
+ A3

v′

m√
µ

)

R̃1(t) +

(

A1
2

αµ
v′

m + A3
rm√

µ

)

∂v′

m

∂vm
Ṽ 1(t),

(A.7)

∂f2

∂v0
= F4 (A1, A2, A3)

=

(

A1
2

αr3
m

rm + A2
rm

rm
+ A3

v′

m√
µ

)

R1(t) +

(

A1
2

αµ
v′

m + A3
rm√

µ

)

∂v′

m

∂vm
V 1(t),

(A.8)

where
∂v′

m

∂vm
= I3×3

(

1 +
∆v

vm

)

+
∆v

v3
m

vm1
T
3 .

In the same way, we can obtain that
∂g2

∂∆v
= F1 (B1, B3),

∂g2

∂tm
= −ġ2 + F2 (B1, B2, B3),

∂g2

∂r0
= F3 (B1, B2, B3),

∂g2

∂v0
= F4 (B1, B2, B3),

∂ḟ2

∂∆v
= F1

(

Ȧ1, Ȧ3

)

,
∂ḟ2

∂tm
= −f̈2 +
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F2

(

Ȧ1, Ȧ2, Ȧ3

)

,
∂ḟ2

∂r0
= F3

(

Ȧ1, Ȧ2, Ȧ3

)

,
∂ḟ2

∂v0
= F4

(

Ȧ1, Ȧ2, Ȧ3

)

,
∂ġ2

∂∆v
= F1

(

Ḃ1, Ḃ3

)

,

∂ġ2

∂tm
= −g̈2 + F2

(

Ḃ1, Ḃ2, Ḃ3

)

,
∂ġ2

∂r0
= F3

(

Ḃ1, Ḃ2, Ḃ3

)

,
∂ġ2

∂v0
= F4

(
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)

.
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