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Abstract Five-dimensional space-time string cosmological modeisegated by a
cloud of strings with particles attached to them are stutfi¢de Brans-Dicke theory.
We obtain two types of interesting models by taking up thesas geometric strings
(or Nambu strings) ang-strings (Takabayasi strings), and study their differdnigd-
cal and dynamical properties. The roles of the scalar fielgeiting different phases,
such as the inflationary phase and the string-dominatecephas discussed. An in-
teresting feature obtained here is that in one of the model®tis a “bounce” at a
particular instant of its evolution.
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1 INTRODUCTION

Cosmologists have taken considerable interest in the gifidgsmic strings since they are believed
to play an important role in the description of the universthie early stages of its evolution (Kibble
1976) and give rise to density perturbations leading to tmmétion of galaxies (Zeldovich 1980).
The existence of a large scale network of strings in the esnilyerse does not contradict present day
observations of the universe. These strings possess streg/ and are coupled with a gravitational
field. The very early universe underwent phase transitiohighvgave rise to topologically stable
structures of particular interest (Stachel 1980), lingarcsures called geometric strings. Letelier
(1983) presented a model of string dust in which incohereatten particles are attached to geo-
metric strings along their extension. The presence ofgdriesults in anisotropy in the space-time,
though strings are not observable in the present epochké&Jdtimain walls and monopoles, strings
cause no harm (to the cosmological models), but rather @ahtte very interesting astrophysical
consequences (Kibble 1976). The string gas cosmology @alll lto a dynamical evolution of the
early universe very different from what is obtained in stamdand inflationary cosmology and can
already be seen by combining the basic ingredients fromgsthieory discussed so far. As the radius
of a cloud of strings decreases from an initially large valdreéch maintains thermal equilibrium,
the temperature first rises as in standard cosmology siecedtupied string states (the momentum
modes) get heavier. However, as the temperature approtehegedorn temperature, the energy
begins to flow into the oscillatory modes and the increasenmperature levels off. As the radius
decreases below the string scale, the temperature begiectease as the energy begins to flow
into the winding modes whose energy decreases as the ragtiteages. The temperature singularity
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of early universe cosmology should be resolved in stringogasology. The equations that govern
the background of string cosmology are not known. The Einstquations are not correct in this
case since they do not obey the T-duality symmetry of stiiegty. Many early studies of string gas
cosmology were based on using dilation gravity equatiomsvévVer, these equations are not satis-
factory either. First we expect that these theory corredgoms to the low energy effective action of
string theory become dominant in the Hagedorn phase. Orddilition becomes large, it is unpro-
ductive to focus on fundamental string states rather thanéstates. In other words, using dilation
gravity as a background for string gas cosmology does noéctly reflect the S-duality symmetry
of string theory. Recently, a background for string gas amengy including a rolling tachyon was
proposed by Brandenberger et al. (2007) which allows a backgl in the Hagedorn phase with
constant scale factor and dilation.

The transition between the quasi-static Hagedorn phaséhamadiation phase at the time is a
consequence of the annihilation of string winding modes $titing loops. This process corresponds
to the production of radiation, hence string gas cosmology provide a natural mechanism for
explaining why there are three large spatial dimensions.

The possibility of geometrically unifying the fundameniaderactions of the universe moti-
vates the study of higher dimensional cosmological modielgas suggested by Marciano (1984);
Randjbar-Daemi et al. (1984) that the experimental deiratf the time variation of fundamental
constants could provide strong evidence for the existehegtta dimensions.

The extra dimensions, being too small, are unobservableesept. Cosmological models in
which the space coordinates expand while the fifth dimenstmiracts or remains constant were
studied by some authors, namely D’Adda et al. (1982); Apystg& Chodos (1983); Rahaman
et al. (2002); Singh et al. (2004); Mohanty et al. (2006, 20by, Mohanty & Mahanta (2007);
Rathore & Mandawat (2009).

Since the universe was much smaller in the early stages el/@hkition than it is today, the
present four-dimensional stage of the universe could haea Ipreceded by a higher dimensional
stage. The extra dimensions become unobservable due tonibalaontraction (Appelquist et al.
1987; Chatterjee 1992 and Chodos & Detweiler 1980), whialddeo the present four-dimensional
space-time of the universe. Guth (1981) and Alvarez & Ga{#983) observed that during the con-
traction process extra dimensions produce large amourgstodpy, which provides an alternative
solution to the flatness and horizon problems than the ustlationary scenario. Studies in theories
with more than four dimensions in which the extra dimensiarescompactified to the small size
of a Planck length during the evolution of the universe wélihteresting. These studies in higher
dimensions will lead to the discovery of an anomalous freesatring theory, which is an approach
to the unification of the fundamental forces of nature.

The study of the cosmological models of the Brans-DickemhéBrans & Dicke 1961), which
develops Mach’s principle in a relativistic framework bysasing the interaction of inertial masses
of fundamental particles with some cosmic scalar field, tedivith the large scale distribution of
matter in motion, has gained momentum. Models involvingiitoh (Mathiazhagan & Johri 1984),
extended inflation (La & Steinhardt 1989 and Steinhardt & &t 1990), hyper-extended inflation
and extended chaotic inflation (Linde 1990) are based on thersBDicke theory of gravitation and
general scalar tensor theories. String cosmological nsaddrans-Dicke and other alternative the-
ories of gravitation were obtained by Gundlach & Ortiz (19¥arros & Romero (1995); Banerjee
et al.(1996); Sen (2000); Barros et al. (2001); BhatackajBaruah (2001); Rahaman et al. (2003);
Reddy (2005a,b); Reddy et al. (2006); Rathore & Mandawa920vhereas five dimensional string
cosmological models in alternative theories of gravitatiere presented by Reddy & Naidu (2007);
Mohanty & Mahanta (2007); Mohanty et al. (2007b); Yoshim({ir@84); Krori et al. (1994), etc. In
this paper we investigate string cosmological models inBrens-Dicke theory of gravitation for
five-dimensional space-time, and obtain some interestihgiens. Further studies of these models
will be very stimulating.



String Cosmological Models in the Brans-Dicke Theory 41

2 FIELD EQUATIONS AND THEIR SOLUTIONS
For this problem we consider the metric
ds® = —dt* + A%dx? + B?*(da? + dx3) + C?dx7 (1)

where A, B andC' are arbitrary functions of time. The scalar tensor field ¢éigua in the Brans-
Dicke theory are given by

Gij = —8m¢ ' Tij —we ™2 (¢,z¢,j - %giﬂ,m%) — ¢ iy — 9;00), (2)

where /
O¢ = ¢ =8m¢p ' T(3+2w) " (3)

HereT;; is the stress energy tensor of mattgthe scalar field and the dimensionless coupling
constant. As a consequence of the field Equations (2) and€3)eivthe equation

i
T; =0. 4)
For cosmic strings the energy momentum tensor is given by

T) = pu'u; — \a'w; (5)

wherep is the rest energy density of the cloud of strings with pétiattached to them, the string
tension densityy’ the cloud’s four velocity and' the direction of the string satisfying the relations

uu; =a'r; = —1, u'r; =0, (6)

Relation (5) gives, for the co-moving coordinate system,

T = —p, T =T =T =0, T¢ = =\, T; =0, (7)
fori # 4, and
T=(p+ ). (8)
Here, the rest energy density of the partigigss given by
Pp=p—A, 9)

wherep, A andp,, are taken to be functions of time In this problemy is only considered to be a
function of time.
Thus for the above metric the Brans-Dicke field equation®hbtained as

P e S
2§+g+2§—g+§—z:—g(g)2+§(g)+—+§[—+—+—}, (11)

24B  2BC AC B w (10)

i B ¢ AB BC QG win: BO 6 oA B C
AtErotastBctac - 2ls) *Hetatelatstol W2
i B AR B win: Co § A B C
Z—I—QE—I—QE-Fﬁ—S?T(b )\—5(5) +65+E+E[Z+E+E}a (13)
. /A B C 8 A

bri(3+3+0) =550 o
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We have the conservation equation

. A 2B C

p+p(z+§)+(p—)\)6—0. (15)
A “dot” denotes differentiation with respect to Here we have five independent equations in six
unknownsA, B, C, ¢, p and \. Therefore we need more relations to find the determinatgisak
of these equations. Thus we try to get the solutions by talkkmtyvo cases, namely

(i) p= (14 w)A, which is the case gi-strings or Takabayasi strings, wheré> 0) is a constant.
(i) p = A, which is the case of geometric strings or Nambu strings.

Case-l Inthis case

p=1+wA. (16)
Therefore, we obtain (from the field equations),
A= (art—a0). (17)
B = bylart - ap) ", (18)
C = colart — ap)™, (19)
¢ - (alt — a0)71 , (20)
! = 94242 2 212 2 2

p = 8_7T (alt - ao) (2a1a2b1 + a2a1b1 + ajas + a1a2b1
—2atashier — ajazer —ajer - %af — 4a}), (21)

! = 00242 2 272 2 2

A = m (alt — ao) (2a1a2b1 —+ a2a1b1 + ajas + a1a2b1

—2afasbicy — ajazer — ajer — %a% —4a?), (22)

whereayg, a1, az, bg, b1, co @andc; are arbitrary constants satisfying the relations

a%b% + a2b101 + agc1 + CLle + 2&2 + 2— 20,21)101 - agbl - CL% == O, (23)

3a§b1 + 2a%b1w + 4a§b1 + 3a§b% + Bashy + 2asw + 4as + a%
— 2c1w — 2asbicr — a’e1 — 9ep —dw — 12 =0, (24)

2@21)1 + ag — 3 + (20,2()1 +ag —c1 — 3)&) = O, (25)

2@2()161 + ascy + 3@2()1 + a% +w + 2 — a2 — C1

+ w(agb% + 2a2by + dashy + a2 + % — 21 — 2) =0, (26)
2a2b1—|—a2—c1—2:(), (27)
ajazco = do , (28)

and wherel, is an integration constant,

w
2 T (g 2 2 2 272 | 2 2
boes ™ (2a7aszbr + asaib] + ajas + afasby

- 2a%a2b101 - a%agcl - a%cl - %a% - 4a§) =1. (29)
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For this model we have

w _
Pp = m(alt —ag) (2a3a3by + a3aibi + atas + ajashy
w
—2a2asbic1 — adasey —alep — Ea% —4%. (30)
1 1 2 4 2
o = 3—\/§(a1t — ao) [(2&1&2(1 — bobl) + alcocl) + bO (alag(bobl — 1) + alcocl)
2 2
+ bé (alag(bobl — 1) + alcocl) + Cg (2&16001 + a1a2(2b0b1 + 1)) :| . (31)
Volume,
a2+2azb; —cy
V= bgco (alt — ao) 5 (32)
expansion factor,
0= (alt — ao)_l {alag(Qbobl + 1) + alcocl} s (33)
and deceleration parameter,
-1
g =—3(2a2b1 + az —¢1 — a1) |:a1a2(2b0b1 +1) - alcocl] —1. (34)
Case-Il. In this case
p=A. (35)
Therefore we obtain (from the field equations),
A = exp (L1t + £y), (36)
B = mo exp (€1m1t + éoml) y (37)
C = exp(ng — 2n1t), (38)
¢ = exp (sit — s0), (39)

1
p= (2€§m1 + K%m% —3n1l1 — 501ming + 2ny1s1 — %s% - 28%) exp (s1t — sg),  (40)

87
1
A= B (2€%m1 + 03m3 — 3n1ly — 50yming + 2n151 + %s% — 23%) exp (s1t —sp), (41)
wherely, (1, mg, m1,ng,n1, So ands; are arbitrary constants satisfying the relations

302m? 4+ 4n? — 40 myny — En2 — 20181 + 82 —l1mys1 =0, 42
1My 1 5" 1

@m% + é% + 471% + K%ml + 271181 + %S% — 2€1m1n1 - 2€1m1$1 - 261711 — 6151 — S% = O, (43)

5¢1maing + 201miwsy + 20 wsy + 4liwsy + 2ws% + 30ing + 4181 + 48%

— 14ny s — dnqjwsy — 401%2mq — 4€%m% — Z% =0, (44)
209m7 4+ ws? + 357 + €3 4+ 3n1ly + 5lyming — €151 — bymysy =0, (45)
s1+ 01+ 200om; =0, (46)

20gmy + Lo +no — S0 = 20 (47)
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wherez, is an integration constant,
20gmy + Ly — s =0, (48)

mg (2£%m1 +02m?2 —30ny —50ming +2n,15; — gsl 251) exp (20omy + €y — sp) = 1. (49)

In this model
0 = 41 +201mq + 204, (50)
¢ =, D)
V = mg exp [(€1 + lamy — 2nq)t + Lo + Lomy + 20], (52)
1 3
= 301 —n1)? 4+ = (30, + 5n1)% + 2503 | . 53
o 3\/— (341 1) 2( 1 1) 1 (53)

3 DISCUSSION AND CONCLUSIONS

In Case-l it is seen that with the increase in time the fifth efision of the Brans-Dicke model
contracts and becomes unobservable after some time whbheetisee space dimensions expand in
the normal way forms > 0,b; > 0. Thus for this model to be physically realistic, we must have
az > 0,a2b; > 0. It has no initial singularity, but there is a “bounce’tat <. The expansion rate
in this modeI decreases aincreases and becomes almost nit as oo. Here the shear is found

to be a decreasing function of time. Sm}lﬁolo (W) # 0 this model is not isotropic for large values

of t. Here the deceleration paramegds found to be negative, which shows that the model inflates.
From the expression of the volume of this model it is seenttfiatmodel follows the power law of
inflation foras (1 + 2b1) — ¢1 > 0.

Here the rest energy density string tension density and particle density, are found to be
decreasing functions of time. These physical parametedsttezero if

w

2&% + a%b% + asby + as = 29b1¢1 + ascy +c¢1 +4 + 5 ,

and in this case we see that our model degenerates into aifinamsional vacuum model in the
Brans-Dicke theory. On the other hand these density pasasend to infinity at = 22. Itis seen

that there exists a linear relationship betweeandp,, namely"p = w. Here it may be noted that
this model becomes a string-dominated universe 4f 0.

The scalar field is found to be a decreasing function of time\t the beginning of the universe
the scalar field has a significant role in establishing a gtdominated era. At large cosmic time,
when the effect of the scalar field is negligible, it is seeat fharticles dominate over the strings to
fill up the volume of the universe.

The model universe in this case represents a shearing atating, realistic string cosmological
model of Bianchi type-I, having inflationary character ie 8rans-Dicke theory for five-dimensional
space-time. It has a point type singularitytat a2 Forbg = b1 =co =1 andc; = as the spatial
sections of the space-time will be four flat spaces. The foglof this model may be of great help
in understanding the early phases of the evolution of theausé.

The model in Case-II has no initial singularity. It is exparglat a constant rate. This model
is also found to be shearing, but at a rate independent of @imee here%2 # 0, this universe
remains anisotropic throughout the evolution. Again, asdbaceleration parameter is found to be
negative, our model is an inflationary one. In this model tle¢rim coefficient of the fifth dimension
is found to be constant at the initial epoch, then the fifthefision contracts as time passes and
becomes unobservable at infinite time. Here the three spaeendions expand in the normal way
for ¢, > 0,m; > 0.
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At the instant of the beginning of this model universe thdescfeld is found to be a constant
quantity, it then increases gradually with time until it betes unity at = 22, and after that it again
gradually increases. In view of the expression of the volwfnhis model universe, it is seen that
it follows the exponential law of inflation fof, (m; + 1) > 2n;. Here the rest energy densjty
as well as the string tension densiyare found to decrease with time until they become zero as
t — oo. Thus this model represents a string cosmological modsl tliminated by matter particles

which can therefore be considered as a realistic universe.
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