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Abstract Five-dimensional space-time string cosmological models generated by a
cloud of strings with particles attached to them are studiedin the Brans-Dicke theory.
We obtain two types of interesting models by taking up the cases of geometric strings
(or Nambu strings) andp-strings (Takabayasi strings), and study their different physi-
cal and dynamical properties. The roles of the scalar field ingetting different phases,
such as the inflationary phase and the string-dominated phase, are discussed. An in-
teresting feature obtained here is that in one of the models there is a “bounce” at a
particular instant of its evolution.
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1 INTRODUCTION

Cosmologists have taken considerable interest in the studyof cosmic strings since they are believed
to play an important role in the description of the universe in the early stages of its evolution (Kibble
1976) and give rise to density perturbations leading to the formation of galaxies (Zeldovich 1980).
The existence of a large scale network of strings in the earlyuniverse does not contradict present day
observations of the universe. These strings possess stressenergy and are coupled with a gravitational
field. The very early universe underwent phase transitions which gave rise to topologically stable
structures of particular interest (Stachel 1980), linear structures called geometric strings. Letelier
(1983) presented a model of string dust in which incoherent matter particles are attached to geo-
metric strings along their extension. The presence of strings results in anisotropy in the space-time,
though strings are not observable in the present epoch. Unlike domain walls and monopoles, strings
cause no harm (to the cosmological models), but rather can lead to very interesting astrophysical
consequences (Kibble 1976). The string gas cosmology will lead to a dynamical evolution of the
early universe very different from what is obtained in standard and inflationary cosmology and can
already be seen by combining the basic ingredients from string theory discussed so far. As the radius
of a cloud of strings decreases from an initially large valuewhich maintains thermal equilibrium,
the temperature first rises as in standard cosmology since the occupied string states (the momentum
modes) get heavier. However, as the temperature approachesthe Hagedorn temperature, the energy
begins to flow into the oscillatory modes and the increase in temperature levels off. As the radius
decreases below the string scale, the temperature begins todecrease as the energy begins to flow
into the winding modes whose energy decreases as the radius decreases. The temperature singularity
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of early universe cosmology should be resolved in string gascosmology. The equations that govern
the background of string cosmology are not known. The Einstein equations are not correct in this
case since they do not obey the T-duality symmetry of string theory. Many early studies of string gas
cosmology were based on using dilation gravity equations. However, these equations are not satis-
factory either. First we expect that these theory correction terms to the low energy effective action of
string theory become dominant in the Hagedorn phase. Once the dilation becomes large, it is unpro-
ductive to focus on fundamental string states rather than brane states. In other words, using dilation
gravity as a background for string gas cosmology does not correctly reflect the S-duality symmetry
of string theory. Recently, a background for string gas cosmology including a rolling tachyon was
proposed by Brandenberger et al. (2007) which allows a background in the Hagedorn phase with
constant scale factor and dilation.

The transition between the quasi-static Hagedorn phase andthe radiation phase at the time is a
consequence of the annihilation of string winding modes into string loops. This process corresponds
to the production of radiation, hence string gas cosmology may provide a natural mechanism for
explaining why there are three large spatial dimensions.

The possibility of geometrically unifying the fundamentalinteractions of the universe moti-
vates the study of higher dimensional cosmological models.It was suggested by Marciano (1984);
Randjbar-Daemi et al. (1984) that the experimental detection of the time variation of fundamental
constants could provide strong evidence for the existence of extra dimensions.

The extra dimensions, being too small, are unobservable at present. Cosmological models in
which the space coordinates expand while the fifth dimensioncontracts or remains constant were
studied by some authors, namely D’Adda et al. (1982); Appelquist & Chodos (1983); Rahaman
et al. (2002); Singh et al. (2004); Mohanty et al. (2006, 2007a,b); Mohanty & Mahanta (2007);
Rathore & Mandawat (2009).

Since the universe was much smaller in the early stages of itsevolution than it is today, the
present four-dimensional stage of the universe could have been preceded by a higher dimensional
stage. The extra dimensions become unobservable due to dynamical contraction (Appelquist et al.
1987; Chatterjee 1992 and Chodos & Detweiler 1980), which leads to the present four-dimensional
space-time of the universe. Guth (1981) and Alvarez & Gavela(1983) observed that during the con-
traction process extra dimensions produce large amounts ofentropy, which provides an alternative
solution to the flatness and horizon problems than the usual inflationary scenario. Studies in theories
with more than four dimensions in which the extra dimensionsare compactified to the small size
of a Planck length during the evolution of the universe will be interesting. These studies in higher
dimensions will lead to the discovery of an anomalous free super string theory, which is an approach
to the unification of the fundamental forces of nature.

The study of the cosmological models of the Brans-Dicke theory (Brans & Dicke 1961), which
develops Mach’s principle in a relativistic framework by assuming the interaction of inertial masses
of fundamental particles with some cosmic scalar field, coupled with the large scale distribution of
matter in motion, has gained momentum. Models involving inflation (Mathiazhagan & Johri 1984),
extended inflation (La & Steinhardt 1989 and Steinhardt & Accetta 1990), hyper-extended inflation
and extended chaotic inflation (Linde 1990) are based on the Brans-Dicke theory of gravitation and
general scalar tensor theories. String cosmological models in Brans-Dicke and other alternative the-
ories of gravitation were obtained by Gundlach & Ortiz (1990); Barros & Romero (1995); Banerjee
et al.(1996); Sen (2000); Barros et al. (2001); Bhatacharjee & Baruah (2001); Rahaman et al. (2003);
Reddy (2005a,b); Reddy et al. (2006); Rathore & Mandawat (2009), whereas five dimensional string
cosmological models in alternative theories of gravitation were presented by Reddy & Naidu (2007);
Mohanty & Mahanta (2007); Mohanty et al. (2007b); Yoshimura(1984); Krori et al. (1994), etc. In
this paper we investigate string cosmological models in theBrans-Dicke theory of gravitation for
five-dimensional space-time, and obtain some interesting solutions. Further studies of these models
will be very stimulating.
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2 FIELD EQUATIONS AND THEIR SOLUTIONS

For this problem we consider the metric

ds2 = −dt2 + A2dx2
1 + B2(dx2

1 + dx2
3) + C2dx2

4 , (1)

whereA, B andC are arbitrary functions of time. The scalar tensor field equations in the Brans-
Dicke theory are given by

Gij = −8πφ−1Tij − ωφ−2
(

φ,iφ,j −
1

2
gijφ,kφ

′k
)

− φ−1(φij − gij�φ) , (2)

where
�φ = φ

′k
;k = 8πφ−1T (3 + 2ω)−1 . (3)

HereTij is the stress energy tensor of matter,φ the scalar field andω the dimensionless coupling
constant. As a consequence of the field Equations (2) and (3) we get the equation

T
ij
,j = 0 . (4)

For cosmic strings the energy momentum tensor is given by

T i
j = ρuiuj − λxixj , (5)

whereρ is the rest energy density of the cloud of strings with particles attached to them,λ the string
tension density,ui the cloud’s four velocity andxi the direction of the string satisfying the relations

uiuj = xixi = −1 , uixi = 0 . (6)

Relation (5) gives, for the co-moving coordinate system,

T 0
0 = −ρ, T 1

1 = T 2
2 = T 3

3 = 0, T 4
4 = −λ, T i

j = 0 , (7)

for i 6= j, and
T = (ρ + λ) . (8)

Here, the rest energy density of the particlesρp is given by

ρp = ρ − λ , (9)

whereρ, λ andρp are taken to be functions of timet. In this problemφ is only considered to be a
function of time.

Thus for the above metric the Brans-Dicke field equations areobtained as
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We have the conservation equation

ρ̇ + ρ
( Ȧ

A
+

2Ḃ

B

)

+ (ρ − λ)
Ċ

C
= 0 . (15)

A “dot” denotes differentiation with respect tot. Here we have five independent equations in six
unknownsA, B, C, φ, ρ andλ. Therefore we need more relations to find the determinate solutions
of these equations. Thus we try to get the solutions by takingup two cases, namely

(i) ρ = (1 + ω)λ, which is the case ofp-strings or Takabayasi strings, whereω(> 0) is a constant.
(ii) ρ = λ, which is the case of geometric strings or Nambu strings.

Case-I In this case
ρ = (1 + ω)λ . (16)

Therefore, we obtain (from the field equations),

A = (a1t − a0)
a2 , (17)
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a2b1 , (18)
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wherea0, a1, a2, b0, b1, c0 andc1 are arbitrary constants satisfying the relations
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For this model we have

ρp =
ω

8π(ω + 1)
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Volume,
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0c0

(

a1t − a0

)a2+2a2b1−c1
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expansion factor,
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and deceleration parameter,

q = −3(2a2b1 + a2 − c1 − a1)
[
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]

−1

− 1 . (34)

Case-II. In this case
ρ = λ . (35)

Therefore we obtain (from the field equations),

A = exp (ℓ1t + ℓ0) , (36)

B = m0 exp (ℓ1m1t + ℓ0m1) , (37)

C = exp (n0 − 2n1t) , (38)

ϕ = exp (s1t − s0) , (39)
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whereℓ0, ℓ1, m0, m1, n0, n1, s0 ands1 are arbitrary constants satisfying the relations
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2ℓ0m1 + ℓ0 + n0 − s0 = z0 , (47)
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wherez0 is an integration constant,

2ℓ0m1 + ℓ0 − s0 = 0 , (48)
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In this model

θ = ℓ1 + 2ℓ1m1 + 2n1 , (50)

q = −4 , (51)

V = m2
0 exp [(ℓ1 + ℓ1m1 − 2n1)t + ℓ0 + ℓ0m1 + z0] , (52)
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1
2
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3 DISCUSSION AND CONCLUSIONS

In Case-I it is seen that with the increase in time the fifth dimension of the Brans-Dicke model
contracts and becomes unobservable after some time whereasthe three space dimensions expand in
the normal way fora2 > 0, b1 > 0. Thus for this model to be physically realistic, we must have
a2 > 0, a2b1 > 0. It has no initial singularity, but there is a “bounce” att = a0

a1
. The expansion rate

in this model decreases ast increases and becomes almost nil ast → ∞. Here the shearσ is found
to be a decreasing function of time. Sincelim

t→∞

(

σ2

θ2

)

6= 0 this model is not isotropic for large values

of t. Here the deceleration parameterq is found to be negative, which shows that the model inflates.
From the expression of the volume of this model it is seen thatthis model follows the power law of
inflation fora2(1 + 2b1) − c1 > 0.

Here the rest energy densityρ, string tension densityλ and particle densityρp are found to be
decreasing functions of time. These physical parameters tend to zero if

2a2
2 + a2

2b
2
1 + a2b1 + a2 = 22b1c1 + a2c1 + c1 + 4 +

ω

2
,

and in this case we see that our model degenerates into a five-dimensional vacuum model in the
Brans-Dicke theory. On the other hand these density parameters tend to infinity att = a0

a1
. It is seen

that there exists a linear relationship betweenλ andρp, namelyρp

λ
= ω. Here it may be noted that

this model becomes a string-dominated universe ifw ∼ 0.
The scalar fieldφ is found to be a decreasing function of timet. At the beginning of the universe

the scalar field has a significant role in establishing a string dominated era. At large cosmic time,
when the effect of the scalar field is negligible, it is seen that particles dominate over the strings to
fill up the volume of the universe.

The model universe in this case represents a shearing, non-rotating, realistic string cosmological
model of Bianchi type-I, having inflationary character in the Brans-Dicke theory for five-dimensional
space-time. It has a point type singularity att = a0

a1
. For b0 = b1 = c0 = 1 andc1 = a2 the spatial

sections of the space-time will be four flat spaces. The findings of this model may be of great help
in understanding the early phases of the evolution of the universe.

The model in Case-II has no initial singularity. It is expanding at a constant rate. This model
is also found to be shearing, but at a rate independent of time. Since hereσ2

σ
6= 0, this universe

remains anisotropic throughout the evolution. Again, as the deceleration parameter is found to be
negative, our model is an inflationary one. In this model the metric coefficient of the fifth dimension
is found to be constant at the initial epoch, then the fifth dimension contracts as time passes and
becomes unobservable at infinite time. Here the three space dimensions expand in the normal way
for ℓ1 > 0, m1 > 0.
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At the instant of the beginning of this model universe the scalar field is found to be a constant
quantity, it then increases gradually with time until it becomes unity att = s0

s1
, and after that it again

gradually increases. In view of the expression of the volumeof this model universe, it is seen that
it follows the exponential law of inflation forℓ1(m1 + 1) > 2n1. Here the rest energy densityρ,
as well as the string tension densityλ are found to decrease with time until they become zero as
t → ∞. Thus this model represents a string cosmological model later dominated by matter particles
which can therefore be considered as a realistic universe.
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