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Abstract We study the regular or chaotic character of orbits in a 3D dynamical model,
describing a triaxial galaxy surrounded by a spherical dark halo component. Our nu-
merical experiments suggest that the percentage of chaotic orbits decreases exponen-
tially as the mass of the dark halo increases. A linear increase of the percentage of
the chaotic orbits was observed as the scale length of the halo component increases.
In order to distinguish between regular and chaotic motion, we chose to use the total
angular momentum Ltot of the 3D orbits as a new indicator. Comparison with other,
previously used, dynamical indicators, such as the Lyapunov Characteristic Exponent
or the P (f) spectral method, shows that the Ltot indicator gives very fast and reliable
results for characterizing the nature of orbits in galactic dynamical models.

Key words: galaxies: kinematics and dynamics — dynamical indicators

1 INTRODUCTION

In this paper we shall study the motion in a 3D composite galaxy model described by the potential

Vt (x, y, z) = Vg (x, y, z) + Vh (x, y, z) , (1)

where

Vg (x, y, z) =
υ2

0

2
ln

(
x2 − λx3 + αy2 + bz2 + c2

b

)
, (2)

while

Vh (x, y, z) =
−Mh

(x2 + y2 + z2 + c2
h)1/2

. (3)

Potential Equation (2) describes a triaxial elliptical galaxy with a bulge and a small asymmetry
introduced by the term −λx3, λ � 1 (see Binney & Tremaine 2008). The parameters α and b
describe the flattening of the galaxy, while cb is the scale length of the bulge of the galaxy. The
parameter υ0 is used for the consistency of the galactic units. To this potential we add a spherical
dark halo, described by the potential Equation (3). Here Mh and ch are the mass and the scale length
of the dark halo component, respectively.

The aim of this article is twofold: (i) To investigate the motion in the potential Equation (1) and
to determine the role played by the halo on the character of orbits. In particular, we are interested
in connecting the percentage of chaotic orbits, as well as the degree of chaos, with the physical
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parameters, such as the mass and the scale length of the dark halo component. (ii) To introduce, use
and check a new fast indicator, which is the total angular momentum Ltot, of the 3D orbits, in order
to obtain a reliable criterion to distinguish between ordered and chaotic orbits.

The outcomes of the present research are mainly based on the numerical integration of the
equations of motion

ẍ = −∂ Vt(x, y, z)
∂x

,

ÿ = −∂ Vt(x, y, z)
∂y

, (4)

z̈ = −∂ Vt(x, y, z)
∂z

,

where the dot indicates derivatives with respect to time. The Hamiltonian of the potential
Equation (1) is written as

H =
1
2

(
p2

x + p2
y + p2

z

)
+ Vt(x, y, z) = h3, (5)

where px, py and pz are the momenta per unit mass conjugate to x, y and z, respectively, while h3

is the numerical value of the Hamiltonian.
In this article, we use a system of galactic units, where the unit of length is 1 kpc, the unit of

mass is 2.325 × 107M� and the unit of time is 0.97748 × 108 yr. The velocity unit is 10 km s−1,
while G is equal to unity. The energy unit (per unit mass) is 100 km2s−2. In the above units we use
the values: υ0 = 15, cb = 2.5, α = 1.5, b = 1.8 and λ = 0.03, while Mh and ch are treated
as parameters. Orbit calculations are based on the numerical integration of the equations of motion
given in Equation (4). This was made using a Bulirsh - Stoer method in double precision and the
accuracy of the calculations was checked by the constancy of the energy integral Equation (5), which
was conserved up to the twelfth significant figure.

The article is organized as follows: In Section 2 we introduce a new dynamical parameter and
present results for the 2D system. In Section 3 we study the character of orbits in the 3D system
and make a comparison with other indicators. Finally, in Section 4, we present a discussion and the
conclusions of this research.

2 A NEW INDICATOR: THE CHARACTER OF MOTION IN THE 2D SYSTEM

The value of the total angular momentum for a star of mass m = 1 moving in a 3D orbit is

Ltot =
√

L2
x + L2

y + L2
z, (6)

where Lx, Ly, and Lz are the three components of angular momentum along the x, y and z axes,
respectively, given by

Lx = yż − ẏz,

Ly = zẋ − żx, (7)

Lz = xẏ − ẋy .

For the 2D system we describe in Equation (7), z = ż = 0, that is Ltot reduces to Lz . Here, we
must note that the total angular momentum Equation (6) is conserved only for a spherical system.
The same is true for all the three components of the angular momentum. On the other hand, in
axially symmetric galactic models only the Lz component of the angular momentum is conserved.
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Fig. 1 The x − px phase plane when (a) Mh = 0, h2 = 516; (b) Mh = 10 000, h2 = −226; (c)
Mh = 20 000, h2 = −1007 and (d) Mh = 30 000, h2 = −1788. The values of all other parameters
are given in the text.

In this research, we shall use the plot of the Ltot vs. time in order to distinguish regular from chaotic
motion.

Our next step is to study the properties of the 2D dynamical system, which comes from potential
Equation (1) if we set z = 0. The corresponding 2D Hamiltonian is written as

H2 =
1
2

(
p2

x + p2
y

)
+ Vt(x, y) = h2, (8)

where h2 is the numerical value of the Hamiltonian. We do this in order to use the results obtained
for the 2D model in the study of the more complicated 3D model, which will be presented in the
next section.

Figure 1(a)–(d) shows the x − px, (y = 0, py > 0) phase plane for four different values of the
mass of the halo. The values of all other parameters are υ0 = 15, cb = 2.5, α = 1.5, b = 1.8,
λ = 0.03, and ch = 8. The values of the energy h2 were chosen so that in all phase planes
xmax � 10. Figure 1(a) shows the phase plane when the system has no halo component, that is
when Mh = 0. The value of h2 is 516. One can see that almost all of the phase plane is covered by a
chaotic sea. The regular regions consist of a small set of islands produced by secondary resonances.
Figure 1(b) shows the phase plane when Mh = 10 000, while h2 = −226. As we can see, the major-
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Fig. 2 The x − px phase plane, when Mh = 10 000 and (a) ch = 10.5, h2 = −135; (b) ch = 13,
h2 = −55; (c) ch = 15.5, h2 = 11 and (d) ch = 18, h2 = 68. The values of all other parameters
are given in the text.

ity of the phase plane is covered by chaotic orbits. There are also two considerable regular regions
inside the chaotic sea. These belong to invariant curves produced by quasi-periodic orbits which are
characteristic of a 1:1 resonance. There are also regular regions produced by quasi-periodic orbits
which are characteristic of a 2:3 resonance. In the outer part we can see some regular regions pro-
duced by quasi-periodic orbits characteristic of the 2:1 resonance. Some small islands produced by
secondary resonances are also embedded in the chaotic sea. Figure 1(c) is similar to Figure 1(a) but
when Mh = 20 000 and h2 = −1007. Here, the chaotic region is much smaller, while the ma-
jority of orbits are regular. The most prominent characteristic of this phase plane is the presence
of many small islands produced by secondary resonances. Figure 1(d) shows the phase plane when
Mh = 30 000 and h2 = −1788. Here we only see a small chaotic layer, while the rest of the phase
plane is covered by regular orbits. The characteristic of this phase plane is that a considerable part
of the regular orbits are box orbits. Secondary resonances are also observed.

Therefore, our numerical results suggest that the chaotic regions in our 2D composite galactic
dynamical system described by the Hamiltonian Equation (8) strongly depend on the mass of the halo
component. The mass of the halo acts as a catalyst on the asymmetry of the galaxy and drastically
reduces the percentage of the chaotic orbits. Thus, one can conclude that massive spherical dark
halos can act as chaos controllers in galaxies showing small asymmetries.
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Fig. 3 (a) A plot of the area A% covered by chaotic orbits vs. Mh and (b) A plot of the area A%
covered by chaotic orbits vs. ch. The values of all the other parameters are given in text.

Figure 2(a)–(d) is similar to Figure 1(a)–(d), when Mh is 10 000 while ch is treated as a param-
eter. All other parameters are as shown in Figure 1. Here again, the values of the energy h2 were
chosen so that in all phase planes xmax � 10. In Figure 2(a) we have ch = 10.5 and h2 = −135.
Here the phase plane has a large chaotic region, while one also observes considerable areas of reg-
ular motion. In Figure 2(b), where the values of ch and h2 are 13 and –55, respectively, the chaotic
sea increases, while the regular region decreases. In the phase plane shown in Figure 2(c), we have
taken ch = 15.5 and h2 = 11. Obviously, the chaotic sea is larger than that shown in Figure 2(b).
On the other hand, the regular region is smaller than that given in Figure 2(b). Finally, in the results
presented in Figure 2(d) we have chosen ch = 18 and h2 = 68. Here the chaotic sea is even larger,
while the regular regions are smaller than those shown in Figure 2(c).

The conclusion is that, for a given mass of the dark halo component, the percentage of chaotic
orbits increases as the scale length of the halo increases. In other words, the numerical experiments
indicate that one would expect to observe less chaos in asymmetric triaxial galaxies surrounded by
dense halos, while the chaotic orbits would increase in similar galaxies surrounded by less dense
spherical halo components.

Figure 3(a) shows the percentage of the phase plane A% covered by chaotic orbits as a function
of the mass of the dark halo, for two different values of xmax. The values of the parameters are
υ0 = 15, cb = 2.5, α = 1.5, b = 1.8, λ = 0.03 and ch = 8. We see that A% decreases exponentially
as Mh increases. Figure 3(b) shows a plot of A% and ch. The values of the parameters are υ0 = 15,
cb = 2.5, α = 1.5, b = 1.8, λ = 0.03 and Mh = 10 000. Here we see that A% increases linearly as
ch increases. The authors would like to make it clear that A% is estimated on a completely empirical
basis by measuring the area in the x − px phase plane occupied by chaotic orbits.

Figure 4(a) and (b) shows a plot of the Lyapunov Characteristic Exponent (LCE) (see
Lichtenberg & Lieberman 1992) vs. Mh and ch, respectively. The values of the parameters for
Figure 4(a) are the same as in Figure 3(a) and for Figure 4(b) are the same as in Figure 3(b). One can
see, in Figure 4(a), that the LCE decreases exponentially when Mh increases, while in Figure 4(b)
we see that the LCE increases exponentially when ch increases. Here we must point out that it is well
known that the LCE has different values in each chaotic component (see Saitô & Ichimura 1979).
Since we have regular regions in all cases and only a large chaotic sea, we calculate the average
value of the LCE in each case by taking thirty orbits with different initial conditions in the chaotic
sea. In all cases, the calculated values of the LCEs were different in the fourth decimal point in the
same chaotic sea.
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Fig. 4 (a) A plot of the LCE vs. Mh and (b) A plot of the LCE vs. ch. The values of all the other
parameters are given in the text.

Fig. 5 (a) An orbit in the 2D potential, (b) Corresponding LCE, (c) P (f) indicator and (d) Ltot

indicator. The motion is chaotic. See text for details.

In the following, we shall investigate the regular or chaotic character of orbits in the 2D
Hamiltonian Equation (8) using the new dynamical indicator Ltot. In order to see the effectiveness
of the new method, we shall compare the results with two other indicators, the classical method of
the LCE and the method P (f) used by Karanis & Vozikis (2008). This method uses the Fast Fourier
Transform (F.F.T.) of a series of time intervals, each one representing the time that elapsed between
two successive points on the Poincarè x−px phase plane for 2D systems, while for 3D systems they
take two successive points on the plane z = 0.

Figure 5(a) shows an orbit with initial conditions x0 = −1.0 and y0 = px0 = 0, while the
value of py is always found from the energy integral for all orbits. The values of all other parameters
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Fig. 6 Similar to Fig. 5(a)–(d). The motion is regular.

and energy are the same as in Figure 1(a). One observes in Figure 5(b) that the LCE, which was
computed for a period of 105 time units, has a value of about 0.18, indicating chaotic motion. The
same result is shown by the P (f) indicator, which is given in Figure 5(c). Figure 5(d) shows a plot of
the Ltot vs. time for a time interval of 100 time units. We see that the diagram is highly asymmetric.
Furthermore, one observes large deviations between the maxima and also large deviations between
the minima in the [Ltot, t] plot. The above characteristics suggest that the corresponding orbit is
chaotic.

Figure 6(a) shows an orbit with initial conditions x0 = 8.8 and y0 = px0 = 0. The values
of all other parameters and energy are the same as in Figure 1(b). As we can see, this is a quasi-
periodic orbit. Therefore the LCE of this orbit goes to zero, as is clearly seen in Figure 6(b). The
P (f) indicator in Figure 6(c) shows a small number of peaks, also indicating regular motion. The
plot of the Ltot given in Figure 6(d) is now quasi-periodic, with symmetric peaks, indicating regular
motion.

Figure 7(a)–(d) is similar to Figure 6(a)–(d) for an orbit with initial conditions x0 = −9.36 and
y0 = px0 = 0, while the values of all other parameters and energy are the same as in Figure 2(a). As
we can see, the orbit is quasi-periodic and this fact is indicated by all three dynamical parameters.
On the contrary, the orbit shown in Figure 8(a) has initial conditions x0 = 10 and y0 = px0 = 0
while the values of all other parameters and energy are the same as in Figure 2(d). The orbit looks
chaotic and this is indicated by the LCE, the P (f) and the Ltot shown in Figure 8(b), 8(c) and 8(d),
respectively.

A large number of orbits in the 2D system were calculated for different values of the parameters.
All of the numerical results suggest that the Ltot is a fast and reliable dynamical parameter and can
be safely used in order to distinguish ordered from chaotic motion. There is no doubt that the Ltot

method is much faster than the LCE, because it needs only about a hundred time units, while the
LCE needs about a hundred thousand time units. The P (f) indicator needs several thousand time
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Fig. 7 Similar to Fig. 6(a)–(d) for a regular orbit.

Fig. 8 Similar to Fig. 5(a)–(d) for a chaotic orbit.
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units in order to give reliable results. Furthermore, it needs the computation of the phase plane of the
system, while the Ltot only needs the calculations of the corresponding orbit.

3 THE CHARACTER OF MOTION IN THE 3D MODEL

We shall now proceed to investigate the regular or chaotic behavior of the orbits in the 3D
Hamiltonian Equation (5). The regular or chaotic nature of the 3D orbits is found as follows: We
choose initial conditions (x0, px0, z0), y0 = pz0 = 0, such that (x0, px0) is a point on the phase
plane of the 2D system. The point (x0, px0) lies inside the limiting curve

1
2
p2

x + Vt(x) = h2, (9)

which is the curve containing all the invariant curves of the 2D system. We choose h3 = h2 and
the value of py0, for all orbits, is obtained from the energy integral Equation (5). Our numerical
experiments show that orbits with initial conditions (x0, px0, z0), y0 = pz0 = 0, such as (x0, px0)
which is a point in the chaotic regions of Figures 1(a)–(d) and 2(a)–(d) for all permissible values of
z0, produce chaotic orbits.

Our next step is to study the character of orbits with initial conditions (x0, px0, z0) , y0 = pz0 =
0, such as (x0, px0) which is a point in the regular regions of Figure 1(a)–(d) and Figure 2(a)–(d). It
was found that in all cases the regular or chaotic character of the above 3D orbits depends strongly
on the initial value z0. Orbits with small values of z0 are regular, while for large values of z0 they
change their character and become chaotic. The general conclusion, which is based on the results
derived from a large number of orbits, is that orbits with values of z0 ≥ 0.75 are chaotic, while orbits
with values of z0 < 0.75 are regular.

Figure 9(a) shows the LCE of the 3D system, as a function of the mass of the halo, for a large
number of chaotic orbits when ch = 8. The values of the parameters are shown in Figure 4(a). We see
that the LCE decreases exponentially as the mass of the halo increases. Figure 9(b) shows the LCE
as a function of ch when Mh = 10 000. The values of the parameters are shown in Figure 4(b). Here
the LCE increases exponentially as ch increases. The above results suggest that the degree of chaos
decreases in asymmetric triaxial galaxies with more dense and more massive halo components.

Figure 10(a)–(d) is similar to Figure 8(a)–(d) but for a 3D orbit. The orbit shown in Figure 10(a)
looks chaotic. Initial conditions are x0 = 2.0, px0 = 0 and z0 = 0.5. Remember that all orbits have
y0 = pz0 = 0, while the value of py0 is always found from the energy integral. The values of all other
parameters and energy h3 are the same as in Figure 2(b). The LCE shown in Figure 10(b) assures
the chaotic character of the orbit. The P (f) given in Figure 10(c) also suggests chaotic motion. The
same conclusion comes from the Ltot, which is shown in Figure 10(d). Figure 11(a)–(d) is similar
to Figure 10(a)–(d) but for a quasi-periodic 3D orbit. The initial conditions are x0 = 5.0, px0 = 0
and z0 = 0.1. The values of all other parameters and energy h3 are the same as in Figure 1(c). Here
one observes that all three detectors support the regular character of orbits.

Two more examples of 3D orbits are given in Figure 12(a) and (b) and Figure 13(a) and (b).
Here we present only the orbit and the Ltot. In Figure 12(a) and (b) the orbit has initial conditions
x0 = −1.0, px0 = 0 and z0 = 0.5. The values of all other parameters and energy h3 are shown
in Figure 2(c). The motion is chaotic. In Figures 13(a) and (b) the orbit has initial conditions x0 =
−9.55, px0 = 0 and z0 = 0.1. The values of all other parameters and energy h3 are as shown in
Figure 2(d). The motion is regular.

The main conclusion for the study of the 3D model is that the Ltot indicator can give reliable
and very fast results for the character of the orbits. There is no doubt that the Ltot is much faster
than the two other indicators used in this research. Therefore, we can say that this indicator is a very
useful tool for a quick study of the character of orbits in galactic potentials.
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Fig. 9 Similar to Fig. 4(a)–(b) for the 3D potential. The values of all other parameters are
given in the text.

Fig. 10 (a) An orbit in the 3D potential, (b) The corresponding LCE, (c) The P (f) indicator and (d)
The Ltot indicator. The motion is chaotic. See the text for details.
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Fig. 11 Similar to Fig. 10(a)–(d). The motion is regular.

Fig. 12 (a) A 3D chaotic orbit and (b) The corresponding Ltot. See text for details.
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Fig. 13 Similar to Fig. 12(a)–(b) for a quasi-periodic orbit.

4 DISCUSSION AND CONCLUSIONS

In this article, we have studied the regular and chaotic character of motion in a 3D galactic potential.
The potential describes the motion in a triaxial elliptical galaxy with a small asymmetry surrounded
by a dark halo component. Dark halos may have a variety of shapes (see Ioka et al. 2000; Olling
& Merrifield 2000; Oppenheimer et al. 2001; McLin et al. 2002; Penton et al. 2002; Steidel et al.
2002; Wechsler et al. 2002; Papadopoulos & Caranicolas 2006; Caranicolas & Zotos 2010). In this
investigation we have used a spherical dark halo component.

In order to distinguish between regular and chaotic motion, we have introduced and used a new
fast indicator, the Ltot. The validity of the results given by the new indicator was checked using the
LCE and an earlier method used by Karanis & Vozikis (2008). We started from the 2D system and
then extended the results to the 3D potential.

The main conclusions of this research are the following:

(1) The percentage of chaotic orbits decreases as the mass of the spherical halo increases. Therefore,
the mass of the halo can be considered as an important physical quantity, acting as a controller
of chaos in galaxies showing small asymmetries.

(2) We expect to observe a smaller fraction of chaotic orbits in asymmetric triaxial galaxies with a
dense spherical halo, while the fraction of chaotic orbits would increase in asymmetric triaxial
galaxies surrounded by less dense spherical halo components.

(3) It was found that the LCE in both the 2D and the 3D models decreases as the mass of the halo
increases, while the LCE increases as the scale length ch of the halo increases. This means that
not only the percentage of chaotic orbits, but also the degree of chaos is affected by the mass or
the scale length of the spherical halo component.

(4) The Ltot gives fast and reliable results regarding the nature of motion, both in 2D and 3D galactic
potentials. For all calculated orbits, the results given by the Ltot coincide with the outcomes
obtained using the LCE or the P (f) method used by Karanis & Vozikis (2008). The advantage
of the Ltot is that it is faster than the above two methods.
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