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Abstract We propose an accurate test of the distance-duality (DD) relation, η =
DL(z)(1 + z)−2/DA(z) = 1 (where DL and DA are the luminosity distances and
angular diameter distances, respectively), with a combination of cosmological obser-
vational data of Type Ia Supernovae (SNe Ia) from the Union2 set and the galaxy
cluster sample under an assumption of the spherical model. In order to avoid bias
brought on by redshift non-coincidence between observational data and to consider
redshift error bars of both clusters and SNe Ia in the analysis, we carefully choose the
SNe Ia points which have the minimum acceptable redshift difference of the galaxy
cluster sample (|Δz|min = σz,SN + σz,cluster). By assuming η to be a constant and
defined as functions of the redshift parameterized by six different expressions, we find
that there exists no observable evidence for variations in the DD relation based on the
collected data, since related statistical tests are well satisfied within the 1σ confidence
level for most cases. Further, considering different values of Δz as constraints, we
also find that the choice of Δz may play an important role in this model-independent
test of the DD relation for the spherical sample of galaxy clusters.
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1 INTRODUCTION

The distance-duality (DD) relation, also known as the Etherington’s reciprocity relation (Etherington
1933), is of fundamental importance in cosmology, which relates the luminosity distance (LD, DL)
with the angular diameter distance (ADD, DA) by means of the following expression,

η =
DL

DA
(1 + z)−2 = 1. (1)

We notice that the DD relation is completely general, valid for all cosmological models based on
Riemannian geometry, being dependent neither on Einstein field equations nor on the nature of
matter-energy content. It only requires that source and observer are connected by null geodesics in a
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Riemannian spacetime and that the number of photons is conserved. This equation plays an essential
role in modern cosmology (Csáki et al. 2002), ranging from gravitational lensing studies (Schneider
et al. 1992; Fu et al. 2008) to analysis of galaxy cluster observations (Lima et al. 2003; Cunha
et al. 2007), as well as to the plethora of cosmic consequences involving primary and secondary
temperature anisotropies of the cosmic microwave background (CMB) observations (Komatsu et al.
2011).

Up to now, diverse astrophysical mechanisms such as gravitational lensing and dust extinction
have been proved to be capable of causing obvious deviation from the distance duality and testing
this equality with high accuracy can also provide a powerful probe of exotic physics (Bassett & Kunz
2004a,b; Corasaniti 2006). Therefore, it is rewarding to explore the DD relation to test the validity
of photon conservation and related phenomena.

On the side of the observational data, if one is able to find cosmological sources whose intrinsic
luminosities are known (standard candles) as well as their intrinsic sizes (standard rulers), one can
determine both DL and DA and after measuring the common redshifts, to directly test the above
Etherington’s result. The possibility of using the Sunyaev-Zeldovich effect (SZE) together with X-
ray emission of galaxy clusters to measure angular distances was suggested soon after the SZE was
found (Silk & White 1978). Used jointly, this provides an independent method to determine distance
scales and thus to measure the value of the Hubble constant (Silk & White 1978; Birkinshaw et al.
1991; Inagaki et al. 1995; Nozawa et al. 2006).

By using an isothermal spherical model for which the hydrostatic equilibrium model and spher-
ical symmetry are assumed, Reese et al. (2002) selected 18 galaxy cluster samples and Bonamente
et al. (2006) obtained 38 ADD galaxy clusters samples. De Filippis et al. (2005) have corrected
the samples by using an isothermal elliptical model to get 25 ADDs of galaxy clusters. Uzan et al.
(2004) considered 18 ADD samples (Reese et al. 2002) to test the DD relation by assuming the
ΛCDM model via the technique Dcluster

A (z) = DΛCDM
A (z)η2(z). They showed that no violation

of the DD relation is only marginally consistent with the accepted model. Cases of using the DD
relation for astrophysical research can be found in many works, e.g., Bassett & Kunz (2004b); More
et al. (2009); Avgoustidis et al. (2010); Holanda et al. (2011a); Cao & Zhu (2011).

In order to test the DD relation in a model-independent way, one should use measurements of
DL from cosmological observations directly. The first direct evidence for cosmic acceleration came
from Type Ia Supernovae (SNe Ia) (Riess et al. 1998; Perlmutter et al. 1999), which have provided
the strongest constraints on the cosmological parameters (Riess et al. 2004, 2007; Astier et al. 2006;
Wood-Vasey et al. 2007; Kowalski et al. 2008). de Bernardis et al. (2006) divided the weighted
average of galaxy clusters (Bonamente et al. 2006) and SNe Ia (Riess et al. 2004) in redshift bins
and concluded that the validity of η = 1 is consistent at the 68.3% (1σ) confidence level (CL).

Recently, Holanda et al. (2010) tested the DD relation with ADD samples and the Constitution
set of SNe Ia data (Hicken et al. 2009). In order to avoid the corresponding bias of redshift differ-
ences, a selection criteron (Δz = |zSN − zcluter| ≤ 0.005) for a given pair of data is used. By using
two parameterizations of the η parameter, they found that the DD relation is marginally compatible,
within the 2σ CL, with the elliptical model sample (De Filippis et al. 2005) and a strong violation oc-
curs (> 3σ) of the DD relation with the spherical model sample (Bonamente et al. 2006). However,
Li et al. (2011) found that, by removing more data points of galaxy cluster samples according to
the selection criteron, the DD relation can be accommodated at 1σ CL for the elliptical model and
at 3σ CL for the spherical model. Nair et al. (2011) discussed the validity of the DD relation with
observational data and significantly ruled out some of the parameterizations.

It is obvious that the difference of redshifts between galaxy clusters and SNe Ia may cause
obvious deviation in testing the DD relation. In principle, the only strict criterion to form a given
pair is that galaxy clusters and SNe Ia should be at the same redshift. Liang et al. (2011) found
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that the DD relation is satisfied at 1σ CL with the corrected DL located at the same redshift as
the corresponding 38 spherical galaxy cluster samples, which are obtained by interpolating from
the nearby SNe Ia of the Union2 set. It should be noted that the redshifts of observations are not
determined with infinite accuracy and there is no point in decreasing Δz below the total 1σ error of
observational redshifts σz,tot = σz,SN + σz,cluster. Therefore, the finite errors of both clusters and
SNe Ia should be taken into account in the analysis.

In this paper, we consider redshift error bars of both clusters and SNe Ia in the analysis in order
to avoid bias from redshift differences between observational data to test the DD relation. In practice,
σz,tot is not smaller than 0.002, therefore it is not appropriate to use a smaller window constraint. For
the total 38 data pairs with the spherical sample of galaxy clusters and the Union2 set, we find that
differences of redshifts between all the 38 data pairs are very small (Δz ≤ 0.005) and there are 33
pairs that meet the minimum selection criteron |Δz|min = σz,tot. Thus we choose the SNe Ia points
which have the minimum acceptable redshift difference of the galaxy cluster sample Δz ≤ 0.002.
This criteron serves as a much more stringent one compared with Δz ≤ 0.005 (Holanda et al. 2010;
Li et al. 2011), therefore the accuracy and reliability of our test should be improved. We also find
that the choice of Δz may play an important role in this model-independent test.

This paper is organized as follows. In Section 2, we introduce seven parametrizations for the
DD relations applied in this work. In Section 3, we present a combined data set given by the latest
released Union2 SNe Ia data as well as the 38 galaxy cluster samples under an assumption of obeying
the spherical model. In Section 4, we briefly describe the analysis method and show results for
constraining parameters of the DD relation. Finally, we summarize conclusions in Section 5.

2 DD RELATION PARAMETRIZATIONS

Regarding the parametrization of the DD relation, a model independent test has been extensively
discussed in the above quoted papers (de Bernardis et al. 2006; Holanda et al. 2010, 2011a,b; Li
et al. 2011; Nair et al. 2011; Liang et al. 2011; Meng et al. 2011; Fu 2011) considered η a constant
with no relation to the redshift

I. η = η0,
where η0 is a constant to be constrained by observational data. In general, η can be treated as param-
eterized functions of the redshift, η(z), which are clearly inspired from similar expressions for w(z),
the equation of state in time-varying dark energy models (see, for instance, Chevallier & Polarski
(2001); Linder (2003); Cunha et al. (2007); Silva et al. (2007)). Recently, Holanda et al. (2010,
2011a) used two one-parameter expressions, namely,

II. η(z) = 1 + ηaz,
III. η(z) = 1 + ηaz/(1 + z).

In this work, we also use other general parametric representations for a possible redshift dependence
of the distance duality expression including three two-parameter parameterizations (Li et al. 2011;
Nair et al. 2011; Liang et al. 2011; Meng et al. 2011):

IV. η(z) = 1 + ηa ln(1 + z),
V. η(z) = η0 + ηaz,
VI. η(z) = η0 + ηaz/(1 + z),
VII. η(z) = η0 + ηa ln(1 + z).

3 GALAXY CLUSTERS AND SUPERNOVAE IA SAMPLES

In this work, we consider the sample of ADD from galaxy clusters obtained by combining their SZE
and X-ray surface brightness observation samples (Bonamente et al. 2006). Under an assumption of
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spherical model, the cluster plasma and dark matter distributions were analyzed assuming a hydro-
static equilibrium model and spherical symmetry, thereby accounting for radial variations in density,
temperature and abundance. Recently, the Supernova Cosmology Project (SCP) collaboration has
released its Union2 compilation which consists of 557 SNe Ia (Amanullah et al. 2010), which is the
largest published and spectroscopically confirmed SNe Ia sample to date.

For a given Dcluster
A data point, theoretically, we should select an associated SNe Ia data point

DSN
L at the same redshift to obtain an ηobs. In order to avoid any bias of redshift differences be-

tween SNe Ia and galaxy clusters and to consider redshift error bars of both clusters and SNe Ia in
the analysis, we should determine the value of σz,tot = σz,SN + σz,cluster for the combination of
observational data pairs. For the observations of SNe Ia, the peculiar velocity’s uncertainty is set at
400 km s−1 (Wood-Vasey et al. 2007) (or 300 km s−1, Kowalski et al. (2008)) and the redshift un-
certainty is σz,SN = 0.001 (Hicken et al. 2009). For the observations of galaxy clusters, the rms one-
dimensional cluster peculiar velocity’s uncertainty is set at 256+106

−75 km s−1, which corresponds to
the three-dimensional rms velocity 459+184

−130 km s−1 (Watkins 1997) (or 341±93 km s−1 for the rms
one-dimensional cluster peculiar velocity, which corresponds to the three-dimensional rms velocity
591 ± 161 km s−1, Dale et al. (1999)) and the redshift uncertainty is σz,cluster = 0.001. Therefore,
Δz = σz,tot = 0.002 is considered in our work. Obviously, this strict choice with Δz = 0.002 may
hopefully ease the systematic errors brought by redshift inconsistence between SNe Ia and galaxy
clusters. Therefore, we obtain a sub-sample of SNe Ia from the Union2 data set whose redshifts co-
incide with the ones appearing in the galaxy cluster sample under this criterion. We then bin the SNe
data in the redshift bins of the corresponding spherical galaxy cluster sample to obtain 33 data pairs
in our test. Assuming that μi represents the ith appropriate SNe Ia distance modulus data (within the
|Δz| < 0.002 redshift range) with σμi denoting its reported observational uncertainty, in light of the
standard data reduction framework by Bevington & Robinson (2003, Chap. 4), we obtain

μ̄ =
∑

(μi/σ2
µi

)∑
1/σ2

µi

,

σ2
μ̄ = 1∑

1/σ2
µi

,
(2)

where μ̄ stands for the weighted mean distance modulus at the corresponding galaxy cluster redshift
and σμ̄ serves as its uncertainty.

It must be emphasized that, if a redshift-dependent expression for the DD relation is consid-
ered, the SZE+X-ray surface brightness observation technique gives Dcluster

A (z) = DA(z)η2(z)
(Sunyaev & Zeldovich 1972; Cavaliere & Fusco-Femiano 1978). So, we must replace DA(z) with
Dcluster

A (z)η−2 when we try to consistently test the reciprocity relation with the SZE+X-ray obser-
vations from galaxy clusters. Thus, the observed ηobs(z) is determined by the following expression

ηobs(z) = Dcluster
A (z)(1 + z)2/DL(z). (3)

It should be noted that the data points of the compiled Union2 SNe Ia are given in terms of the
distance modulus, which could reduce to

DL(z) = 10μ(z)/5−5. (4)

Accordingly, the uncertainty of the luminosity distance could be expressed in terms of the distance
modulus uncertainty σDL(z) = ln 10/5 × 10(μ/5−5)σμ(z).

4 ANALYSIS AND RESULTS

In this section, we estimate the η0 and ηa parameters in seven parametrizations listed in Section 2.
To estimate the model parameters of a given parameterized form, we use the minimum χ2 estimator
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following the standard route

χ2(z;p) =
∑

z

[ηth(z;p) − ηobs(z)]2

σ2
ηobs

, (5)

where ηth represents the theoretical value of the η parameter with the parameter set p and ηobs is
associated with the observational technique of estimating the error of σηobs , which comes from the
statistical contributions and systematic uncertainties of the galaxy clusters and SNe Ia, as well as the
redshifts

σηobs = σcluster
DA

(1 + z)2/DL − Dcluster
A σDL(1 + z)2/D2

L + 2Dcluster
A σz(1 + z)/DL . (6)

For the one-parameter models, one should expect the likelihood of η0 or ηa to peak at η0 = 1 or
ηa = 0 (Δχ2 is minimized at η0 = 1 or ηa = 0), in order to satisfy the DD relation. As for the
two-parameter models, one should expect η0 = 1 and ηa = 0 to be the best-fit parameters in the
confidence contours, if it is consistent with photon conservation and there is no visible violation of
the DD relation.

In Figure 1 (left), we plot the likelihood distribution function in the η0 − Δχ2 plane and ob-
tain η0 = 0.97+0.05

−0.06 at 1σ, which is in good qualitative agreement with previous analyses (η0 =
1.01+0.07

−0.07) (de Bernardis et al. 2006). In Figure 1 (right), we show the likelihood distribution func-
tion from three one-parameter forms of the redshift: II. η(z) = 1+ηaz; III. η(z) = 1+ηaz/(1 + z);
and IV. η(z) = 1 + ηa ln(1 + z). The best-fit values at 1σ CL are ηa = −0.01+0.15

−0.16 for model I,
ηa = −0.01+0.21

−0.24 for model II and ηa = −0.01+0.22
−0.19 for model III, which are different from those

obtained in Holanda et al. (2010), where the DD relation is ruled out at 3σ CL and those obtained in
Li et al. (2011), where the DD relation is accommodated at 3σ CL for the spherical model. Fitting
results from one-parameter forms with the ADDs of galaxy clusters and the luminosity distances of
the Union2 set with Δz = σz,tot = 0.002 are summarized in Table 1.

Table 1 Summary of the Results for Seven Parameterizations at
the 1σ Confidence Level with Δz = 0.002

Parameterization (Δz = 0.002) η0 ηa

I. η0 0.97+0.05
−0.06 0

II. 1 + ηaz 1 −0.01+0.15
−0.16

III. 1 + ηa
z

1+z
1 −0.01+0.21

−0.24

IV. 1 + ηa ln(1 + z) 1 −0.01+0.22
−0.19

V. η0 + ηaz 0.84+0.17
−0.17 0.43+0.49

−0.49

VI. η0 + ηa
z

1+z
0.74+0.23

−0.22 1.02+0.84
−0.85

VII. η0 + ηa ln(1 + z) 0.82+0.20
−0.19 0.57+0.68

−0.67

The above analyses are based on the assumption that the redshift-independent model parameter
is a constant η0 = 1. Now we take it as a varying parameter to examine the DD relation by assuming
more general expressions: V. η(z) = η0 + ηaz; VI. η(z) = η0 + ηaz/(1 + z); VII. η(z) = η0 +
ηa ln(1 + z). Fitting results from two-parameter forms with the ADDs of galaxy clusters and the
luminosity distances of the Union2 set with Δz = σz,tot = 0.002 are shown in Figure 2 and
summarized in Table 1. Our results suggest that there is no violation of the DD relation for two-
parameter cases at 1σ CL for models V and VII and at 2σ CL for model VI, which are more stringent
than those obtained in Li et al. (2011), where the DD relations are consistent at 2σ CL for the
spherical sample of galaxy clusters.
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Fig. 1 Likelihood distribution function with the 33 ADDs of galaxy clusters and the luminosity
distances of the Union2 set for one-parameter forms in the η0 − Δχ2 planes (for model I) and the
ηa − Δχ2 planes (for models II–IV) with Δz = 0.002.
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Fig. 2 Likelihood contours with the 33 ADDs of galaxy clusters and the luminosity distances of the
Union2 set at 1σ and 2σ CL for two-parameter forms in the η0 − ηa plane with Δz = 0.002. (a) for
η(z) = η0 + η1z; (b) for η(z) = η0 + ηa

z
1+z

; (c) for η(z) = η0 + ηa ln(1 + z). The filled stars
represent the cases with no violation of the DD relation (η0 = 1 and ηa = 0).
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Fig. 3 Likelihood distribution function in the ηa − Δχ2 plane for the three one-parameter forms of
the redshift (model II, III, IV) with varying Δz = 0.003, 0.004, 0.005.

−1 0 1 2 3 4 5 6
x 10

−3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Δz

η a

 

 

η=1+η
a
z

η=1+η
a
z/(1+z)

η=1+η
a
ln(1+z)
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From Figures 1–2 and Table 1, we can find that the DD relation can be accommodated at 1σ
CL for the Bonamente et al. sample, except for model VI. Our results differ from those obtained by
Holanda et al. (2010), where the results from the Bonamente et al. sample give a clear violation of
the DD relation. However, these results are more stringent than those obtained by Li et al. (2011),
where the DD relation is accommodated at 2σ − 3σ CL for the spherical sample of galaxy clusters.

After identifying the constraints on η obtained with the minimum acceptable Δz = 0.002, we
may consider different values of Δz for examining the role the choice of Δz played in constraints.
For the selection criteria of Δz = 0.003, 0.004 and 0.005, there are 35, 37 and 38 data pairs, respec-
tively.

In Figure 3, we show the corresponding constraints on ηa for the three one-parameter forms of
the redshift: II. η(z) = 1+ηaz; III. η(z) = 1+ηaz/(1 + z); and IV. η(z) = 1+ηa ln(1+z). Finally,
we plot the 1σ error bar of ηa as a function of Δz = 0.002− 0.005 in Figure 4. For comparison, we
also show the results of ηa with 14 data pairs at Δz = 0 in Figure 4.

From Figures 3 and 4, we can find that the choice of Δz may play an important role in this
model-independent test and the results for Δz = 0.005 in our test show the DD relation is ruled out
at 2σ CL, which are close to those of Holanda et al. (2010) where the DD relation is ruled out at 3σ
CL and consistent with those obtained in Li et al. (2011), where the DD relations are consistent at
3σ CL for the spherical sample of galaxy clusters.

5 CONCLUSIONS

In this paper, we have discussed a new model-independent cosmological test for the distance-duality
relation, η(z) = DL(1+z)−2/DA. We consider the angular diameter distances from galaxy clusters
obtained by using SZE and X-ray surface brightness together with the luminosity distances given a
sub-sample of SNe Ia taken from the Union2 data. The key aspect is that SNe Ia are carefully chosen
to have the minimum acceptable redshift difference of the galaxy cluster (Δz = σz,tot = σz,SN +
σz,cluster). For the sake of generality, the η parameter is also parameterized in seven different forms,
namely, four one-parameter models: (I) η = η0, (II) η = 1 + ηaz, (III) η = 1 + ηaz/(1 + z), (IV)
η = 1+ηa ln(1+z) and three two-parameter models: (V) η = η0 +ηaz, (VI)η = η0 +ηaz/(1+z),
(VII) η = η0 + ηa ln(1 + z).

By assuming η to be a constant, we obtain η0 = 0.97+0.05
−0.06 at 1σ. For the redshift-dependent

one-parameter forms of models II, III and IV, we obtain ηa = −0.01+0.15
−0.16, ηa = −0.01+0.21

−0.24 and
ηa = −0.01+0.22

−0.19, respectively, which are well consistent with no violation of the DD relation. We
furthermore put forwards three kinds of two-parameter parametrizations corresponding to models II,
III and IV, respectively. The standard values without any violation of the reciprocity relation (η0 = 1
and ηa = 0) are still included at 68.3% CL (1σ) for models V and VII and at 95.8% CL (2σ) for
model VI. It is shown that there is no observational evidence for variations of the DD relation for
the Bonamente et al. sample, since it is marginally satisfied within 1σ CL for most cases, which is
different from those obtained by Holanda et al. (2010), where the results from the Bonamente et al.
sample give a clear violation of the DD relation and are more stringent than those obtained by Li
et al. (2011). By further considering different values of the redshift difference Δz, we find that the
choice of Δz may play an important role in this model-independent cosmological test of the DD
relation and the results for Δz = 0.005 in our test show the DD relation is ruled out at 2σ CL,
which are close to those of Holanda et al. (2010) where the DD relations are ruled out at 3σ CL and
consistent with those obtained in Li et al. (2011), where the DD relations are consistent at 3σ CL for
the spherical sample of galaxy clusters.

It is still interesting to see whether those conclusions may be changed with a larger sample of
SNe Ia and galactic cluster data in the future, which reinforces the interest in the observational search
for more samples of galaxy clusters with smaller statistical and systematic uncertainties, as well as



Testing the Distance-Duality Relation 1207

the determination of their angular diameters through the combination of SZE and X-ray surface
brightness.
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Csáki, C., Kaloper, N., & Terning, J. 2002, Physical Review Letters, 88, 161302
Cunha, J. V., Marassi, L., & Lima, J. A. S. 2007, MNRAS, 379, L1
Dale, D. A., Giovanelli, R., Haynes, M. P., Campusano, L. E., & Hardy, E. 1999, AJ, 118, 1489
de Bernardis, F., Giusarma, E., & Melchiorri, A. 2006, International Journal of Modern Physics D, 15, 759
De Filippis, E., Sereno, M., Bautz, M. W., & Longo, G. 2005, ApJ, 625, 108
Etherington, I. M. H. 1933, Philosophical Magazine, 15, 761 (reprinted in 2007, Gen. Rel. Grav. 39, 1055)
Fu, L., Semboloni, E., Hoekstra, H., et al. 2008, A&A, 479, 9
Fu, X. Y., Wu, P. X., Yu, H. W., & Li, Z. 2011, RAA (Research in Astronomy and Astrophysics), 11, 895
Hicken, M., Wood-Vasey, W. M., Blondin, S., et al. 2009, ApJ, 700, 1097
Holanda, R. F. L., Lima, J. A. S., & Ribeiro, M. B. 2010, ApJ, 722, L233
Holanda, R. F. L., Lima, J. A. S., & Ribeiro, M. B. 2011a, A&A, 528, L14
Holanda, R. F. L., Lima, J. A. S., & Ribeiro, M. B. 2011b, arXiv:1104.3753
Inagaki, Y., Suginohara, T., & Suto, Y. 1995, PASJ, 47, 411
Komatsu, E., Smith, K. M., Dunkley, J., et al. 2011, ApJS, 192, 18
Kowalski, M., Rubin, D., Aldering, G., et al. 2008, ApJ, 686, 749
Li, Z., Wu, P., & Yu, H. 2011, ApJ, 729, L14
Liang, N., Cao, S., & Zhu, Z.-H. 2011, arXiv:1104.2497
Lima, J. A., Cunha, J. V., & Alcaniz, J. S. 2003, Phys. Rev. D, 68, 023510
Linder, E. V. 2003, Physical Review Letters, 90, 091301
Meng, X.-L., Zhang, T.-J., & Zhan, H. 2011, arXiv:1104.2833
More, S., Bovy, J., & Hogg, D. W. 2009, ApJ, 696, 1727
Nair, R., Jhingan, S., & Jain, D. 2011, J. Cosmol. Astropart. Phys., 5, 23
Nozawa, S., Itoh, N., Suda, Y., & Ohhata, Y. 2006, Nuovo Cimento B Serie, 121, 487



1208 S. Cao & N. Liang

Perlmutter, S., Aldering, G., Goldhaber, G., et al. 1999, ApJ, 517, 565
Reese, E. D., Carlstrom, J. E., Joy, M., et al. 2002, ApJ, 581, 53
Riess, A. G., Filippenko, A. V., Challis, P., et al. 1998, AJ, 116, 1009
Riess, A. G., Strolger, L.-G., Casertano, S., et al. 2007, ApJ, 659, 98
Riess, A. G., Strolger, L.-G., Tonry, J., et al. 2004, ApJ, 607, 665
Schneider, P., Ehlers, J., & Falco, E. E. 1992, Gravitational Lenses (Springer-Verlag, Berlin)
Silk, J., & White, S. D. M. 1978, ApJ, 226, L103
Silva, R., Alcaniz, J. S., & Lima, J. A. S. 2007, International Journal of Modern Physics D, 16, 469
Sunyaev, R. A., & Zeldovich, Y. B. 1972, Comments on Astrophysics and Space Physics, 4, 173
Uzan, J.-P., Aghanim, N., & Mellier, Y. 2004, Phys. Rev. D, 70, 083533
Watkins, R. 1997, MNRAS, 292, L59
Wood-Vasey, W. M., Miknaitis, G., Stubbs, C. W., et al. 2007, ApJ, 666, 694


